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Abstract

Object detection in images withstanding significant clut-
ter and occlusion is still a challenging task whenever the
object surface is characterized by poor informative content.
We propose to tackle this problem by a compact and dis-
tinctive representation of groups of neighboring line seg-
ments aggregated over limited spatial supports and invari-
ant to rotation, translation and scale changes. Peculiarly,
our proposal allows for leveraging on the inherent strengths
of descriptor-based approaches, i.e. robustness to occlu-
sion and clutter and scalability with respect to the size of
the model library, also when dealing with scarcely textured
objects.

1. Introduction
Object detection is among the most widely studied topics

in computer vision. Currently, the established paradigm to

accomplish detection of textured objects relies on matching

descriptors, i.e. compact representations of local features

such as blobs, corners as well as other types of salient re-

gions extracted from images. The most popular, and ar-

guably most effective, approach within this paradigm is

SIFT [17], although also a number of more recent propos-

als, such as e.g. SURF [2] and ORB [23], provide good

performance.

One fundamental requirement for the above techniques

to behave effectively is the presence of enough information

onto the object surface to anchor feature detection and de-

scription. As illustrated in Fig. 1, whenever such infor-

mation is lacking due to the application requiring detection

of texture-less objects, state-of-the-art local invariant fea-

tures exhibit a dramatic performance degradation. How-

ever, texture-less objects are ubiquitous, and occur in par-

ticular in many vision tasks related to advanced manufac-

turing, such as e.g. visual inspection for process or qual-

ity control and robot guidance. Another emerging scenario

wherein the objects of interest are not guaranteed to fea-

ture rich textures deals with visual perception for service

robotics, where personal robots having to interact with typ-
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Figure 1: Textured vs. texture-less object detection. SIFT

behaves nicely on textured objects but performance drops

dramatically when the objects sought for lack enough tex-

ture details onto their surface. Our proposal (referred to as

BOLD) can advance the state-of-the-art in texture-less ob-

ject detection (compare BOLD to LINE-2D [11]).

ical household materials are being envisioned and proto-

typed. Hence, texture-less object detection is relevant to

foster deployment of computer vision in both established as

well as emerging scenarios.

Given the aforementioned limitations of descriptor-

based object detectors, state-of-the-art proposals tackle the

texture-less object detection problem by means of edge-

based template matching [11,12,24,25]. One major merit of

edge-based template matching is the ability to detect seam-

lessly both textured as well as texture-less objects. It suffers

from other limitations though, in particular related to the

ability to withstand significant occlusion and clutter as well

as to the scalability with respect to the size of the model

library. As for the former, it is inherent to the approach

that to tolerate a high degree of occlusion just a small frac-

tion of matching edges has to be accepted to trigger a de-

tection, which however in cluttered scenes often does not

result in a cue enough peculiar to avoid a large number of

false detections. Concerning the latter, although efficient

search schemes as well as careful hardware-related opti-

mization have been devised to help speeding-up the pro-

cess [11, 12, 24], it is, alike, somehow inherent to the ap-
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proach that a set of views (as large as mandated by the

required degree of pose invariance) of each sought object

needs to be matched to the current image. Hence, search

time grows linearly with the size of the model library. This

means that, especially when a relatively large pose space

has to be explored, often just a few models can be handled

in practice through edge-based template matching.

The above weak points are dealt with effectively by

descriptor-based object detectors. Indeed, a large model li-

brary is searched efficiently by storing all descriptors be-

longing to sought objects within a fast indexing structure

(e.g. a k-d tree or randomized forest [18]) which en-

ables fast lookup in logarithmic rather than linear time.

Descriptor-based methods are also very robust to occlusions

because, due to their high distinctiveness, just a few match-

ing features can provide enough evidence to judge reliably

upon the presence of an object even in heavily cluttered

scenes.

