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Abstract

We present an approach to multi-target tracking that
has expressive potential beyond the capabilities of chain-
shaped hidden Markov models, yet has significantly reduced
complexity. Our framework, which we call tracking-by-
selection, is similar to tracking-by-detection in that it sepa-
rates the tasks of detection and tracking, but it shifts tempo-
ral reasoning from the tracking stage to the detection stage.
The core feature of tracking-by-selection is that it reasons
about path hypotheses that traverse the entire video instead
of a chain of single-frame object hypotheses. A traditional
chain-shaped tracking-by-detection model is only able to
promote consistency between one frame and the next. In
tracking-by-selection, path hypotheses exist across time,
and encouraging long-term temporal consistency is as sim-
ple as rewarding path hypotheses with consistent image fea-
tures. One additional advantage of tracking-by-selection is
that it results in a dramatically simplified model that can be
solved exactly. We adapt an existing tracking-by-detection
model to the tracking-by-selection framework, and show im-
proved performance on a challenging dataset (introduced in
[18]).

1. Introduction

Tracking humans in video has been the focus of much re-

cent attention in computer vision and robotics research, and

its successful implementation has far-reaching areas of im-

pact, such as security and surveillance, entertainment, video

annotation and indexing, medical diagnosis, disability as-

sistance, sociology and kinesiology, and autonomous nav-

igation. Ideally, we would like tracking methods to work

with unconstrained real-world video sequences with clut-

tered backgrounds and a moving camera. Unfortunately,

tracking people is difficult because people move with com-

plex dynamics, they have unpredictable appearances, and

Figure 1. (a) The tracking-by-detection model from [18]. Each

node represents the location of a body joint in one time frame. The

nodes for each body joint form a chain in the time dimension (these

edges are shown in red), following the temporal Markov assump-

tion. This assumption means that consistency can only be enforced

from one frame to the next. The spatial connections between joints

(shown in blue) result in a model that is extremely loopy and must

be solved approximately. (b) A tracking-by-selection reformula-

tion of the model. Each node represents the path of a body joint

through the video. With this model, the location of the body joint

at any time does not depend upon its temporal neighbors. Instead,

the chain for each joint has been broken and compressed into a sin-

gle node. With this model, it is possible to reason about the entire

trajectory of a joint. For example, trajectory hypotheses with con-

sistent colors throughout the video can be rewarded. The model is

much simpler, and can be solved exactly.

they are highly deformable.

1.1. Tracking-by-detection

Recent approaches to tracking in video are dominated

by tracking-by-detection, such as in [2], which separates
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the tasks of detection and tracking into two separate pro-

cesses. Detections are made in each time frame, and then

detections are associated to make coherent trajectories. The

typical model for tracking-by-detection has the form of a

chain-shaped hidden Markov model: the state at time t de-

pends entirely upon observations at time t and the tempo-

rally adjacent states at times t− 1 and t+ 1. The temporal

Markovian assumption simplifies the model, and allows for

efficient inference.

Chain-shaped tracking-by-detection models work well

when detections are reliable, but they are limited by their

simplifying assumptions — even though tracking is a fun-

damentally time-based operation, time is only used to en-

force some degree of local consistency from one frame to

the next. For example, a standard model will discourage

large color changes between adjacent frames, but it is inca-

pable of preventing a final trajectory that slowly changes

from one color to a very different color. A more robust

model could avoid this problem by adding dependencies.

Unfortunately, simply adding this high order connectivity

to traditional models would most often result in intractable

inference.

