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Abstract

We propose a new approach to detecting irregular curvi-
linear structures in noisy image stacks. In contrast to ear-
lier approaches that rely on circular models of the cross-
sections, ours allows for the arbitrarily-shaped ones that
are prevalent in biological imagery. This is achieved by
maximizing the image gradient flux along multiple direc-
tions and radii, instead of only two with a unique radius as
is usually done. This yields a more complex optimization
problem for which we propose a computationally efficient
solution.

We demonstrate the effectiveness of our approach on a
wide range of challenging gray scale and color datasets and
show that it outperforms existing techniques, especially on
very irregular structures.

1. Introduction

Enhancing curvilinear structures is a crucial preprocess-

ing step in a broad array of biomedical delineation tasks,

ranging from finding blood vessels [4, 15, 3] to dendritic

arbors [23, 24, 21]. The most popular techniques rely

on filters that are crafted to respond to locally linear fea-

tures [13, 7, 20, 18], optimized for specific profiles [11, 22],

or learnt [19, 10]. They return a measure that, ideally,

should be maximal on the centerline of tubular structures.

In recent years, Optimally Oriented Flux (OOF) [13] has

emerged as one of the best such tubularity measures, in

part because it can easily be normalized for scale and is

relatively insensitive to the presence of adjacent structures.

Thus, it provides a higher discriminative power in detect-

ing curvilinear structures in scale-space than Hessian based

features. However, it also produces a strong response on

high contrast edges and the Oriented Flux Antisymmetry

(OFA) measure [14] was later introduced to address this is-

sue. Combining OOF and OFA has been shown to be very
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(a) (b)
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Figure 1. Sources of irregularity in biological imagery, best viewed

in color. Each one of the four examples shown here includes at the

top a maximal or minimal intensity projection and below two cross

sections of tubular structures. These cross sections correspond to

the yellow lines overlaid on the top image. (a) Confocal stack of

blood vessels with non-uniform staining. (b) Brainbow stack of

neurites [17] with severe occlusion and image noise. (c,d) Bright-

field image stacks with irregular staining and point-spread function

blur.

effective on relatively regular tube-like structures.

However, performance is adversely affected when cross

sections become very irregular and deviate strongly from

being circular. As shown in Fig. 1, this is an issue be-

cause curvilinear structures in biological imagery often ap-

pear as jagged filaments whose cross sections are extremely

irregular, due among others to imaging noise, artifacts, non-

uniform staining, occlusion and point-spread function.

In this paper, we introduce a new tubularity measure that

we refer to as Multi-Directional Oriented Flux (MDOF),

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.196

1553

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.196

1553



designed to handle this kind of irregularities. We demon-

strate that it is more effective at handling them not only than

the OOF and OFA combination but also than other popular

methods [16, 7].

This is achieved by maximizing the image gradient flux

along multiple directions and radii, rather than only along

two orthogonal directions with the same radii as in the OOF

framework. This represents a more complicated optimiza-

tion problem for which we propose a computationally effi-

cient solution. For color images, we further boost perfor-

mance by exploiting, at each image location, gradient infor-

mation of similar colors from its vicinity.

Our contribution is both this new MDOF measure for de-

tecting curvilinear structures in gray scale and color images

and an approach to computing it efficiently, which makes it

practical to solve real-world problems. We will demonstrate

its effectiveness on four difficult and very different datasets.

2. Related Work

Hand-designed curvilinear structure detectors fall into

two main categories: the very popular Hessian-based de-

tectors and model-based optimal filters. Here, we describe

them and discuss their advantages and drawbacks. An-

other significant group of techniques are those that learn

filters [19, 10] given ground-truth data. In practice, acquir-

ing such data is an expensive and laborious process and we

focus here on techniques that do not require it.

2.1. Hessian-Based Detectors

Many methods rely on computing second order deriva-

tives to detect filament-like patterns. The main assump-

tion is that the desired structure is characterized by a local

principal direction and a cross-sectional plane with Gaus-

sian intensity profile. The most common tool to character-

ize such patterns is the Hessian matrix. Hessian-based ap-

proaches [7, 20, 6, 18] consist in computing the eigenvalues

of the Hessian and combining them to obtain a tubularity

measure that quantifies the likelihood that a specific pixel

lies on a ceterline of a filament-like structure. Despite their

popularity, Hessian-based approaches suffer from three ma-

jor drawbacks:

1. Sensitivity to local deformations. If the cross-section

does not present a circular profile the assumptions jus-

tifying using the Hessian matrix no longer hold, which

often leads to false negative responses. The lack of ro-

bustness in the presence of an irregular profile is a gen-

eral drawback common to all existing hand designed

detectors.