Based on the above considerations, we have investigated

on whether and how the inherent benefits of descriptor-

based methods may be leveraged to detect also texture-

less objects. Accordingly, in this paper we propose novel

features that can be injected seamlessly into a standard

SIFT-like object detection pipeline so as to provide notable

performance improvements with respect to state-of-the-art

edge-based template matching (see again Fig. 1). Pur-

posely, we exploit groups of neighboring line segments to

build up a representation of object parts which we term

Bunch Of Lines Descriptor (BOLD). The cues deployed in

our descriptor are peculiarly encoded into a compact two-

dimensional histogram and include relative orientations and

displacements between pairs of segments as well as contrast

polarity.

2. Related work
The state-of-the-art in edge-based template matching for

texture-less object detection is likely represented by LINE

[11], which has been proposed both for 2D (LINE-2D) as

well as RGB-D images (LINE-MOD). The former relies on

image gradients only, the latter deploys surface normals too.

Key to the method is a robust encoding of gradient infor-

mation together with a careful hardware-aware optimization

which delivers fast matching time. Thus, 3D object detec-

tion can be achieved by matching in real-time thousands of

templates gathered during the training stage by looking at

the object from different vantage points and distances. As

demonstrated in [9], though, the method can be harmed by

partial occlusions. Another recent relevant template match-

ing approach for texture-less object detection is proposed

in [25], which however, unlike BOLD, requires full-3D ob-

ject models to carry out the training stage.

As for previous works related to description and match-

ing of edges and contour information, we report here a brief

overview of those more closely related to our proposal. One

of the first methods to describe object contours is the ”cu-

bist” approach by Nelson and Selinger [19], whereby the

object representation is simplified by means of a loosely

structured combination of local context regions keyed by

distinctive boundary fragments called Key Curves. Unlike

BOLD, these fragments are described by simple features

such as compactness and curvature in order to efficiently in-

dex the model database. Then, Belongie et al. [4] proposed

Shape Context, a log-polar histogram of the relative coor-

dinates of uniformly sampled Canny edges. Being a global

descriptor, this method is not designed to withstand occlu-

sion and clutter. Similarly to Shape Context, Carmicheal

and Hebert [5] propose to describe edge densities computed

on a 2D image grid, these descriptors being then used to

train a cascade of classifiers.

Ferrari et al. [10] introduced a new family of scale-

invariant local shape features aimed at object categorization

which are based on chains of k-connected, roughly straight

contour segments called k-Adjacent Segment (kAS). Each

kAS is described as a signature including distances between

segment pairs, segment absolute orientations and lengths.

Kim et al. [15] proposed to learn feature correspondences

by training a classifier on descriptors that include a high

number of geometric and color traits between pairs of edge

lines such as length, absolute orientation and intensity/color

values along the line. Damen et al. [6] match sequences of

short line segments called constellation of edgelets, i.e. a

sequence of angles that defines the direction of the tracing

vectors that connect a subset of object edges. Constellation

descriptors encode the relative orientations and distances

between consecutive edgelets. As it will be illustrated in

next Section, [6, 10, 15] deploy different geometric features

with respect to those encoded by BOLD.

David and DeMenthon [7] generate a pose hypothesis for

each model-scene pair of extracted line segments. These

poses are then ranked by the average distance between the

10-Nearest Neighbor segments on the model transformed

according to the current pose hypothesis and the respec-

tive scene segments. This method does not include any

feature descriptor proposal as it relies on geometric veri-

fication only. Finally, related approaches that address the

feature detection stage only are [1, 14], which then rely on,

respectively, Shape Context-like [14] and SIFT-like [1] de-

scriptors.

3. BOLD features
As discussed in previous Section, several approaches

aimed at texture-less object detection or recognition rely on

edges and segments, mainly extracted from objects’ con-

tours, as the basic trait underpinning the semantic percep-

tion process. Edges and segments are also the starting point

of our method. In particular, we propose a descriptor for
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Figure 2: The geometrical primitives deployed by BOLD

are the relative orientations (represented by angles α and β
in figure) between pairs of oriented line segments.

line segments, which can be extracted by means of a vari-

ety of approaches such as either polygonal approximation

of the output of an edge detector [8, 22] or a specific line

detection algorithm [16, 21, 26]. Additionally, further prun-

ing may be enforced to improve repeatability of extracted

line segments, e.g. to discard short segments possibly due

to noise. Assuming a set of repeatable line segments, S,

has been extracted from the image, for each segment we

compute a BOLD descriptor, which aggregates together ge-

ometrical cues related to neighboring segments.

