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Abstract

Updating a global 3D model with live RGB-D measure-
ments has proven to be successful for 3D reconstruction
of indoor scenes. Recently, a Truncated Signed Distance
Function (TSDF) volumetric model and a fusion algorithm
have been introduced (KinectFusion), showing significant
advantages such as computational speed and accuracy of
the reconstructed scene. This algorithm, however, is expen-
sive in memory when constructing and updating the global
model. As a consequence, the method is not well scalable
to large scenes. We propose a new flexible 3D scene repre-
sentation using a set of planes that is cheap in memory use
and, nevertheless, achieves accurate reconstruction of in-
door scenes from RGB-D image sequences. Projecting the
scene onto different planes reduces significantly the size of
the scene representation and thus it allows us to generate a
global textured 3D model with lower memory requirement
while keeping accuracy and easiness to update with live
RGB-D measurements. Experimental results demonstrate
that our proposed flexible 3D scene representation achieves
accurate reconstruction, while keeping the scalability for
large indoor scenes.

1. Introduction

The fine 3D reconstruction of large indoor scenes from

RGB-D measurements is of wide interest for the computer

vision community, with various potential applications. For

example, 3D models of indoor scenes can be used in seri-

ous games or indoor space organization. With recent efforts

on developing inexpensive depth sensors such as the Mi-

crosoft Kinect camera or the Asus Xtion Pro camera (also

called RGB-D cameras), capturing depth information in in-

door environments becomes an easy task. This new set-up

opens new possibilities for 3D reconstruction, and several

softwares have been already proposed to realize live 3D re-

construction using RGB-D cameras.

In general, the live 3D reconstruction process can be di-

vided into 4 steps: (1) RGB-D measurement acquisition;

(2) camera tracking; (3) integration (or fusion) of aligned

RGB-D measurements and (4) 3D modeling (3D textured

mesh generation for example). The objective is then to carry

out these tasks with both computational efficiency and high

accuracy. Computational speed is important because we ex-

pect to capture many depth images (30 fps for the Kinect

camera), so each image needs to be processed quickly in or-

der to process the full sequence in a reasonable time. Even

for an off-line application, the amount of data that is pro-

cessed at each iteration imposes the use of graphic cards

with large parallel computational power, but available mem-

ory space is limited. On the other hand, accuracy of the

output 3D model is also important; in particular when we

want it to be usable in games, simulations or visualization

tasks. Using all available measurements including color is

expected to achieve the accurate 3D reconstruction.

A standard approach to 3D reconstruction using RGB-D

cameras is to employ a frame-to-frame strategy [8, 10, 11].

Each incoming frame is aligned to its previous frame, then

newly aligned data are integrated into a global model (using

surfels [15] for example), which is triangulated in a final

post-process (using poisson surface reconstruction [12] for

example). A crucial limitation of this strategy comes from

the frame-to-frame error propagation, which can lead to sig-

nificant errors at the end of the sequence. This becomes

fatal when the scale of the scene is large. A loop closure

algorithm may reduce the propagated error if a loop exists.

However, its effectiveness is limited as the whole sequence

has to be processed again to fuse all measurements after

correcting the estimated camera trajectory and, moreover,

loops are not always available. In this approach, only the

current and previous frames are loaded on the GPU mem-

ory for camera tracking and, therefore, the GPU memory

use is low and tracking is fast.

Another approach to 3D reconstruction is to use the

frame-to-global-model strategy, which has been proven ef-

fective with KinectFusion [13] and its extensions [14, 16,

21]. In this strategy, a single high-quality global 3D model

is updated along with live depth measurements, where the

global model is represented as a signed distance function

that is discretized into a volume covering the scene to be
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reconstructed. Incoming depth images are then aligned

to high-quality predicted depth images generated from the

global model. Using a global model allows to reduce the er-

ror propagation, however, the volumetric representation of

the scene is highly memory consuming. As a consequence,

most of the GPU memory space is used to update the global

model and generate depth images. Thus additional opera-

tions on the GPU that require significant memory (such as

SIFT-GPU) are not executable. Feature appearance based

alignment methods, for example, cannot be used to augment

the ICP based pose estimation. Accordingly, without rich

geometric features in RGB-D image sequences, the method

does not work well. In addition, the method is not well scal-

able to large scenes. Extensions of KinectFusion have been

proposed where the volume is moved along with the camera

to reconstruct large indoor scenes. However, rich geomet-

ric features are still required for camera tracking. Existing

volumetric methods cannot deal with an RGB-D image se-

quence whose part has poor geometric features (like when

passing through a corridor for example).

