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Abstract

Recently there have been significant advances in image
upscaling or image super-resolution based on a dictionary
of low and high resolution exemplars. The running time of
the methods is often ignored despite the fact that it is a crit-
ical factor for real applications. This paper proposes fast
super-resolution methods while making no compromise on
quality. First, we support the use of sparse learned dic-
tionaries in combination with neighbor embedding meth-
ods. In this case, the nearest neighbors are computed us-
ing the correlation with the dictionary atoms rather than
the Euclidean distance. Moreover, we show that most of
the current approaches reach top performance for the right
parameters. Second, we show that using global collabo-
rative coding has considerable speed advantages, reducing
the super-resolution mapping to a precomputed projective
matrix. Third, we propose the anchored neighborhood re-
gression. That is to anchor the neighborhood embedding
of a low resolution patch to the nearest atom in the dictio-
nary and to precompute the corresponding embedding ma-
trix. These proposals are contrasted with current state-of-
the-art methods on standard images. We obtain similar or
improved quality and one or two orders of magnitude speed
improvements.

1. Introduction
Super-resolution (SR) is a popular branch of image re-

construction that focuses on the enhancement of image res-

olution. In general, it takes one or more low resolution (LR)

images as input and maps them to a high resolution (HR)

output image. Super-resolution algorithms can be roughly

subdivided into three subclasses: interpolation methods like

Lanczos upsampling [5] and New Edge Directed Interpo-

lation (NEDI) [10], multi-frame methods [6, 7, 11] which

make use of the presence of aliasing in multiple frames of

the same scene to produce one high resolution image, and fi-

nally learning-based methods. The latter use machine learn-

ing techniques and comprise methods like Gradient Profile

Prior [13], which try to learn edge statistics from natural
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Figure 1. Speed vs. PSNR for the tested methods. Our ANR and

GR methods (shown in red) provide both high speed and quality.

More details in Table 1.

images, but also the recent and very popular dictionary- or

example-based learning methods. Most of these dictionary-

based methods build on the work of Freeman et al. [8] and

Baker and Kanade [2].

Dictionary-based methods use a patch- or feature-based

approach to learn the relationship between local image de-

tails in low resolution and high resolution versions of the

same scene. An input image is typically subdivided into

overlapping patches, which together form a Markov Ran-

dom Field (MRF) framework. By searching for nearest

neighbors in a low resolution dictionary, a number of corre-

sponding high resolution candidates can be retrieved. This

results in an MRF with a number of HR candidate patches

for each node. After associating a data cost to each can-

didate and a continuity cost for neighboring candidates the

MRF can be solved by using techniques such as belief prop-

agation or graph cuts.

One downside of these methods is their high computa-

tional complexity. Several methods have been proposed

to overcome this problem, most notably neighbor embed-

ding and sparse encoding approaches. Neighbor embed-

ding super-resolution methods [4, 3] do not always explic-

itly focus on lowering computational complexity, but be-

cause of their inherent interpolation of the patch subspace

they can be used to lower the number of image patch exem-

plars needed, thus reducing the algorithm’s execution time.

Sparse coding methods [17, 18] try to find a sparse coding

for the input patches based on a compact dictionary (created

by applying K-means or a similar algorithm to the training
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patches). We give an overview of these methods in sec-

tion 2. Bevilacqua et al. [3] compare the running times for

several example-based super-resolution algorithms, men-

tioning minutes to hours for most state-of-the-art methods,

depending on the size of the input image.

We propose a new method for example-based super-

resolution that focuses on low computation time while keep-

ing the qualitative performance of recent state-of-the-art ap-

proaches. We reach an average improvement in speed of

between one and two orders of magnitude over other state-

of-the-art methods (see Figure 1).

The remainder of the paper is organized as follows: we

take a closer look at recent approaches for neighbor embed-

ding and sparse coding for super-resolution in Section 2, we

explain our proposed method in Section 3 and show exper-

imental results in Section 4. The conclusions are drawn in

Section 5.