1.2. Tracking-by-selection

We present a new approach to tracking that can enforce

global (long term) consistencies across an entire video, yet

is even simpler than a standard chain-shaped tracking-by-

detection model. Recall that a tracking-by-detection frame-

work will generate detection hypotheses in each frame and

then create a chain of associations between them. In con-

trast, our approach, which we call tracking-by-selection,

generates a set of path hypotheses instead of detection hy-

potheses. Each path hypothesis is a possible trajectory

through time, whereas a detection hypothesis is a possible

location at a specific time. The critical aspect of tracking-

by-selection is that it breaks the chain of variables in tra-

ditional tracking approaches and replaces it with a single

variable (see Figure 1). Information from the first frame is

no longer linked only to the second frame — with path hy-

potheses an observation in the first frame can be freely com-

pared to observations all along the trajectory. This means

that we can easily reward globally consistent trajectories

without the need for high order potentials.

Inference in the tracking-by-selection framework

amounts to simply selecting a path hypothesis. In the case

of a single-target tracking problem, inference is trivial:

select the most likely path hypothesis for the target. In a

multi-target tracking application, the model only requires

reasoning about the relationships between targets (or body

parts, in the case of tracking human poses), so inference

involves selecting one path for each object. There is no

need for the added complexity of time-based associa-

tions. The differences between tracking-by-detection and

tracking-by-selection are illustrated in Figure 1.

Tracking-by-selection brings two significant contribu-

tions to the problem of tracking human poses:

Global consistency. Potentials that are unary and pair-

wise in our model can only be expressed as higher-order

potentials in other models. These potentials can enforce

consistency in ways that have previously been impossible.

Because tracking-by-selection is grounded in paths through

time and not static locations, each path hypothesis has ac-

cess to information throughout the entire video.

The only way for a tracking-by-detection framework to

enforce consistency across time is to build a model of the

object and use the model as a prior for the remainder of the

tracking procedure. These dynamic priors are frequently

unreliable in the case of highly deformable objects, such as

people.

Exact inference. Many models for tracking human poses

that follow the tracking-by-detection framework must be

solved with approximate inference algorithms, but the same

models can be solved exactly if they are adapted to a

tracking-by-selection framework. Because the model has

been “collapsed” in time, inference in tracking-by-selection

is dramatically simplified. The resulting model has the same

structure as a single frame of the equivalent model in a

tracking-by-detection framework. It may have cycles, but

the only pairwise potentials to consider are those between

objects.

The most obvious drawback to approximate inference is

that there is no guarantee that the maximum a posteriori

(MAP) solution will be found, but we also show in section 4

that some approaches to approximate inference can limit the

performance of a model in more subtle ways.

2. Previous works

2.1. Human pose estimation in still images

Most contemporary pose estimators are indebted to the

pictorial structures model [6], which introduced an effi-

cient and effective way of modeling the relationships be-

tween body parts. Image parsing techniques in [14] and

enhanced in [7] and [5] led to significant improvements

in very challenging datasets. [16] shows impressive results

by efficiently handling a rich set of image features. [25]

abandons the traditional articulated limb model, and instead

models the co-occurrence of oriented parts. [21] proposes

a hierarchical Articulated Part-based Model for jointly de-

tecting people and estimating their poses. [22] introduces

an efficient branch-and-bound algorithm that can find exact

solutions to complex models that can only be solved ap-

proximately with traditional inference methods.
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2.2. Tracking human poses

[10] is one of the first works to attempt a model that en-

forces both spatial and temporal coherence between human

body parts. It performs inference in an approximate manner

by alternating between spatial and temporal optimizations.

Recent works often build dynamical models of spe-

cific activities, particularly those related to the walk cycle.

[3] [8] [24] learn strong dynamical priors that provide assis-

tance to the pose estimate when the image evidence is lack-

ing. They are very good at tracking people in challenging

videos, but they cannot cope with novel actions and gener-

ally do not adapt to style. [8] learns the correspondence

between silhouette and 3D pose, as well as walk cycle. A

stereo camera is used for the segmentation, and a skeleton

is fit to the silhouette with the help of the dynamic priors.

Many works such as [1] track human poses with an array

of cameras. [19] integrates imagery and 3D range data to

obtain accurate 3D pose localization.