3.1. Geometric primitives

The BOLD descriptor aggregates together geometric

primitives computed over pairs of neighboring segments.

These primitives should yield invariance to rotation, trans-

lation and scale, and at the same time be robust to noise

and efficient to compute. As also depicted in Figure 2, let

us denote vectors in boldface and consider a segment pair

si, sj ∈ S, with mi, mj representing their respective mid-

points. Likewise, we denote as ei1,ei2 the two endpoints

of si, and as ej1,ej2 those of sj. We then refer to the seg-

ment connecting mi and mj as to t, the midpoint segment.
In particular, we define two different midpoint segments ac-

cording to the two possible signs:

tij = mj −mi (1)

tji = mi −mj (2)

We carefully investigated and tested a number of pair-

wise geometric primitives, including those proposed in pre-

vious literature, such as relative segment length, distance

between segments, absolute and relative segment orienta-

tions [6, 10, 15]. Based on this analysis, we sifted out the

primitive that provides the best trade-off between descrip-

tiveness and robustness, as outlined in the following.

First of all, to define our primitive each line segment has

to be associated with a canonical orientation. Given the di-

rection of the segment, we propose to leverage on the inten-

sity gradient at the midpoint, g(mi), to determine the sign.

Specifically, we define a canonically oriented line segment

si as follows:

sign (si) =
(ei2 − ei1)× g (mi)

‖ (ei2 − ei1)× g (mi) ‖ • n (3)

si = sign (si) · (ei2 − ei1) (4)

where × is the cross product, • the dot product and n the

unit vector normal to the image plane pointing towards the

observer. Hence, (3) yields±1 depending on the cross prod-

uct between ei2 − ei1 and the gradient at the midpoint hav-

ing or not the same sign as the normal pointing outward

from the image plane, which then determines whether the

endpoints must be actually swapped or not to get si. It is

worth noting here that, as segments extracted from the im-

age typically lay close to intensity contours, the gradient

magnitude at the midpoint is usually as high as to guarantee

a repeatable and robust contrast polarity, which indeed ren-

ders the canonical orientation assigned to segments through

(3) and (4) likewise stable and robust.

Based on the previous definition, the proposed geomet-

ric primitive consists in the two angles shown in Figure 2,

which can be uniquely associated to a pair of oriented seg-

ments: α measures the clockwise rotation which aligns si
to tij, β the clockwise rotation to align sj to tji. To obtain

such angles, we start from the computation of the smaller

angle between two vectors:

α∗ = arccos

(
si • tij

‖ si ‖ · ‖ tij ‖
)

(5)

β∗ = arccos

(
sj • tji

‖ sj ‖ · ‖ tji ‖
)

(6)

which yields measurements within the range [0, π]. Then,

we apply a further disambiguation step to pick either the

smaller or larger angle between the vector pair

α =

{
α∗, si×tij

‖si×tij‖ • n = 1

2π − α∗ otherwise
(7)

β =

{
β∗, sj×tji

‖sj×tji‖ • n = 1

2π − β∗ otherwise
(8)

and hence provides measurements within the entire [0, 2π]
angular range.

The disambiguation step given by equations (7),(8) al-

lows for distinguishing among local configuration that oth-

erwise would have been considered as equivalent, e.g. as

in the example in Fig. 4 which illustrates how the disam-

biguated angles can detect unlikely transformations such

as simultaneous mirroring and contrast polarity inversion.

Usually, higher distinctiveness comes to a price in terms of

robustness: we will show later in this Section that the cho-

sen angles (α, β) are consistently more effective than (α∗,
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Figure 3: Comparison of pairwise geometric primitives.

Recognition times include evaluation over 80 models.