2. Dictionary-based Super-Resolution

In this section we shortly review dictionary-based meth-

ods for SR. As we have briefly presented Freeman’s original

method [8] in the introduction, here we focus on neighbor

embedding and sparse coding approaches.

2.1. Neighbor embedding approaches

Neighbor embedding (NE) approaches assume that small

image patches from a low resolution image and its high res-

olution counterpart form low-dimensional nonlinear man-

ifolds with similar local geometry. Chang et al. [4] pro-

posed a super-resolution method based on this principle, us-

ing the manifold learning method Locally Linear Embed-

ding (LLE) [12]. The LLE algorithm assumes that when

enough samples are available, each sample and its neigh-

bors lie on or near a locally linear patch of the manifold.

Since the manifolds in LR and HR feature space are as-

sumed to have a similar local geometry, this means that as

long as enough samples are available, patches in the HR

feature domain can be reconstructed as a weighted average

of local neighbors using the same weights as in the LR fea-

ture domain. Chang et al. search for a set of K nearest

neighbors for each input patch in LR feature space, com-

pute K appropriate weights for reconstructing the LR patch

by finding a constrained least squares solution, and eventu-

ally create an HR patch by applying these weights in HR

feature space. The result image is then created by using

the computed HR patches and averaging their contributions

where they overlap. The recent Nonnegative Neighbor Em-

bedding approach [3] is another example of NE used for

super-resolution. It is based on the assumption that the lo-

cal nonnegative least squares decomposition weights over

the local neighborhood in LR space also hold for the corre-

sponding neighborhood in HR space.

2.2. Sparse coding approaches

The NE approaches from the previous section use a dic-

tionary of sampled patches from low and high resolution

image pairs. These dictionaries can quickly become very

large, especially when more or bigger training images are

added to improve performance. Sparse coding (SC) ap-

proaches try to overcome this by using a learned compact

dictionary based on sparse signal representation. Yang et
al. [17] proposed an approach for super-resolution based on

this idea. Low resolution patches are sparsely reconstructed

from a learned dictionary using the following formulation:

min
α
‖FDlα− Fy‖22 + λ‖α‖0, (1)

where F is a feature extraction operator, Dl is the learned

low resolution dictionary, α is the sparse representation, y
is the low resolution input patch and λ is a weighting factor.

The l0-norm constraint leads to a NP-hard problem and, in

practice, is relaxed to an l1-norm constraint. Equation (1)

is eventually also extended with a term which encourages

similarity in the overlapping regions of nearby patches.

Sparse dictionaries are jointly learned for low and high

resolution image patches, with the goal of having the same

sparse representation for low resolution patches as their cor-

responding high resolution patches. This goal is reached for

a set of training image patch pairs Xh, Yl (high and low res-

olution patches resp.) by minimizing

min
Dh,Dl,Z

1

N
‖Xh −DhZ‖22 +

1

M
‖Yl −DlZ‖22

+ λ(
1

N
+

1

M
)‖Z‖1,

(2)

where N and M are the dimensionality of the low and high

resolution patches and Z is the coefficient vector represent-

ing the sparsity constraint. The resulting dictionary has a

fixed size and thus the algorithm has the capability of learn-

ing from many training patches while avoiding long pro-

cessing times due to an ever growing dictionary. Unfortu-

nately, solving this sparse model still takes a large amount

of time.

Zeyde et al. [18] build upon this framework and improve

the execution speed by adding several modifications. The

most important changes include using different training ap-

proaches for the dictionary pair (K-SVD [1] for the low

resolution dictionary and direct approach using the pseudo-

inverse for the high resolution dictionary), performing di-

mensionality reduction on the patches through PCA and us-

ing Orthogonal Matching Pursuit [16] for the sparse cod-

ing. They also show an improvement in quality with less

artifacts and a higher average Peak Signal-to-Noise Ratio

(PSNR) when compared to the results of Yang et al. [17].