[4] creates a more complex model by reasoning about

the relationships between the poses of multiple people at the

same time. This follows our reasoning that increased con-

nectivity between observations can improve tracking, but

they only add to the spatial connectivity of typical tracking

models. The model is still fundamentally Markovian, so

the enhanced spatial reasoning is unable to strongly prop-

agate through time. [17] extend their cascaded pictorial

structures framework to pose tracking by adding edges be-

tween body parts in time, and further refine their approach

in [18]. Even though states in each frame are only con-

nected to adjacent frames, the emphasis in [18] is on ap-

proximate inference methods, which are required for their

sophisticated model. They decompose the graph into an en-

semble of loopless tree structures, which are combined in

different ways.

[13] shares some similarities with this paper, but each

path that it generates for a body part is made by finding the

shortest path through a set of detections. The path has a

standard Markov chain structure, in that it is only capable

of enforcing consistency among adjacent frames. With our

work, however, we are able to select from among a multi-

tude of hypotheses not only a single path that is consistent

over the entire video, but also pairs of paths that have con-

sistent image features between them. Furthermore, instead

of fixing paths one or two at a time, our inference jointly

optimizes the selection of paths for all body parts.

All of the above methods rely upon the temporal Markov

assumption, and are only capable of enforcing appearance

consistency between adjacent time frames. [15] is a rare ex-

ample of a human pose tracker that uses an instance-specific

model of the appearance of individual body parts. The ap-

pearance models are constructed by repeated iterations of

detection and association. Like [18], their model is decom-

posed into a set of trees, and inference in approximate.

2.3. Tracking with tracklets

Many previous works, such as [12] have grouped detec-

tions into tracklets, which are then combined to form tra-

jectories. In most cases, the same Markovian assumptions

apply. [26] is capable of enforcing global appearance con-

sistency across many frames, but the model is so complex

that the trajectories must be built one target at a time, and

there are no pairwise dependencies between targets.

3. The tracking-by-selection model

Tracking-by-detection divides the tracking problem into

two stages. In the first, object hypotheses are generated in a

frame, which dramatically reduces the size of the space that

must be searched in the second stage, in which associations

are built between hypotheses to create smooth tracks. We

propose a new framework called tracking-by-selection that

is similar in many respects, but shifts the burden of reason-

ing about time from the second association stage to the first

hypothesis generation stage.

The two most important aspects of tracking-by-selection

are: (a) global appearance consistency can be enforced

without the need for high order potentials, and (b) tracking-

by-selection uses a model that is much less complex than

tracking-by-selection, which makes exact inference feasi-

ble.

In a tracking-by-detection framework, the goal of infer-

ence in tracking human poses is to pick one location for

each body part in each time frame in such a way that the

location of each body part is consistent with the image evi-

dence (unary potential), locations of different body parts are

consistent with each other (spatial pairwise potential), and

the locations of one body part are consistent from one frame

to the next (temporal pairwise potential). When framed

as an energy maximization problem, a general tracking-by-

detection model can be written as max
s

E(s), where

E(s) =
∑
t

[∑
p

(
θa�p Ψ(stp)

+
∑
q

θa�pq Ψ(stp, s
t
q) + θ�ppΨ(stp, s

t+1
p )

)]
,

(1)

where Ψ(stp) is the unary potential for body part p at time

t, Ψ(stp, s
t
q) is the spatial pairwise potential between parts

p and q at time t, and Ψ(stp, s
t+1
p ) is the temporal pairwise

potential between the states of part p at time t and t+1. All

θ are model parameters. In all equations we omit explicit

references to image evidence for clarity.

The tracking-by-selection framework can be written as

E(s) =
∑
p

(
θ�p Ψ(xp) +

∑
q

θ�pqΨ(xp, xq)
)
, (2)
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where Ψ(xp) and Ψ(xp, xq) are the unary and pairwise po-

tentials for path hypotheses for body part p.