In this paper, we introduce a new 3D scene representa-

tion using a set of planes1 that requires low memory use and,

nevertheless, realizes accurate and efficient 3D reconstruc-

tion of a scene from an RGB-D image sequence, even when

some parts of the sequence have poor geometric features.

In this work, we focus on reconstructing indoor scenes be-

cause current RGB-D sensors work only indoors. The main

idea is to represent a static scene as a set of planes to each of

which we attach as its attributes three images describing the

local geometry and color. This representation is flexible in

that we can easily build and update the scene representation

and more importantly, with the attributes, we can always

recover the full 3D information of the scene while reduc-

ing required memory. Figure 1 illustrates our proposed 3D

representation for an indoor scene.

The low memory use required to maintain our 3D scene

representation allows us to use both geometry and color for

camera tracking with standard graphic cards. In addition,

thanks to our representation, the organization of data is over

2D grids on different planes, which gives us a quadrangula-

tion (i.e. triangulation with quads) of the global 3D model

effortlessly. We can thus generate high-quality dense depth

and color images that can be used into the frame-to-global-

model registration framework. Moreover, our 3D scene rep-

resentation enables us to directly output roughly segmented

dense 3D textured meshes from a large sequence of RGB-D

images, even when parts of the sequences lack in rich geo-

metric features. Experimental results confirm effectiveness

of our proposed representation, showing accurate 3D recon-

struction of scenes.

1In this paper we use planes only for simplicity, but the same ap-

proach can be used straightforwardly with other parametric shapes such

as spheres, cylinders or cones, once they are detected from the image se-

quence.
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Figure 1. The proposed 3D representation for an indoor scene.

2. Related work
A successful approach to 3D reconstruction using RGB-

D cameras is the frame-to-global-model strategy. Methods

using such a strategy build and update a global 3D model

with higher resolution than that of input depth images in an

online manner along with live measurements.

Weise et al. [20] proposed to build a global model using

surfels [15] and align successive frames to the global model

using GICP [17] (extension of ICP [3] where the point-to-

plane metric is used instead of the point-to-point metric).

Using triangular meshes for a global model requires con-

siderable efforts to guarantee the integrity and quality of the

mesh topology after adding, updating, or removing any ver-

tices. As addressed in [20], however, the use of surfels has

the advantage that it can be easily updated with live mea-

surements while keeping consistency of the global model.

A robust algorithm is also proposed to detect registration

failures. One drawback of this method is that the surfel

representation is relatively sparse compared with captured

depth images, which degrades the accuracy of registration

results. Moreover the memory space required to maintain

the surfel representation for large scenes is not practical.

Recently, Newcombe et al. [13] proposed KinectFusion

where the global 3D model is represented as a signed dis-

tance function that is discretized into a volume covering a

scene to be reconstructed. Incoming depth images are then

aligned to a high-quality predicted depth image generated

from the global model. Improvement of KinectFusion to

better handle input noise was proposed by Nguyen et al.
[14]. The advantage of using a volumetric representation of

the scene is that dense depth images can be rendered for a

given camera position. Moreover, updating the volume is

easy and fast thanks to the GPU. The major drawback is, on

the other hand, scalability. Namely, for a given resolution,

the data size for the volume becomes too large and memory
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consuming when the target scene becomes large.

Extensions of KinectFusion to a large scene have been

proposed where the volume is moved along with the tracked

camera motion. Roth et al. [16] proposed a method to au-

tomatically translate and rotate the volume in space as the

camera moves. The volume is remapped into a new one by

the Truncated Signed Distance Function (TSDF) interpola-

tion whenever sufficient camera movement is observed. The

objective of this work is to output fine camera tracking with

a local map of the environment. As a consequence, points

that leave the volume are lost and the method can not gen-

erate the complete reconstructed scene. Similarly, Whelan

et al. [21] introduced Kintinuous, proposing a method to

identify points that leave the KinectFusion volume and in-

crementally add them into a triangular mesh representation

of the scene. Available implementation that can be found in

the PCL [1] allows even to re-use existing data when mov-

ing the volume. However, rich geometric features in the

RGB-D image sequence are required for accurate scene re-

construction. When a scene does not have rich geometric

features, this method fails in tracking the camera motion,

resulting in poor reconstruction.