19211921



3. Proposed Methods
We propose an anchored neighborhood regression

method that conveys two situations, one being the general

behavior where a neighborhood size is set and the other be-

ing the so called global case, where the neighborhood co-

incides with the whole dictionary in use. We refer to these

in the following as the Anchored Neighborhood Regression

(ANR) and its extreme case, the Global Regression (GR).

We start with the global case for simplicity of the formula-

tion, and then we consider the neighborhoods.

3.1. Global Regression

For most NE and SC approaches, the least squares (LS)

problems are constrained or regularized using the l1-norm

of the coefficients, similar to equation (1). This is com-

putationally demanding. We can reformulate the problem

as a least squares regression regularized by the l2-norm of

the coefficients. Thus, we use Ridge Regression [14] (also

known as Collaborative Representation [15]) and have a

closed-form solution. The problem becomes

min
β
‖yF −Nlβ‖22 + λ‖β‖2, (3)

where Nl corresponds to the neighborhood in LR space that

we choose to solve this problem, which in the case of neigh-

borhood embedding would refer to the K nearest neighbors

of the input feature yF and in the case of sparse coding

would refer to the LR dictionary. The parameter λ allows

us to alleviate the singularity (ill-posed) problems and sta-

bilizes the solution, which is the coefficient vector β. The

algebraic solution is given by

β = (NT
l Nl + λI)−1NT

l yF . (4)

The HR patches can then be computed using the same coef-

ficients on the high resolution neighborhood Nh

x = Nhβ, (5)

where x is the HR output patch and Nh the HR neighbor-

hood corresponding to Nl.

If we use the whole LR dictionary for this, meaning

(Nh,Nl) = (Dh,Dl), we get a global solution for the

problem. An important observation here is that from equa-

tion (4) and equation (5), we obtain:

x = Dh(D
T
l Dl + λI)−1DT

l yF (6)

where the projection matrix

PG = Dh(D
T
l Dl + λI)−1DT

l (7)

can be computed offline. This means that during the ex-

ecution of the SR algorithm we only need to multiply the

precomputed projection matrix PG with the LR input fea-

ture vector, yF , to calculate the HR output patches x. This

formulation is the Global Regression (GR) approach, the

extreme case of our ANR method.

3.2. Anchored Neighborhood Regression

The Global Regression approach reduces the super-

resolution process to a projection of each input feature into

the HR space by multiplication with a precomputed ma-

trix. It is however a global solution and thus not tuned

towards specific input features, but rather the entire dictio-

nary, which is a representation of the features occurring in

the training images. If instead of considering the whole dic-

tionary as starting point for computing the projective matrix

we consider local neighborhoods of a given size we allow

more flexibility of the approach at the expense of increased

computation – we will have more than one projective matrix

and neighborhoods.

We start by grouping the dictionary atoms into neighbor-

hoods. More specifically, for each atom in the dictionary we

compute its K nearest neighbors, which will represent its

neighborhood. If we start from a learned sparse dictionary,

as in the sparsity approaches of Yang et al. [17] and Zeyde et
al. [18], we find the nearest neighbors based on the correla-

tion between the dictionary atoms rather than the Euclidean

distance. The reason for this is that the atoms are a learned

basis consisting of l2-normalized vectors. If, conversely, we

have a dictionary of features taken straight from the training

patches, like in the NE approaches of Chang et al. [4] and

Bevilacqua et al. [3], then the Euclidean distance is an ap-

propriate distance measure. Once the neighborhoods are de-

fined, we can calculate a separate projection matrix Pj for

each dictionary atom dj , based on its own neighborhood.

This can be done in the same way as in the previous section

by using only the dictionary atoms that occur in the neigh-

borhood rather than the entire dictionary, and can again be

computed offline.