The potentials for an existing tracking-by-detection

model can easily be incorporated into a tracking-by-

selection framework. We decompose the potentials in Equa-

tion (2) by

θ�p Ψ(xp) = θa�p Ψa(xp) + θb�p Ψb(xp) (3)

and

θ�pqΨ(xp, xq) = θa�pq Ψa(xp, xq) + θb�pq Ψ
b(xp, xq), (4)

where

Ψa(xp) =
1

T

∑
t

(Ψ(stp)) (5)

and

Ψa(xp, xq) =
1

T

∑
t

(Ψ(stp, s
t
q)) (6)

are the average unary and pairwise potential across the the

path hypothesis. Note that the same model model parame-

ters θa�p and θa�pq can be used for both tracking-by-detection

and tracking-by-selection. Ψb(xp) and Ψb(xp, xq) repre-

sent the potentials that are only available to a tracking-by-

selection model. They will be discussed in more detail in

sections 3.1 and 3.2

One important characteristic of the tracking-by-selection

framework is that the final selection step has significantly

lower complexity than tracking-by-detection. In effect, it

has “collapsed” the entire model in the time dimension. The

information that was contained in the temporal edges of a

tracking-by-detection model can now be expressed as part

of the unary potential of a path hypothesis, and all temporal

edges are eliminated.

If a tracking-by-detection model, such as the graphical

model in Figure 1(a), has six body parts, seven spatial pair-

wise potentials, and the video has 50 frames, then there is a

total of 7 · 50 + 6(50 − 1) = 644 edges. The tracking-by-

selection reformulation of the same model, shown in Figure

1(b), has only seven edges.

3.1. Unary global consistency

Tracking-by-selection is capable of expressing global

image consistency with a single unary potential. For exam-

ple, the unary potential for a path hypothesis may include

the variance of image features along the extent of the path:

Ψb(xp) = −var(x1
p, ...,x

T
p ), (7)

where xt
p is an image feature at the path hypothesis of body

part p at time t. In practice this potential is most useful

for hands. It is unnecessary for shoulders, which easily

lend themselves to consistent tracks, and it is occasionally

damaging to tracks for elbows, which may have significant

changes in appearance depending on the location and orien-

tation of the forearm.

Naively rewarding a low color variance would most

strongly support path hypotheses that stay “locked” to a part

of the background, this is particularly true in the case of

hands, which will naturally have some appearance variation

as they move about. To remedy this, we reduce the reward

for paths with little motion. Basing the motion estimate on

total displacement would reward “jittery” paths, so instead

we use the maximum displacement of a path over the course

of a video.

Ψb(sp) = −
var(x1

p, ...,x
T
p )

max
t1,t2

‖ xt1
p − xt2

p ‖22
, (8)

A traditional tracking-by-detection model for human

poses is necessarily cyclical and quite complicated, yet it is

still unable to replicate these consistency and displacement

features without the use of high order potentials, which

would have the form Ψ(s1p, s
2
p, ..., s

T
p ) and would be ex-

tremely difficult to solve.

3.2. Pairwise global consistency

While unary potentials in a tracking-by-selection frame-

work are capable of reasoning about joints over time, pair-

wise potentials can reason about the space between joints in

time. For example, if a person has a blue shoulder, a pur-

ple elbow, and a yellow armband, we would like to enforce

that shoulder and elbow are always blue and purple, and

that a point between them is always yellow. To accomplish

this, we consider the variance of each of N equally-spaced

points between path hypotheses:

Ψb(xp, xq) = −
∑N

n=1 var(x
n
(p,q)1

, ...,xn
(p,q)T

)

max
t1,t2

‖ xt1
q − xt2

q ‖22
, (9)

As with to our unary potential for joint color consistency,

we include motion as a feature. For this potential, we use

the maximum displacement of the path of the “child” joint.

This means that the motion of the elbow will modify the

potential for the upper arm, and the motion of the hand will

modify the potential for the lower arm.