2. Detection of thick branches requires a large variance of

the Gaussian, which induces substantial blur. There-

fore the response of such filters at a thick branch may

be biased by the presence of adjacent structures in the

immediate neighborhood.

3. Last but not least, normalization over scales of

Hessian-based tubularity measures is not straightfor-

ward. A normalization procedure for 2D Gaussian

ridge profiles was introduced in [16]. Unfortunately,

curvilinear structures in real data do not necessarily

conform to such an appearance model. Moreover, for

datasets where the cross-sections do not have Gaus-

sian profiles the normalization has a tendency to at-

tenuate drastically the responses at large scales. Con-

sequently, multi-scale Hessian-based measures favor

small scales [5] and do not provide reliable scale es-

timates.

2.2. Optimal Filtering

Jacob et al. [11, 1] propose a method utilizing a class of

steerable filters [8]. The proposed set of filters are Gaus-

sian derivatives of up to, typically, the 4th order. A related

approach, the Optimally Oriented Flux filtering [13], con-

sists of convolving the second order derivatives of the im-

age with the indicator of a sphere, which is a steerable filter

designed for detecting curvilinear structures. Compared to

Hessian-based detectors, the Oriented Flux filter is straight-

forward to normalize over scale. The OOF computation is

confined to a local spherical region which results in less sen-

sitivity to the presence of adjacent structures as compared

to Hessian-based methods that involve convolution with the

second derivative of Gaussian. This approach has been ex-

tended to take into account antisymmetry of the projected

gradients at the boundaries of tubular structures [14], as ex-

plained in detail in Section 3.1.

All these approaches assume an ideal circular ap-

pearence of the curvilinear structure cross-sections, which

is often not true in biomedical images, as shown in Fig. 1.

More sophisticated model-based approaches such as the

super-ellipsoid fitting method [22], provide better robust-

ness to these irregularities. However, they are not particu-

larly suitable for dense computation since their filters can-

not be steered and they are hard to optimize.

3. Approach
Our objective is to devise an algorithm able both to reli-

ably detect the centerlines of irregularly shaped curvilinear

structures and to estimate their radius. To this end, we as-

sign to each spatial location and each radius value a tubu-
larity score and then extract the centerline points and their

radii as local maxima in scale-space. Formally, we com-

pute a tubularity value f(x, r) for each 3D image location

x and radius r. It quantifies the likelihood of x being on

the centerline of a curvilinear structure of radius r within a

range [rmin rmax]. In practice, we sample the radius range
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(a) (b) (c) (d)
Figure 2. Representative results on four image stacks, each corresponding to one of the modalities described in Section 4.1. From top

to bottom, they are Retina, Brainbow, Brightfield, and VC6. (a) Original image stacks. (b) Maximum intensity projection of the 4-D

scale-space tubularity volumes obtained with our approach along the scale dimension. The images are color-coded so that higher scale

values appear more saturated, going from white to red. (c) Maximum intensity projection of the non-maxima suppressed tubularity volumes

obtained by running the NMST algorithm of Section 4.2. (d) Segmentation results obtained by maximizing the Jaccard index of Section 4.2.

The 3D renderings are created using the publicly available Vaa3D software.
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uniformly by increments of one pixel spacing. We there-

fore produce 4D tubularity images, such as those depicted

by Fig. 2(b). Without loss of generality, from now on, we

will assume that curvilinear structures are brighter than the

background. If they are darker, the image gray levels can

simply be reversed. Furthermore, we will use the terms ra-

dius and scale interchangeably.

Our tubularity measure extends the well-known Opti-

mally Oriented Flux (OOF) [13] filter, which we first review

briefly for completeness. We then introduce our approach

to handling the irregularity of many curvilinear structures,

which deviates from the idealized models used by the OOF

techniques. Finally, we extend our approach to color im-

ages.