β∗). It is also important to point out that (α, β) depend

not only on the relative orientation between the two seg-

ments but also on their relative spatial displacement. Over-

all, they thus represent a compact geometric primitive en-

coding relative orientation and position as well as, due to

segments being oriented, contrast polarity. To the best of

our knowledge, the proposed geometric primitive has not

been deployed by any previous work. The most similar ap-

proach can be found in [15], which, among other features,

defines a relative segment orientation based on the midpoint

segment but without relying on establishment of a canoni-

cal orientation for each segment, which we found hindering

notably the repeatability of angle measurements.

As already mentioned, we carried out an in-depth exper-

imental analysis to help devise the most effective geomet-

rical primitives to be deployed within BOLD. An excerpt

from the results is shown in Figure 3, where we compare

(α, β) with other commonly deployed primitives [6, 10, 15]

such as relative orientation between segments, normalized

length and normalized midpoint distance. In this experi-

ment, all primitives are accumulated into histograms, which

is the way pairwise geometrical primitives are aggregated in

BOLD (see Section 3.2). As (α, β) yield 2D histograms

while the other considered primitives 1D histograms, we

also compare our proposal with 2D histograms built by us-

ing jointly multiple primitives. As anticipated, we also eval-

uated using the smaller angles between vectors (α∗, β∗),

as well as measurement of such angles without canoni-

cally orienting segments, which results in taking always the

smallest possible angle between vectors (referred to here

as (α, β) unoriented). By building histograms out of dif-

ferent primitives we attain different descriptors that can be

plugged seamlessly into the object detection pipeline de-

scribed in Section 4 and thereby evaluated comparatively as

depicted in Figure 3. Results show the overall superiority of

angle-based primitives with respect to distances or lengths.

We ascribe this mainly to the former turning out more robust

with respect to the potential fragility of the segment extrac-

sj 

si 
 �����
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si 
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a) b) 

Figure 4: The disambiguated angles defined according to

(7),(8) highlight potentially invalid transformations such as

simultaneous mirroring and contrast polarity inversion: in

(b) α∗, β∗ take the same values as in (a), whilst α and β
take different values.

tion stage. The Figure also demonstrates the effectiveness

of relying on canonically oriented segments (α∗, β∗ vs. α,

β unoriented) as well as the neat performance improvement

brought in by the proposed angle disambiguation step (α, β
vs. α∗, β∗). As for computational efficiency, all the consid-

ered primitives appear approximately equivalent in terms of

their impact on overall detection time.

3.2. Aggregation of geometric primitives

For each line segment, si, the BOLD descriptor is built

by aggregating (α, β) primitives computed for the set of

neighboring segments (referred to as bunch) given by the

k nearest neighbors (kNN) segments of si, k being a pa-

rameter of the method. The kNN approach represents an

effective way to define an adaptive support for the descrip-

tor, thus rendering the approach inherently scale invariant.

Moreover, the kNN search over the 2D domain can be car-

ried out efficiently by means of indexing techniques [3].

Purposely, a distance between line segments has to be de-

fined. In our proposal we simply compute the distance be-

tween midpoints, although other approaches, such as sam-

pling uniformly along segments and computing the closest

distance between sampled points [7], may be deployed.

Successively, for each pair formed by si and one of the

k segments in its bunch, the geometric primitives (α, β) are

computed and aggregated together. We have investigated

on two main aggregation approaches. According to the for-

mer, a signature of the primitives is computed by ordering

the neighboring segments of a bunch based on the distance

to the central segment, then building the descriptor as the

ordered chain of primitives associated to each segment. As

for the latter, the angles are accumulated into a 2D joint

histogram, with the domain of both dimensions (i.e. the an-

gular range [0, 2π]) discretized according to a given quanti-

zation step θ (a parameter of the descriptor). The histogram

approach turned out to notably outperform the signature ap-

proach, due to the higher robustness with regards to clut-

ter and occlusion, as in a signature a single segment miss-

ing from the bunch tends to disrupt description. Moreover,

thanks to quantization, the histogram-based descriptor in-
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(a) k=5 (b) k=10 (c) k=20

Figure 5: Bunches computed for different values of k: a

higher value leads to more descriptiveness, but tends to in-

clude clutter.