Attempting to incorporate this potential into a chain-

shaped model would require a potential of order 2T :

Ψ(s1p1 , ..., sTpT , s
1
p1 , ..., sTpT ).

3.3. Generating path hypotheses

The successful generation of plausible path hypotheses

is clearly of paramount importance. It must be possible to

generate many path hypotheses quickly, and they must be

sufficiently diverse. Otherwise, it is possible that no path

hypotheses may exist close to the best solution. We promote
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a sampling method, but it is important to note that this is

an engineering decision, and may different approaches are

possible.

Instead of only building path hypotheses from the first

frame forward, we initialize path hypotheses in every frame.

This helps ensure that some path hypotheses will pass

through every image region with a sufficiently strong de-

tector response.

In each frame, we normalize the single-frame unary po-

tential for each joint into a probability and draw samples

from it. Each sample represents the initialization of a new

path hypothesis, which is propagated forward and backward

in time. The propagation is driven by samples taken from a

transition probability.

A transition probability based only on distance in the im-

age plane may be sufficient for some videos with a static

camera, but when the camera moves, rotates, or zooms the

potential may result in a track that fails to follow the camera

motion. Furthermore, even if the camera is still, there are

time-based image features that can improve our estimate of

where a point at time t will be at time t+ 1. We model the

transition probability by combining four observations: Spa-
tial distance: the simple distance in image space. Color
distance: the magnitude of the difference in color between

the two points. Spatial distance with optical flow: the

distance in image space after accounting for optical flow.

Shared video segments: do two points both reside in the

same video segment?

Video segments are essentially superpixels that exist in

time. We use the video segments from [9]. Video segments

are more robust to certain kinds of motion than optical flow.

The relative weights of these four observations were

learned through the Structured Support Vector Machine

(SSVM) framework [23]. The weights were learned using

the ground truth locations of joints from a training set as

examples, and the loss function was based on the Euclidean

distance from ground truth. Separate sets of weights were

learned for each joint type (shoulder, elbow, and wrist).

3.4. Inference

For inference in a full tracking-by-detection framework

to be tractable it is common to use approximate inference,

such as loopy belief propagation [20] or decomposition

methods [18]. The equivalent tracking-by-selection model,

on the other hand, has only as many pairwise potentials as

appear in a single frame of the tracking-by-detection model.

The remaining “figure eight” model shown in Figure 1(b)

can be exactly solved with the junction tree algorithm, but

the O(n3) complexity of a straightforward application re-

quires excessive memory when using a large number of

path hypotheses. To keep the memory overhead manage-

able, the model is instead decomposed into an ensemble of

trees. Similar to [11], the decomposition is accomplished

�

Figure 2. Exact inference on a tracking-by-selection model. By

fixing the value of an elbow node, the ‘figure eight” model be-

comes a tree that can efficiently be solved with max-sum belief

propagation. The plate in the figure represents the N trees that are

generated from each of the N path hypotheses for the elbow joint.

Message passing is performed once for every possible state of the

fixed elbow node, and taking the maximum of the max marginals

results in an exact solution.

by fixing one of the nodes representing the path of an elbow,

as shown in Figure 2. One tree is generated for every pos-

sible state (path hypothesis) for the elbow. After the elbow

node has been fixed (and therefore becomes an observation

instead of a latent variable), the remainder of the model is a

tree, and can therefore be efficiently solved with max-sum

belief propagation. The max marginals resulting from infer-

ence on each tree can be directly compared, and the maxi-

mum of the max marginals is the solution. It is important to

understand that unlike some other forms of decomposition-

based inference, this procedure results in an exact solution.

Inference over a model with 2,000 path hypotheses per joint

takes only a couple of seconds in MATLAB when GPU-

optimized functions are used.

The structure of our particular problem lends itself to a

particularly efficient inference method, but even if a model

had additional cycles, it could still likely be solved exactly.