The super-resolution problem can then be solved by cal-

culating for each input patch feature yiF its nearest neigh-

bor atom, dj , in the dictionary, followed by the mapping to

HR space using the stored projection matrix Pj :

xi = PjyiF . (8)

This is a close approximation of the NE approach, with a

very low complexity and thus a vast improvement in exe-

cution time. We call our approach the Anchored Neighbor-

hood Regression (ANR), since the neighborhoods are an-

chored to the dictionary atoms and not directly to the low

resolution patches as in the other NE approaches.

4. Experiments

In this section we show experimental results1 of our

method and compare it quantitatively and qualitatively to

other state-of-the-art methods. We first discuss some of the

1Source codes, images, and results are available at:

http://www.vision.ee.ethz.ch/˜timofter/
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a) trained dictionary b) random dictionary

Figure 2. Dictionary size vs. average PSNR and average running time performance on the 14 images from Set14 with magnification ×3.

Bicubic is our reference. All the methods were used with their best neighborhood size. For the trained dictionaries, ANR uses a size of 40,

NE+LS uses 12, NE+NNLS - 24, and NE+LLE - 24. For the random dictionaries, ANR uses a size of 128, NE+LS - 5, NE+NNLS - 24,

and NE+LLE - 128, resp. For the running times we subtracted the shared processing time (collecting patches, combining the output) for

all the methods.

details surrounding the algorithm such as used features, dic-

tionary choices, similarity measures, size for neighborhood

calculation and different patch embeddings.

4.1. Conditions

4.1.1 Features

One aspect which can influence the performance is the type

of features used to represent the image patches. These fea-

tures are almost always calculated from the luminance com-

ponent of the image, while the color components are inter-

polated using a regular interpolation algorithm such as bicu-

bic interpolation [9, 18, 17, 4, 3]. This is because the human

visual system is much less sensitive to high frequency color

changes than high frequency intensity changes, so for the

magnification factors used in most papers the perceived dif-

ference between bicubic interpolation and SR of the color

channels is negligible.

The most basic feature to use is the patch itself. This

however does not give the feature good generalization prop-

erties, so a popular choice is to subtract the mean [3] and

to normalize the contrast [8] by e.g. dividing by the stan-

dard deviation. An often used similar feature is the first-

and second order derivative of the patch [4, 17, 18]. Both

of these feature types seem to lead to similar performance,

while Bevilacqua et al. [3] show that using only first or-

der derivatives gives slightly worse performance than us-

ing only mean subtraction. We use the same features as

Zeyde et al. [18], who start from the first- and second order

gradients and apply PCA dimensionality reduction, project-

ing the features onto a low-dimensional subspace while pre-

serving 99.9% of the average energy. This usually leads to

features of about 30 dimensions for upscaling factor 3 and

3× 3 low resolution patch sizes.

We subtract the bicubically interpolated LR image from

the HR image to create normalized HR patches. The

patches resulting from the SR process (i.e. equation (6) for

GR) are added to the bicubically interpolated LR input im-

age (with overlapping parts averaged) to create the output.

We use Zeyde et al.’s algorithm and their provided

sources as a starting point for our implementations.

4.1.2 Embeddings

Apart from our comparisons with the sparse methods of

Yang et al. [17] and Zeyde et al. [18], we also compare

our results to neighbor embedding approaches adapted to

our dictionary choices. The original LLE-based SR method

of Chang et al. [4] does not use a learned dictionary, in-

stead the dictionary consists simply of the training patches

themselves. This makes direct comparison to our method

and the sparse methods difficult, because the question then

arises “which dictionary should we use to have a fair com-

parison?”. The same can be said when we wish to compare

to the nonnegative neighbor embedding of Bevilacqua et
al. [3]. The solution is to use the same learned dictionary as

Zeyde et al. and our method, with the respective SR meth-

ods of Chang and Bevilacqua implemented to solve the SR

regression. We will refer to these as NE + LLE (Neigh-

bor Embedding with Locally Linear Embedding) and NE
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a) trained dictionary of size 1024 b) random dictionary of size 1024