3.1. Optimally Oriented Flux

As discussed in Section 2, many existing approaches

to enhancing curvilinear structures [16, 7, 20] rely on a

Hessian based measure obtained by convolving the image

with second order Gaussian derivatives. This involves some

amount of smoothing. As a result, they take into account

image intensities in the vicinity of the structures, which can

adversely affect their accuracy in the presence of adjacent

structures. Furthermore, in order to estimate the structure

radius from the Gaussian standard deviation, they use an

idealized intensity profile model, which is not trivial to ob-

tain and is not applicable to all imaging modalities.

The OOF filter addresses these issues by considering
intensity values only within a spherical volume of certain
diameter, which provides a good estimate of the structure
width [13]. The filter is computed by convolving the sec-
ond derivatives of the image with the indicator function of
the sphere. More formally, its value f(x,p, r) for image
location x, radius r, and orientation p is obtained by inte-
grating the projected image gradients in the p direction over
a sphere ∂Sr of radius r centered at x. This is written as

f(x,p, r) =
1

4πr2

∫
∂Sr

((∇(Gσ0 ∗ I)(x+ h) · p)p)·nda, (1)

where n is the outward unit normal of ∂Sr, Gσ0 is a reg-

ularizing Gaussian with a small standard deviation σ0 typi-

cally equal to voxel spacing, h = rn is the position vector

with its tip on ∂Sr, and da is the infinitesimal area on ∂Sr.

The smaller the value of f(x,p, r), the more likely it is that

x is the center of a tube with radius r and orientation p.

For each x, we therefore look for the values of p and r
that minimize f . It can be shown that f(x,p, r) can be

rewritten as the quadratic form pTQx,rp, where Qx,r is

known as the oriented flux matrix [13]. Using the diver-

gence theorem, its entries can be expressed as

Qi,j
x,r =

1

4πr2
(∂i,jGσ0

(x) ∗ 1r ∗ I(x)) , (2)

where 1r is the indicator of the sphere of radius r. The OOF

tubularity measure is defined as the sum of the two OOF fil-

ter responses evaluated along two orthogonal directions p1

and p2 defining the structure’s cross-sectional plane [13]:

fOF (x, r) = max
p1,p2,p1⊥p2

− f(x,p1, r)− f(x,p2, r)

= max
p1,p2,p1⊥p2

− pT
1 Qx,rp1 − pT

2 Qx,rp2 , (3)

which can be shown to be equal to the negative sum of the

two smallest eigenvalues of Qx,r. Their associated eigen-

vectors e1x,r and e2x,r provide the optimal directions for the

above maximization.

Due to its intrinsic symmetry, the OOF filter yields high

responses along centerlines of curvilinear structures at their

associated scales. However, it also responds strongly to

edges. To prevent this, a gradient antisymmetry function

g(x,p, r) was introduced in [14]:

g(x,p, r) =
1

4πr2

∫
∂Sr

(∇(Gσ0 ∗ I)(x+ h) · p)da, (4)

which is equal to the inner product pTqx,r. The term qx,r

is called the oriented flux antisymmetry vector (OFA) whose

entries are computed as follows:

qi
x,r =

1

4πr2
(∂iGσ0(x) ∗ 1r ∗ I(x)) , (5)

The absolute value of the antisymmetry function takes

high values at structure boundaries and vanishes on per-

fectly symmetric shapes, for instance, along the centerline

of a tube. Using this principle, the OOF tubularity measure

can be refined to take into account structure symmetricity

as follows [14]:

fOFA(x, r) = fOF (x, r)−
√

g(x, e1x,r, r)
2+g(x, e2x,r, r)

2

= fOF (x, r)−
√

e1Tx,rHx,re1x,r+e2Tx,rHx,re2x,r

(6)

with Hx,r = qx,rq
T
x,r. The two antisymmetry terms above

act complementary to the OOF filter as they annihilate the

OOF response away from the structure centerlines. How-

ever, since both OOF and OFA are evaluated only at two

directions and a single radius value, the measure of Eq. 6

tends to favor circular and symmetric cross sections.

3.2. MDOF: Multi-Directional Oriented Flux

Curvilinear structures such as the ones shown in Fig. 1,

often appear as irregular filaments in medical imagery due

to reasons such as imaging noise, non-uniform staining and

point-spread function. We address this issue by finding mul-

tiple directions and radii of maximal response of the joint
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oriented flux and antisymmetry operators. More specifi-

cally, given a set of predetermined radius levels Sr, we com-

pute a number of direction and radius pairs (pi ∈ R
3, ri ∈

Sr) that maximize

fMS(x) =−
d∑

i=1

pT
i (Qx,ri + αHx,ri)pi (7)

=−
d∑

i=1

pT
i Fx,ripi ,

subject to the constraint that all pi lie on

the same plane at regular angular intervals.