Much recently, Zeng et al. [22] and Chen et al. [6] pro-

posed an octree-based fusion method to compress the vol-

umetric TSDF representation of the scene. At the same

time, Zhou et al. [23] proposed to use local volumes around

points of interest and Henry et al. [9] proposed to segment

the scene into planar patches and use 3D TSDF volumes

around them to represent the 3D scene. By contrast, our

proposed method requires only three 2D images for each

plane to model the scene, which allows more compact rep-

resentation of the scene.

As the size of the scene to be reconstructed becomes

large, representing the whole scene using clouds of points

or volumes becomes unpractical. The more points that com-

pose the scene exist, the heavier the post processing such

as triangulation or texturing becomes. In this paper we

propose a scene representation that allows to directly build

roughly segmented 3D textured meshes from an RGB-D im-

age sequence.

3. Scene representation using planes

For 3D scene reconstruction using RGB-D cameras, how

to represent the target scene is of crucial importance. The

representation should be (1) compact, so that the user can

reconstruct large scenes, (2) accurate for fine reconstruc-

tion, (3) easy to update with live measurements for fast pro-

cessing, and (4) capable of predicting dense high-quality

RGB-D images for accurate camera tracking. To the best of

our knowledge, there is no 3D representation that satisfies

these four requirements, which motivates us to introduce a

new flexible 3D scene representation.

We reason that parametric shapes such as planes can be

used to describe an indoor scene because it is mainly com-

posed of man-made objects (such as table, wall and storage

for example), with rather simple shapes. We thus propose to

represent a scene as a set of planes (again only for simplic-

ity) having attributes. To each plane2 detected in the scene,

we attach as its attributes three 2D images in addition to

information that identifies the plane (planar patch).

The three images are a three-channel Bump image, an

one-channel Mask image and a three-channel Color image;

these three images encode the geometric and color details

of the scene. The Bump image encodes the local geometry

around the plane. For each pixel, we record in the three

channels the displacement of the 3D point corresponding to

the pixel from the lower left-corner of the pixel. The Mask

image encodes the confidence for the accumulated data at a

point and the Color image encodes the color of each point.

The Bump image encodes the local geometry, which al-

lows us to accurately represent the geometry of the 3D scene

while using less memory. This satisfies the first two require-

ments. In addition, adding, removing or updating points is

executed easily and efficiently, because we are manipulat-

ing 2D images. Therefore we satisfy the third requirement.

Last but not least, the organization of points over 2D images

gives a natural quadrangulation for the reconstructed scene.

We choose quads rather than triangles because the quadran-

gulation is a natural meshing for a 2D grid (also the number

of quads becomes smaller than that of triangles when gener-

ating meshes). We can thus render 3D textured meshes from

an estimated camera pose to obtain a high-quality dense pre-

dicted RGB-D image from the global model using 3D ren-

derers such as OpenGL. Our proposed 3D representation

thus satisfies the fourth requirement as well.

3.1. Plane detection

We detect different planes that decompose the target

scene by modifying the method proposed in [4] (we employ

the Floyd-Warshall algorithm [7] to detect local maxima).

We choose this voting strategy rather than another one such

as RANSAC [18], Generalized PCA [19] or Robust PCA [5]

because it is known to be fast with decent accuracy. Note

that for our 3D representation the accuracy of detected plane

parameters is not critical. Any errors that arise during the

plane detection will be compensated by the Bump image.