Figure 3. Neighborhood size vs. average PSNR and average running time performance on the 14 images from Set14 with magnification

×3. Bicubic, Yang et al., Zeyde et al., and GR are reported for reference. Yang et al. uses the original dictionary of 1022, while the other

methods, except Bicubic interpolation, share the same dictionary. The decrease in the running time of the ANR method from random

dictionary experiments is caused by applying a subsampling step of max{1, neighborhoodsize
30

} for the anchor atoms, while for the trained

one the step is 1. For the running times we subtracted the shared processing time (collecting patches, combining the output) for all the

dictionary based methods, leaving only the encoding time for each method.

+ NNLS (Neighbor Embedding with NonNegative Least

Squares), and we add results for a similar implementation

that uses unconstrained least squares to solve the regression,

to which we refer as NE + LS.

4.1.3 Dictionaries

The choice of the dictionary is critical for the performance

of any SR method. Usually, the larger the dictionary the

better the performance, however this comes with a higher

computational cost. The dictionary can be built using the

LR input image itself, in this case we have an “internal”

dictionary. Glasner et al. [9] and their intensive exploita-

tion of “patch redundancy” are the main advocates for this.

However, many approaches prefer to build “external” dic-

tionaries, external to the input query, using diverse images.

In our settings we work with the same set of external

images as used by Zeyde et al. [18] and Yang et al. [17].

Also, we consider both randomly sampled dictionaries and

learned dictionaries. For learning we use the K-SVD/OMP

learning approach of Zeyde et al. [18].

In Fig. 2 we depict the effect of the dictionary on the per-

formance. As expected, usually the performance increases

with the size of the dictionary. Moreover, we see again

that using a learned dictionary is highly beneficial for all

the methods – it allows for a reasonably high performance

for small dictionary sizes. One needs a 16× larger random

sampled dictionary to reach the same performance as with

the trained dictionary. Most of the methods exhibit a sim-

ilar log-linear increasing trend with the dictionary size and

the PSNR difference among ANR, Zeyde et al. and the NE

approaches is quite small for their best settings (using op-

timal neighborhood size). The difference is made by the

running time, where ANR and GR are the clear winners.

GR is the fastest method, but as a global method it has its

weaknesses, and for large dictionaries tends not to reach

competitive PSNR levels.

4.1.4 Neighborhoods

As explained in Section 3.2, our ANR algorithm finds the

nearest neighbor (atom) in the dictionary for each input fea-

ture and borrows the neighborhood and the precomputed

projection matrix from this neighbor. The NE approaches

also rely on the neighborhood to the input LR feature. The

performance of the embedding methods, and hence the per-

formance of the SR method, depends on the dimensionality

of these neighborhoods.

The computation of the nearest neighbors is based on a

similarity measure. The Euclidean distance is the choice

of most NE approaches working directly with large dictio-

naries. We use the Euclidean distance for the setups with

randomly sampled dictionaries. In the case of the learned

sparse dictionaries, we obtain l2-normalized atoms meant

to form a basis spanning the space of the training samples

while minimizing the reconstruction error. For this case our

option is to obtain the nearest neighbors using the correla-

tion expressed as the inner product.
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Table 1. Magnification ×3 performance in terms of PSNR (dB) and running time (s) per image on the Set14 dataset. All the original

methods use the same training images from [17]. The methods share the same trained dictionary of 1024, except Bicubic interpolation and