herently provides good robustness to inaccuracies in seg-

ment localization. In our experiment we set the number of

bins for each histogram dimension b = 2π
θ = 12. On the

other hand, like in most histogram-based descriptors, quan-

tization effects may decrease distinctiveness of BOLDs. To

counterattack this, we apply bilinear interpolation by as-

signing to each entry of the histogram - and to its closest

bins - a weight that depends on the distance of the measure-

ment from the center of the bin. Finally, BOLD descrip-

tors are normalized by their L2 norm, so as to get vectors

laying onto the unit sphere. This is beneficial when using

matching measures derived from the L2 norm to obtain up-

per bounded values of the distance between descriptors.

3.3. Deploying multiple bunches

The number of neighboring segments, k, is a key param-

eter of the BOLD descriptor. A high number of segments

tends to increase distinctiveness of BOLDs, since there are

lower ambiguities due to similar bunches arising from non

corresponding object parts. On the other hand, a high value

of k tends to include, within the same bunch, neighboring

segments that may belong to clutter, this leading to some-

what corrupted histograms (see the example in Figure 5).

Accumulating primitives over histograms helps increasing

the robustness up to a certain extent, i.e. until the number

of clutter elements does not exceed that of object elements.

Moreover, a good choice for k depends also on the type of

objects to be detected: simple shapes made out of a few

segments call for a small k, so as not to incorporate clut-

ter, whereas for more complex objects a higher k is usually

beneficial. As such, the choice of k is critical.

Instead of trying to tune this parameter based on specific

scenarios, we propose to simultaneously deploy multiple k
values to describe each line segment si. This allows for

seamlessly and effectively encoding of both simple shapes

and local parts as well as larger scale structures. Indeed, we

have found out that this approach not only avoids the user

to have to choose a critical parameter, but also improves

performance significantly. Figure 6 reports object detec-

tion results attained by a single bunch approach with dif-

ferent k as well as by deploying multiple bunches: the best

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

TP
R 

FPR 

k=5 
k=10 
k=20 
k=5,10 
k=5,10,15 
k=5,10,15,20 
k=5,10,15,20,25 

0 

500 

1.000 

1.500 

2.000 

Pr
oc

es
si

ng
 ti

m
e 

(m
s)

 

Figure 6: BOLD descriptors employing single vs. multiple

bunches with different k values.

single-bunch configuration turns out k = 10, but remark-

ably improved performance can be attained by using multi-

ple bunches altogether, this without slowing down too no-

tably the overall process. Hence, in the experimental evalu-

ation we will use the multi-bunch approach with k set to 5,

10, 15, 20.

4. Object detection pipeline

In this section we describe our object detection approach,

which deploys BOLD within a standard SIFT-like pipeline

[17] where the detection and description stages are mod-

ified to deal with texture-less objects. Object contours can

change notably at different scales, and sometimes edges can

completely disappear if either the object is blurred or a sig-

nificant scale variation does occur. For this reason, the first

step of our pipeline is represented by multi-scale extraction

of line segments. In particular, we build a scale space by

rescaling the input image at different resolutions, then ex-

tract line segments at each level of the pyramid. The scale

of each segment is retained so that, in the next step, the

BOLD descriptor for each segment is computed taking into

account only the neighbors found at the same scale. This

counteracts the issue of missing segments due to large scale

variations.

Successively, we rely on the Euclidean distance and the

FLANN Randomized Kd-tree Forest [18] to match BOLD

descriptors extracted from the input image to those gath-

ered at training time from the objects belonging to the

model library. Although we have evaluated matching mea-

sures specifically conceived for histogram data, such as the

Histogram Intersection, we have found that the Euclidean

distance yields good results without sacrificing efficiency.

Similarly to [17], feature correspondences are then vali-

dated through a Generalized Hough Transform and the final

pose is computed through a Least-Square Estimation of the

required transformation (e.g. a similarity or homography).
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(a) D-Textureless: 3 models (left) and 1 scene

(right)

(b) Caltech Covers: 3 models (left) and 1

scene (right)

(c) CMU-KO8: 2 models (top) and 2 scenes

Figure 7: Examples of models and scenes from the datasets used in the experimental evaluation.