. 

Figure 3. MDOF takes

into account non-circular

cross-sections by allowing

multiple directions pi and

radii ri at every possible

location x.

A schematic of such distri-

bution is presented in Fig. 3,

where the two first orienta-

tions and radii are shown in

dark red, and additional ones

in dashed red.

As in Eq. 6, the matrix

Hx,ri is equal to the quadratic

form qx,riq
T
x,ri of the anti-

symmetry vector as defined in

Eq. 5 and α is a regularization

parameter that determines the

amount of symmetry enforced

along each direction. It is set

to 0.1 in all our experiments.

Note that, in contrast to [14]

which first finds the two dominant eigenvalues of Qx,r and

then plugs their eigenvectors into the antisymmetry term,

we jointly optimize for the oriented flux and the antisym-

metry terms.

An important consideration when solving Eq. 7 is to do

it fast because it needs to be done for each individual voxel.

To this end, we employ a greedy approach, which first finds

the dominant direction p∗
1 and the associated radius r∗1 that

maximizes fMS(x) for d = 1 and then (p∗
2, r

∗
2) that max-

imizes the same function subject to the constraint that p∗
2

is perpendicular to p∗
1. The first step involves computing

p∗
1 as the eigenvector associated with the smallest eigen-

value among those of Fx,ri , for all ri ∈ Sr. Although solv-

ing the second step requires satisfying the linear constraints

pT
2 p

∗
1 = 0 and pT

2 p2 = 1, it can be done in closed form by

solving the following eigenvalue problem [9]:

(e∗, r∗2) = argmax
e,ri∈Sr

− eTP Fx,ri P e , (8)

where the matrix P is defined as P = I − p∗
1p

∗T
1 . The

vector e∗ can be computed as the eigenvector associated

with the smallest eigenvalue among those of P Fx,ri P , for

all ri ∈ Sr. The optimal second direction p∗
2 can then be

found as p∗
2 = P e∗ [9].

We then find the additional d− 2 directions by sampling

them at equiangular intervals to span π radians in the plane

defined by p∗
1 and p∗

2. The corresponding radius values are

found by maximizing the same cost function of Eq. 7 in the

set Sr. This produces a 3-D score image, which we then ex-

tend to 4-D by adding the strongest response of pT
i Fx,ripi

for each radius level. We take the final score for radius r at

location x to be

fMDOF (x, r) = −λ1
x,r +

1

d
max

{pi,ri}d
i=1

fMS(x), (9)

where λ1
x,r is the smallest eigenvalue of Fx,r. At each ra-

dius level, we use only a single eigenvalue, which gives the

strongest response, because, in most datasets, the gradient

information is strong and provides a reliable estimate only

along one direction in the irregular cross-sectional profiles.

For instance, in the brightfield stacks of Fig. 1(c,d), this di-

rection usually lies in the lateral (x-y) plane of the in-focus

z slice. Taking into account the gradient in out-of-focus re-

gions therefore usually results in overestimation of the scale

and mislocalization of the structure centreline.

The second term in Eq. 9 measures the likelihood of x
being on the centerline of a curvilinear structure, while the

first one measures the contribution of the radius level r. As

a result, at each image point x, the radius level r that yields

the strongest gradient flux on the associated sphere Sr will

be assigned the highest score. As we will show in Section 4,

this measure is more effective in suppressing spurious re-

sponses away from the centerlines when the structures are

irregular.

3.3. Handling Color Images

With the advent of new imaging techniques, color in-

formation has gained increasing importance in the analy-

sis of complex curvilinear structures. The Brainbow [17]

and STORM [12] techniques, for instance, allow labelling

neuron cells in a tissue slice with multiple colors using a

random mixture of few fluorescent proteins. This results

in each neuron being labelled with a sufficiently distinct

color, which is nearly constant along its axon and dendrites.

In fact, the color constancy property also widely holds for

other curvilinear structures such as road networks.