Our specific inference method is not unimportant, but in-

stead we wish to emphasize that with tracking-by-selection

the final inference procedure is only as complex as a single

frame of the tracking-by-detection equivalent.

3.5. Scalability

Clearly, a straightforward application of tracking-by-

selection cannot be used with extremely long videos be-

cause a prohibitive number of path hypotheses would be

required. In future work we will demonstrate that a sliding

window-based approach can be used to apply tracking-by-

selection to videos of arbitrary length.

4. Implementation
To demonstrate the advantages of tracking-by-selection,

we adapt an existing tracking-by-detection model to the

tracking-by-selection framework. This allows for a more

direct and fair comparison than an entirely new model.

We use the publicly available code from [18], and re-

place the single-frame joint hypotheses with path hypothe-

ses to create a tracking-by-selection model.
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Figure 3. The overall model from [18] is decomposed into six sub-

models to allow for efficient inference. Note that each submodel

contains a subset of the edges in the original. The red lines indi-

cate the symmetrical potential between wrists, which only appear

in two of the six submodels.

It is important to note that the inference in [18] does

not search over the dense pixel grid, but also restricts their

search to a limited number of plausible single-frame hy-

potheses. We take this logic forward one step, and restrict

our search to a set of multi-frame path hypotheses.

[18] shows substantial evidence to support the claim that

approximate inference can perform nearly as well as exact

inference in some cases. A small loss in performance is a

small price to pay for substantially reduced computational

burden. [18] decomposes their model into an ensemble of

tree-shaped submodels, performs inference on each of the

submodels, and constructs a final solution by enforcing con-

sistency between the submodels. When dual decomposition

is used the final inference is exact, but excessively slow,

and long-running inference sessions were terminated before

convergence. With other types of agreement, the solution is

only approximate, but the performance is only slightly re-

duced.

One important aspect of [18] is that the submodels were

trained independently of each other. By training the sub-

models in isolation, the model is not being optimized for

exact inference. To illustrate this point, we focus on one

component of the unary potential for wrists. [18] very cor-

rectly reason that optical flow can be a strong cue for de-

tecting hands. In each frame, the gradient of the optical

flow is filtered by a hand-shaped template. The magnitude

of the response is used as a feature in the unary potential

for wrists. This flow-based cue is helpful, but it is very spo-

radic. When a hand is moving rapidly it may have a very

strong response, but without motion it gives no response at

all. Because people have two hands, this variability can eas-

ily result in “double counting” if one hand is moving and the

other is not — the flow-based feature will lead the pose esti-

mate to locate both hands at the site of movement. There are

two easy ways to counteract the double counting problem.

The first is to only lightly weight the flow-based feature,

and the other is to have a symmetrical repulsion potential

between the two hands.

A repulsion potential, which penalizes two wrist esti-

mates that are close to each other, is ideal for preventing

Figure 4. Main results: us vs. baseline [18]

double counting, but it only exists in two of the six sub-

models in [18], as shown in Figure 3. Four of the submod-

els, lacking the repulsion potential for wrists, will naturally

learn a very low weight for the flow-based feature. Even

if dual decomposition is used to force agreement between

the submodels, the overall contribution of the flow-based

feature will be quite weak. On the other hand, if training

was performed using the entire model the flow-based fea-

ture would always be balanced by the symmetrical repulsion

potential, and a more substantial weight could be learned.

To demonstrate the advantage of learning on a complete

model, we re-learned parameters for the flow-based wrist

feature and the symmetrical wrist potential using exact in-

ference on our model. This resulted in greater weights for

both and ultimately to improved performance. See Figure 7

for results comparing our learned parameters and parame-

ters directly taken from [18].

Aside from the weights for the flow-based wrist feature

and the symmetrical, model parameters were taken directly

from [18]. Each submodel in [18] has separate learned

parameters, so we averaged the parameters over all of the

submodels.