5. Experimental evaluation
We compare here the BOLD pipeline for texture-less

object detection to two prominent edge-based template

matching-based approaches, i.e. LINE-2D [11] and the

shape-based matching tool available in the HALCON li-

brary by MVTec1. Moreover, we include in our comparison

descriptor-based methods for textured object detection such

as SIFT [17], SURF [2] and ORB [23]. To extract the line

segments needed to compute BOLD we use the LSD algo-

rithm [26]. Although BOLD is in principle independent of a

specific line segment detector, we found that LSD provides

enough repeatability to enable effective object detection. In

particular, we found that performance using LSD turns out

significantly superior to polygonal approximation of Canny

edges.

The implementations of LINE-2D, SURF and ORB are

taken from OpenCV 2, while for SIFT we rely on Rob

Hess’s implementation3. As for SIFT and SURF we sim-

ply plug their specific detection/description stages into the

reference object detection pipeline described in Section 4,

while for the ORB pipeline we employed LSH in the match-

ing stage as suggested in [23]. As for HALCON, we have

used the find scaled shape model function included

in the free demo version of the library. All methods were

run with their default parameters, except for HALCON for

which we carried out a specific parameter tuning on a simi-

lar -but distinct- dataset with respect to that used for testing.

Experiments have been executed on an Intel Core2 Quad

2.5 Ghz CPU with 4 GBs of RAM. All algorithms have

been compiled on a 64-bit environment. We wish to point

out that, unlike HALCON, SURF and LINE-2D, the BOLD

implementation used in the experiments is not optimized to

take advantage of multi-core architectures or SIMD instruc-

tions (e.g. SSE2), though our method may in principle be

parallelized easily.

Given the scarceness of public datasets for texture-less

1www.mvtec.com/halcon
2www.opencv.org
3robwhess.github.com/opensift

object detection withstanding clutter and occlusions, we

have acquired our own, referred to as D-Textureless. This

dataset has been acquired with a webcam, comes with hand-

labeled ground-truth and includes 9 texture-less models and

55 scenes with clutter and occlusions. A fairly large pose

space has to be explored by the algorithms due to models

appearing rotated, translated and scaled in the scenes. All

9 models are searched in each scene, which in turn may in-

clude one or more models, but one instance of each at most.

To complement our comparison, we evaluate BOLD also on

a textured dataset built from publicly available images and

referred to as Caltech Covers. Specifically, this dataset in-

cludes 80 models randomly chosen from the Caltech Game

Covers dataset 4 and 50 scenes, which we built synthetically

by randomly rotating, translating and scaling a pre-defined

number of models (from 1 to 3), together with additional

covers not included in the model database so as to create

clutter as well as occlusions up to 90%. Again, in each

scene we look for all 80 models. D-Textureless and Caltech
Covers are referred to, respectively, as texture-less and tex-

tured dataset in Fig. 1, while Caltech Covers has been used

also in the experiments reported in Figures 3, 6. Examples

of models and scenes from the two datasets are shown in

Fig. 7a and Fig. 7b.

Fig. 8 reports the ROC curves yielded by the considered

algorithms on the two datasets. Focusing on the texture-less

objects (Fig. 8a), it can be seen that BOLD neatly outper-

forms all methods. Moreover, and as expected, template-

matching methods such as HALCON and LINE-2D per-

form much better than existing descriptor-based methods

like SIFT, SURF and ORB. Despite the absence of ei-

ther machine level optimizations or multi-threading, BOLD

turns out faster than HALCON, due to the relatively large

number of sought objects, although slower than LINE-2D.