Yang et al. with a dictionary of 1022. The neighborhood sizes are as in Fig. 2. ANR is 5 times faster than Zeyde et al. If we consider only

the encoding time, our ANR method takes 0.27s on average, being 13 times faster than Zeyde et al., and 10 times faster than NE+LS.
Set14 Bicubic Yang et al. [17] Zeyde et al. [18] GR ANR NE+LS NE+NNLS NE+LLE

images PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

baboon 23.2 0.0 23.5 142.1 23.5 4.4 23.5 0.7 23.6 1.0 23.5 3.6 23.5 37.8 23.6 6.6

barbara 26.2 0.0 26.4 150.4 26.8 7.6 26.8 1.1 26.7 1.6 26.7 6.1 26.7 66.5 26.7 11.5

bridge 24.4 0.0 24.8 172.7 25.0 4.7 24.9 0.7 25.0 1.0 24.9 3.8 24.9 41.8 25.0 7.1

coastguard 26.6 0.0 27.0 40.9 27.1 1.8 27.0 0.3 27.1 0.4 27.0 1.4 27.0 16.1 27.1 2.7

comic 23.1 0.0 23.9 60.3 24.0 1.6 23.8 0.2 24.0 0.4 23.9 1.3 23.8 13.9 24.0 2.4

face 32.8 0.0 33.1 23.7 33.5 1.4 33.5 0.2 33.6 0.3 33.5 1.1 33.5 11.7 33.6 2.0

flowers 27.2 0.0 28.2 88.8 28.4 3.3 28.1 0.5 28.5 0.7 28.3 2.6 28.2 28.4 28.4 4.9

foreman 31.2 0.0 32.0 30.6 33.2 1.8 32.3 0.3 33.2 0.4 33.2 1.5 32.9 15.9 33.2 2.7

lenna 31.7 0.0 32.6 78.7 33.0 4.8 32.6 0.8 33.1 1.1 33.0 4.0 32.8 41.0 33.0 7.2

man 27.0 0.0 27.8 123.7 27.9 4.7 27.6 0.7 27.9 1.0 27.9 3.8 27.7 41.2 27.9 7.2

monarch 29.4 0.0 30.7 130.5 31.1 7.2 30.4 1.1 31.1 1.5 30.9 5.8 30.8 63.3 30.9 10.8

pepper 32.4 0.0 33.3 75.6 34.1 4.8 33.2 0.7 33.8 1.0 33.9 3.8 33.6 41.4 33.8 7.2

ppt3 23.7 0.0 25.0 107.8 25.2 5.7 24.6 1.0 25.0 1.3 25.1 4.9 24.8 49.8 24.9 9.4

zebra 26.6 0.0 28.0 129.8 28.5 4.2 27.9 0.7 28.4 0.9 28.3 3.3 28.1 36.4 28.3 6.3

average performance 27.54 0.02 28.31 96.82 28.67 4.14 28.31 0.64 28.65 0.90 28.59 3.36 28.44 36.09 28.60 6.29

ANR speedup x0.02 x110 x4.6 x0.7 x1 x3.7 x40 x7
average time for encoding 0.01 ∼90.00 3.51 0.01 0.27 2.73 35.46 5.66

ANR speedup for encoding x0.04 x330 x13 x0.04 x1 x10 x131 x21

The neighborhood size is the major parameter for the NE

techniques and for ANR as well. We show the effect of this

size in Figure 3 for dictionaries of size 1024. The methods

behave differently under the same settings. Moreover, the

curves are not monotonic – as noticed also in [3]– and more

investigation in this phenomenon is due. On the learned dic-

tionary, NN + LS peaks at 12, NE + LLE and NE + NNLS

at 24, while ANR peaks at 40. On the random dictionary,

NN + LS peaks at 5, NE + LLE at 128, NE + NNLS at 24,

while ANR peaks at 128. We will use these neighborhood

sizes for the further experiments. The behavior of ANR and

GR is also influenced by the choice of the regularization

parameter λ, in all our experiments empirically set to 0.01.

4.2. Performance

In this section we will show quantitative and qualitative

results as well as running times for our proposed method

and compare them to the other discussed dictionary-based

SR algorithms. More specifically, we compare our results

to the sparse coding algorithms of Yang et al. [17] and

Zeyde et al. [18], as well as to our implementations based

on the LS regressions used by Chang et al. [4] (NE + LLE)

and Bevilacqua et al. [3] (NE + NNLS) as described in Sec-

tion 4.1.2. Tables 1 and 2 summarize the results, showing

PSNR and running time values for a number of test images.