Because only a few model parameters needed to be

learned (the unary and pairwise consistency potentials from

section 3.1 and 3.2, the flow-based wrist feature, and the

symmetrical wrist potential), training was conducted with

a simple grid search over possible parameter values. The

objective function that was minimized was the total error in

the training set.

5. Experiments
5.1. VideoPose2.0 dataset

Experiments were conducted on a variation of the Video-

Pose2.0 dataset introduced in [18]. The original dataset

only includes alternating frames from the source videos,

which is clearly not ideal for a system that is grounded in

time-based features. The alternate version of the dataset,

which is provided by the authors, includes the missing

frames. In addition, the alternate version of the dataset con-
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Figure 5. Anecdotal results. Our results are shown in yellow. Results from [18] are shown in red.

catenates several videos that were partitioned into smaller

clips in the original version of the dataset. For a fair com-

parison to [18], their publicly available code was evaluated

on the alternate version of the dataset, and it is these results

that are shown here. The public code from [18] does not

implement all of the methods found in the paper, but the

results for the best-performing methods were all very sim-

ilar. It is in fact the purpose of the paper to show that the

simpler approximate methods perform as well as other more

sophisticated methods.

5.2. Main results

Fig. 4 shows our main results. For these results, 1000

path hypotheses were used for each shoulder, and 2000 path

hypotheses were used for each elbow and wrist. The figures

plot the percentage of joints (the y-axis) that were correctly

located within a certain number of pixels (the x-axis) of the

ground truth. Clearly, the most important thing to note is

the significant improvement in hand tracking. It can be seen

that that the performance for elbows is similar to the base-

line. In the VideoPose2.0 dataset, the motion of the elbows

is much less significant than that of the hands, so enforcing

spatio-temporal consistency will have less effect.

Some anecdotal results are shown in Fig. 5. Note that the

image on the far right is a partial failure case. One of the

main drawbacks of strongly enforcing global image con-

sistency is that occlusions can lead to failure. Remember,

however, that the generation of path hypotheses is stochas-

tic. This means that one of the many path hypotheses may

not be significantly affected by a brief occlusion.

5.3. Testing path hypotheses

Reducing the search space in a tracking problem to a

relatively small set of paths is potentially troubling. After

all, the solution in a tracking-by-selection framework can

only be as good as the path hypotheses. To asses the qual-

ity of path hypotheses and estimate the performance ceiling

of tracking-by-selection, Figure 6 shows experimental re-

sults for paths that have been selected by an oracle. Results

are shown for groups of varying size. It can be seen that

even with only 100 paths per body joint to choose from, a

solution exists that is very close to the ground truth. It is

interesting to note that increasing the number of paths pro-

Figure 6. Results showing performance with an oracle selecting

the best path with a varying number of random path hypotheses.

The results from [18] are shown for reference.

vides a more dramatic boost to wrists than to elbows. There

are two primary reasons for this. First, there is much greater

spatial variation in the wrist locations, as the actors tend to

gesticulate wildly. Second, wrists are simply harder to de-

tect, since they tend to move rapidly and are one more joint

removed from the relatively stable shoulders.

5.4. System analysis

Figure 7 shows results for our model with one compo-

nent removed at at time. The results for wrists and elbows

are averaged. “new pairwise” refers to the pairwise poten-

tial shown in Equation 9. “new unary” refers to the pairwise

potential shown in Equation 8. “extra hand weights” refers

to the parameters that were re-learned with exact inference

as discussed in section 4.

6. Conclusions

We have presented tracking-by-selection, a new frame-

work for tracking human poses in video. By reason-

ing about path hypotheses instead of single-frame state

hypotheses, racking-by-selection is capable of enforcing

global consistency in ways that are intractable in traditional

chain-shaped tracking-by-detection frameworks. We show

that converting a human pose tracking system to a tracking-

by-selection model results in improved performance on

challenging tracking problems.
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Figure 7. Results from our full system and results with individual

features removed.
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