We use this property to compute, for each image location

x, a similarity image, which signifies how likely both x and

another location y in its vicinity belong to the same curvi-

linear structure based on their color. We then use the re-

sulting similarity image to compute the tubularity measure

of Eq. 9 at location x. More precisely, given an RGB im-

age stack I , we first convert it into the perceptually uniform

CIELAB space. This is done because the aforementioned

color imaging techniques aim to maximize the color con-

trast among curvilinear structures for visual inspection by

human experts. We then compute the similarity image Jx
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for x as a function s(.) of the color distance between x and

y, weighted by the value of the brightness image L, which

is equivalent to max(R,G,B). We write

Jx(y) = L(y) s(I(x), I(y)), ∀x. (10)

In this work, we take the similarity function s to be a

multivariate Gaussian distribution with mean vector I(x)
and a diagonal covariance matrix with diagonal entries σ.

In practice, computing the similarity image for each loca-

tion is quite expensive. That is why we limit the number of

similarity images to a number of color clusters, which we

compute using the k-means algorithm. Let C be the set of

resulting cluster centroids. Then, Eq. 10 becomes:

Jx(y) = L(y) s(ch(x), I(y)), ∀ch(x) ∈ C, (11)

where h(x) is a function that returns the cluster label for lo-

cation x. Note that, Eq. 11 requires sequentially computing

only |C| similarity images, which serve as input to the tubu-

larity computation described in the previous section. The

result is that, for each location, only image evidence from

nearby locations of similar color are taken into account.

4. Results
In this section, we first describe the datasets we used for

evaluation purpose. We then introduce our evaluation met-

rics and present our results.

4.1. Datasets and Parameters

We evaluated our approach on the four different datasets

described below. In our experiments, the radius levels are

measured in the units of image spacing along the XY axes.

• Retina Two confocal micrographs of direction selec-

tive retinal ganglion cells and loopy vasculature net-

works. In our computations, we sampled 9 radius val-

ues ranging from 3 to 16.

• Brainbow Four micrographs of mice primary visual

cortex acquired using the brainbow staining tech-

nique [17]. We sampled 9 radius values ranging from

3 to 11.

• Brightfield Four brightfield micrographs of biocytin-

stained rat brains. We sampled 12 radius values rang-

ing from 1 to 12.

• VC6 Four brightfield micrographs of biocytin-labeled

cat primary visual cortex layer 6 taken from the DIA-

DEM challenge data [2]. We sampled 12 radius values

ranging from 1 to 12.

We used the same parameters mentioned in Section 3.2

for all the four datasets: the number of direction and radius

pairs d = 10, color similarity sigma σ = 50 in the the

CIELAB space and the number of color clusters |C| = 50.

4.2. Evaluation Metrics

We compare our approach against Optimally Oriented

Flux (OOF) [13], Oriented Flux with Oriented Flux Anti-

symmetry (OOF/OFA) [14], and the older Hessian-Based

Frangi [7] and Lindeberg [16] approaches.

To this end we begin by computing the 4-D tubularity

image stacks, where the fourth dimension represents radius,

using all five methods. These stacks can be turned into ordi-

nary 3-D stacks by choosing the radius that yields the high-

est tubularity value at each location. We then perform non

maxima suppression on the resulting 3-D stacks so that we

can evaluate them both in terms of how close the maxima

are from ground-truth centerlines and in terms of voxel-wise

accuracy when segmenting the tubular structures by jointly

using estimated centerline location and radius.

Non Maxima Suppression. All five methods compute a

matrix whose eigenvectors can be used to compute a local

orientation, which we use in conjunction with the radii esti-

mates to implement a Canny-style approach to non-maxima

suppression. More specifically, we suppress voxels that are

not local maxima in the plane that is perpendicular to the lo-

cal orientation and within the circular neighborhood defined

by their radius.

Unfortunately, because the estimated orientations are not

always accurate, this often removes some of the legiti-

mate centerline points and produces gaps along the struc-

tures, which would skew our accuracy estimates. We solve

this problem by first finding the Minimum Spanning Tree

(MST) that connects all the voxels in the original 3-D tubu-

larity stack. We use 26-connectivity and take the weight

of each edge to be the negative exponential of the mean

tubularity score of the voxels it connects. We then find

connected components in the non-maxima suppressed stack

and identify the MST paths that link pairs of these. For each

component, we retain only the two MST paths that have the

highest average tubularity scores. This yields Non-Maxima
Suppressed Trees (NMST) such as the ones depicted by the

third column of Fig. 2.