The images are divided into two sets; Set14 was used by

Zeyde et al. to show their results and Set5 was used by

Bevilacqua et al. The effect of dictionary size is explored in

Fig. 2, while Fig. 3 shows the relationship between neigh-

borhood size, PSNR and time.

4.2.1 Quality

When using the optimal neighborhood size for each method

the PSNR of Zeyde et al. [18], NE + LLE, NE + LS, and

our ANR method reach comparable average values. The

approach of Zeyde et al. reaches the highest PSNR in all

experiments, slightly above our ANR method. On the Set14

dataset Zeyde et al. get an average of 28.67 dB, while ANR

gets 28.65 dB, and NE + LS and NE + LLE get an average

of 28.6 dB. Our GR method and Yang et al. get the same

average PSNR of 28.31 dB, while NE + NNLS lies in be-

tween with 28.44 dB. A similar behavior can be seen on the

Set5 database, where ANR can be better than Zeyde et al.
Visual examples are shown in Figures 4, 5, and 6. From

these we can conclude that ANR gets very similar quality

performance as the top methods it was compared to.

4.2.2 Running Time

Our implementation of NNLS has similar computation time

as what is reported by Bevilacqua et al. [3], which is in the

order of 10 seconds for a magnification factor of 3×. This

can also be observed in Figure 2 and Figure 3. We com-

pare with their algorithm because it is a very recent method

aimed at low complexity and high processing speed while

still keeping high quality results, and is therefore an ideal

candidate for reference.

When we compare the processing times it is clear that

our Global Regression algorithm is the fastest by far, fol-

lowed by our Anchored Neighborhood Regression. The last

row of Table 1 as well as Fig. 2 and 3 show the difference

of the encoding time, which is the processing time that is

left after subtracting the shared processing time of 0.63 sec-

onds of the algorithms (pre/post processing, bicubic inter-

polation, patch extraction, etc.).

The Global Regression algorithm is useful when speed is

the most important aspect, however the general ANR algo-

rithm gives a better speed-performance trade-off. That be-

ing said, when we look at the results for 3× magnification,

GR reaches a speedup of 350× when compared to Zeyde et
al., 9000× when compared to Yang et al., 560× when com-

pared to the NE + LLE method inspired by Chang et al. and

3500× to NE + NNLS inspired by Bevilacqua et al. For the
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Table 2. Magnification ×2, ×3, and ×4 performance in terms of PSNR (dB) and running time (s) per image on the Set5 dataset. All

the original methods use the same training images from [17]. All the methods share the same trained dictionary of 1024, except Bicubic

interpolation and Yang et al. with a dictionary of 1022. We use the same neighborhood sizes as in Fig. 2. For upscaling factor 3, ANR is 5

times faster than Zeyde et al. being 94 times faster than Yang et al. and 4 times faster than NE+LS with 12 neighbors.
Set5 Bicubic Yang et al. [17] Zeyde et al. [18] GR ANR NE+LS NE+NNLS NE+LLE

images Scale PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

baby 2 37.1 0.0 – – 38.2 10.8 38.3 1.2 38.4 1.8 38.1 8.3 38.0 98.4 38.3 15.8

bird 2 36.8 0.0 – – 39.9 3.3 39.0 0.4 40.0 0.6 39.9 2.5 39.4 30.6 40.0 4.9

butterfly 2 27.4 0.0 – – 30.6 2.7 29.1 0.3 30.5 0.4 30.4 2.0 30.0 23.7 30.4 3.8

head 2 34.9 0.0 – – 35.6 3.1 35.6 0.4 35.7 0.5 35.5 2.4 35.5 28.3 35.6 4.6

woman 2 32.1 0.0 – – 34.5 3.2 33.7 0.4 34.5 0.5 34.3 2.4 34.2 28.8 34.5 4.6

average 2 33.66 0.00 – – 35.78 4.63 35.13 0.54 35.83 0.78 35.66 3.53 35.43 41.94 35.77 6.74