In the experiments with Caltech Covers, we did not include

LINE-2D and HALCON. Indeed, the former requires the

algorithm to be trained carefully from nearly all the possi-

ble vantage points that may occur in the actual scene, which

4vision.caltech.edu/malaa/datasets/caltech-games
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(a) D-Textureless
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Figure 8: Comparison on texture-less dataset D-Textureless (left) and textured dataset Caltech Covers (right).

is not feasible when the model database contains as many

as 80 objects; the latter can be trained by a single image

per model, but turns out excessively slow with such a large

model database (see also Figure 10). As shown in Fig. 8b,

SIFT is clearly the best performer when dealing with tex-

tured objects, neatly surpassing SURF and then BOLD. As

for efficiency, in case of a relatively large model database,

BOLD is faster than SIFT and SURF and slower only than

ORB, which nevertheless seems not as effective with the

Caltech Covers dataset.

We also address detection of texture-less 3D objects un-

der arbitrary viewpoint on the challenging CMU Kitchen
Occlusion dataset (CMU-KO8), recently introduced by

Hsiao and Hebert [13] to assess their occlusion reasoning

model based on the computation of the statistics of object

dimensions in a given environment. The authors incorpo-

rate their model into LINE-2D according to three different

variants and show improved performance on their dataset,

which consists of 8 common household texture-less ob-

jects sought in 800 single view and 800 multi view cluttered

scenes with various levels of occlusion (see Fig. 7c). In sin-
gle view experiments the object is seen in the scene from the

same vantage point as in the -single- training image, while

multi view experiments focus on variations of the elevation

angle, the training set comprising 25 views of each object.

According to [13], in Figure 9 we provide the results at-

tained by the BOLD object detection pipeline in terms of

recall (i.e. detection rate) versus false positives per image

(fppi) curves averaged across each of the two experiments.

As for general methods conceived to operate without any

prior knowledge on the working environment, from Figure

9 we can observe that BOLD neatly outperform LINE-2D

in both experiments. Then, Figure 9 confirms the benefits

brought in by deployment of environment-specific statistics

on object sizes, as the variants of LINE-2D proposed in [13]

overall compare favorably with respect to a state-of-the-art

general purpose approach such as BOLD. Interestingly, in

the conservative (i.e. low fppi) portion of the curve of the
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Figure 10: Scalability with respect to the number of models.

single view experiment BOLD delivers a higher detection

rate than the methods proposed in [13]. Figure 9 shows

also two failure cases and one successful detection enabled

by quite impressive matches dealing with segments on the

mug handle occluded by a semi-transparent plastic bag.

Finally, to analyze the scalability of the considered algo-

rithms, in Figure 10 we report the measured execution times

versus the number of sought models for the D-Textureless
dataset5. As expected, template matching methods scale lin-

early with the number of models, with HALCON showing

a much steeper increase of computation time than LINE-

2D. On the other hand, BOLD provides a nearly constant

detection time up to as many as 100 models.

Additional qualitative results related to CMU-KO8 as

well as the D-Textureless dataset can be found on BOLD’s

project page 6.

6. Concluding remarks
BOLD features allows for leveraging on a fairly standard

descriptor-based pipeline to detect effectively also texture-

less objects, thereby achieving state-of-the-art robustness to

clutter and occlusion and unprecedented scalability with re-

spect to the size of the model database. The main limitation

5As the dataset comprises only 9 different models, we simply replicated

them as needed to run this experiment.
6http://vision.deis.unibo.it/BOLD

1271



0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

re
ca

ll 

fppi 

Average 
rLINE2D 

rLINE2D+OPP 

rLINE2D+OCLP 

BOLD 

Line2D 

(a) Single view

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

re
ca

ll 

fppi 

Average 
rLINE2D 

rLINE2D+OPP 

rLINE2D+OCLP 

BOLD 

Line2D 

(b) Multi view (c) BOLD: 2 failure cases and an example of fea-
ture matching

Figure 9: CMU-KO8: quantitative (BOLD, LINE-2D and the three methods proposed in [13]) and qualitative (BOLD) results

of our proposal deals with detection of highly curvilinear

(e.g. round) or simple (i.e. made out of a few lines) objects

in scenes with heavy occlusion and clutter. Such objects

show just a few repeatable BOLDs: if some get corrupted

due to occlusion or clutter, then the object may hardly be

detected. To enlarge the set of shapes effectively dealt with

by our proposal, we plan to include description of oriented

elliptical arcs [20].
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