Centerline Detection Accuracy. To perform precision-

recall (PR) analysis, given an NMST and a ground-truth

centerline, we introduce a tolerance factor τ measured in

XY spacing units, such that the centerlines present in the

NMST are considered true positives when they are at most

τ distance away from a ground truth centerline voxel. The

resulting PR curves are plotted for τ = 2 in Fig. 4(a) and

additional ones are provided as supplementary material to

show that their ordering is relatively insensitive to τ .

Joint Centerline and Radius Accuracy. Note that lo-

cally maximum voxels in the NMST are still attached tubu-

larity values. To also estimate the quality of our radius es-

timates, we therefore threshold it at different values. For
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(a) Centerline precision-recall curves for τ = 2.
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(b) Segmentation precision-recall curves for η = 0.4.
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(c) Segmentation Jaccard index versus tolerance value η.

Figure 4. Performance curves for our approach and the baselines on four different datasets. The green stars in the middle row indicate

where the Jaccard index is maximized.

Raw Tubularity NMST Overlaid Segmentation
Image measure spheres

Figure 5. Tubular structure segmentation from centerline and scale

estimates. Spheres are centered at NMST image voxels that above

an established threshold, generating the segmentation on the right.

each, we then construct a tubular structure by using our

radius estimates to place spheres at each non-empty voxel

of the thresholded NMST as shown in Fig. 5. This pro-

duces a full segmentation that we compare voxel-wise to

the ground truth. To handle potential inaccuracies in the

ground-truth, which are always present, we define an exclu-

sion zone [(1−η)r (1+η)r] with η < 1 and ignore voxels

that are closer than ηr from the surface of the ground truth

tube, where r is its radius. We set 0 ≤ η ≤ 0.6 and ob-

tain different PR curves for each η value. In Fig. 4(b), we

plot those we obtain for η = 0.4. Finally, in Fig. 4(c), we

LINDEBERG FRANGI OOF OOF/OFA MDOF MDOF COLOR

Retina 101 95 240 393 1344 N/A

Brainbow 10 9 18 30 107 634

Brightfield 132 124 236 384 1576 N/A

VC6 45 42 84 136 553 N/A

Table 1. Average run-times per image stack measured in seconds

on a multi-core machine.

show the best Jaccard index as a function of η. Note that the

Frangi and Lindeberg measures are not visible in some fig-

ures because they achieve low performance values outside

the presented range.

4.3. Interpretation

In all our datasets, the three top contenders clearly are

our approach, OOF, and OOF/OFA. In the Retina stacks, the

tubular structures are relatively regular with only few vascu-

lar branches containing non-uniform staining artifacts. Un-

surprisingly, all three perform similarly, with OOF/OFA

doing best in terms of centerline detection accuracy and

MDOF doing slightly better in terms of joint centerline and

radius in the operating range at high recall rates. Note that
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they both perform better than OOF alone, thus demonstrat-

ing the importance of the antisymmetry term.

In the three other datasets the tubular structures are

much more irregular and MDOF clearly outperforms both

OOF/OFA and OOF. Note also that in the Brightfield and

VC6 case, unlike in the Retina case, OOF performs consid-

erably better than OOF/OFA, which indicates that the an-

tisymmetry term looses some of its power when the struc-

tures become highly irregular. In other words, in all the

three datasets, MDOF performs either better or much better

than either OOF and OOF/OFA taken individually.

Finally, for the Brainbow dataset, which is the only one

in which the stacks are in color, using the color information

yields a further performance boost.

These improvements in performance, however, come at

the expense of higher running times as listed in Table. 1.

Although OOF, OOF/OFA and MDOF have the same com-

putational complexity with respect to the image size, the

joint search for the radii and directions in MDOF incurs a

significant overhead.

Our method and the baselines are implemented using the

ITK library and will be published as open-source software.

5. Conclusion
We presented and validated a new tubularity measure

that performs better than existing approaches on irregular

structures whose cross sections deviate from circular sym-

metric profiles. This is important because many imaging

modalities produce irregular structures as a result of noise,

due to point spread function blur, and non-uniform staining,

among others. Furthermore, we showed that our approach

can be extended to exploit color information when available

to increase robustness.
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