baby 3 33.9 0.0 34.3 88.5 35.1 4.8 34.9 0.7 35.1 1.0 35.0 3.9 34.8 41.3 35.1 7.2

bird 3 32.6 0.0 34.1 35.7 34.6 1.5 33.9 0.2 34.6 0.3 34.4 1.2 34.3 12.9 34.6 2.2

butterfly 3 24.0 0.0 25.6 32.2 25.9 1.2 25.0 0.2 25.9 0.3 25.8 0.9 25.6 10.0 25.8 1.7

head 3 32.9 0.0 33.2 24.1 33.6 1.4 33.5 0.2 33.6 0.3 33.5 1.1 33.5 11.9 33.6 2.1

woman 3 28.6 0.0 29.9 30.2 30.4 1.4 29.7 0.2 30.3 0.3 30.2 1.1 29.9 11.9 30.2 2.1

average 3 30.39 0.00 31.42 42.14 31.90 2.08 31.41 0.33 31.92 0.45 31.78 1.65 31.60 17.61 31.84 3.05

baby 4 31.8 0.0 – – 33.1 2.9 32.8 0.6 33.0 0.8 32.9 2.4 32.8 22.5 33.0 4.2

bird 4 30.2 0.0 – – 31.7 0.9 31.3 0.2 31.8 0.2 31.6 0.7 31.5 6.9 31.7 1.3

butterfly 4 22.1 0.0 – – 23.6 0.7 23.1 0.2 23.5 0.2 23.4 0.6 23.3 5.3 23.4 1.0

head 4 31.6 0.0 – – 32.2 0.9 32.1 0.2 32.3 0.3 32.2 0.7 32.1 6.5 32.2 1.2

woman 4 26.5 0.0 – – 27.9 0.9 27.4 0.2 27.8 0.2 27.6 0.7 27.6 6.4 27.7 1.2

average 4 28.42 0.00 – – 29.69 1.25 29.34 0.26 29.69 0.34 29.55 1.00 29.47 9.52 29.61 1.77

same magnification, ANR reaches speed improvements of

13×, 330×, 21×, and 131×, resp.

5. Conclusions
We proposed a new example-based method for super-

resolution called Anchored Neighbor Regression which fo-

cuses on fast execution while retaining the qualitative per-

formance of recent state-of-the-art methods. We also pro-

posed an extreme variant of this called Global Regression

which focuses purely on high execution speed in exchange

for some visual quality loss. The main contributions of this

paper are twofold: i) we present the ANR approach, which

uses ridge regression to learn exemplar neighborhoods of-

fline and uses these neighborhoods to precompute projec-

tions to map LR patches onto the HR domain, and ii) we

show through our analysis of existing neighborhood embed-

ding SR methods that most of these can reach a similar top

performance based on using the appropriate neighborhood

size and dictionary; the sparse learned dictionaries in com-

bination with neighbor embeddings methods were shown to

be a faster alternative to full sparse coding methods.

We plan to extend our method to make full use of the

extra dimension of time for the case of video sequences,

with real-time streaming super-resolved video as a goal.
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a) Reference b) Bicubic c) Yang et al. d) Zeyde et al.

e) GR f) ANR g) NE+NNLS h) NE+LLE

Figure 4. Visual qualitative assessment for “baby” image from Set5 with magnification ×3.

a) Reference b) Bicubic c) Yang et al. d) Zeyde et al.

e) GR f) ANR g) NE+NNLS h) NE+LLE

Figure 5. Visual qualitative assessment for “butterfly” image from Set5 with magnification ×3.

a) Reference b) Bicubic c) Yang et al. d) Zeyde et al.

e) GR f) ANR g) NE+NNLS h) NE+LLE

Figure 6. Visual qualitative assessment for “bird” image from Set5 with magnification ×3.
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