For each point in a given depth image, we first compute

its normal vector and generate a histogram of normals from

the depth image. Namely, each point votes in the bin corre-

sponding to its normal vector. Then, the bins with sufficient

votes are detected and connected bins are merged using the

Floyd-Warshall algorithm [7]. The median normal vector

for each connected class is then computed. We thus ob-

2Since a visible region of a plane in the scene has a finite size, a planar

patch may be more appropriate, however, we use the word plane for sim-

plicity. We remark that, in our method, each plane is identified by its plane

equation and a bounding box.
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Figure 2. A simple example for the Bump image computation.

tain a set of normals for the depth image as well as lists

of points to each of which a normal vector in the set is at-

tached. Thereafter, for each normal vector in the set, we

compute for each point in its corresponding list the plane

that passes the point and that has the normal vector and then

compute the distance dorigin of the origin from this plane.

Each point in the list then votes in the bin of a distance his-

togram corresponding to dorigin. Again, bins with sufficient

votes are identified and connected bins are merged using the

Floyd-Warshall algorithm [7]. By identifying the median of

distances for each connected class, we finally obtain a set of

plane parameters for the input depth image.

When a plane has been visible a sufficient number of

times, we refine the plane parameters (in the experiments,

we refined plane parameters when the plane has been visible

twice, 20 times and 80 times). After obtaining new plane

parameters, we recompute all attributes of the plane.

3.2. Bump, Mask and Color images

The Bump image, encoded as a three-channel 16 bits

image, represents the local geometry of the scene around

a plane. For a given plane, the Bump image is obtained

by identifying points around the plane and projecting them

onto the discretized plane. The three values of a pixel in the

Bump image encode the exact 3D position of the point cor-

responding to the pixel in the global coordinate system. For

the Bump image, only a few bytes are required to record the

position of a 3D point regardless of the size of the scene,

which makes our 3D model require lower memory cost.

We describe more in detail how to obtain the Bump im-

age and how to recover the 3D coordinates of 3D points

using a simple example. Figure 2 depicts our simple ex-

ample, where 3D points are randomly distributed around a

plane defined by (�n, d), where �n is the normal vector of the

plane and d is the distance of the plane from the origin. Our

objective is then to compute the Bump image for the plane

and to accurately recover the set of 3D points using only the

plane parameters and the computed Bump image.

We define an arbitrary orthonormal coordinate system

(�x, �y, �n) for the plane, with the origin �Ω being the projec-

tion onto the plane of the origin of the global coordinate

system. The �x and �y axes are obtained as follows:
⎧⎪⎨
⎪⎩

�x = [−n[1],n[0],0]
‖�x‖ if n[0] > n[1] and n[0] > n[2],

�x = [0,−n[2],n[1]]
‖�x‖ if n[1] > n[0] and n[1] > n[2],

�x = [n[2],0,−n[0]]
‖�x‖ if n[2] > n[0] and n[2] > n[1],

where n[0], n[1] and n[2] stand for the first, second and third

components (respectively) of �n. Then the �y axis is obtain as

the cross product of �n and �x. With this coordinate system

for the plane and a given resolution res, we can discretize

the plane into pixels of size res.

Let us now consider a 3D point �p. From the plane param-

eters, we can compute the distance dist(�p) of the 3D point

from the plane. If ‖dist(�p)‖ > ε, with ε being a thresh-

old defining the width for the plane (we used ε = 10cm
in the experiments), then �p does not appear in the Bump

image. Otherwise, we project �p onto the plane to obtain

its 2D coordinates �π(�p) in the plane. If �π(�p) is outside of

the bounding box, then �p does not appear in the Bump im-

age. With the origin �Ω and the resolution res, we obtain

the coordinates [i, j] of �p in the Bump image as [i, j] =

[�π(�p)[0]−Ω[0]
res , �π(�p)[1]−Ω[1]

res ]. We then discretize the coordi-

nates to have pixel indices for �p: [�i�, �j�]. In this way, we

identify the pixel of the Bump image that corresponds to

�p. We encode in the Bump image deviation caused by the

discretization process together with the distance of �p from

the plane so that we can exactly recover the 3D position of

�p. Namely, Bump([�i�, �j�]) = [i− �i�, j − �j�, dist(�p)].
We remark that to record the values of Bump([�i�, �j�]) in

16 bits, we employed affine scaling and casting to integer.

However we keep the values as they are in the remaining of

this paper for clarity.

On the other hand, computing the 3D positions of points

is easy. Given a plane and its Bump image, it is straightfor-

ward to compute the exact position of a point corresponding

to a pixel (k, l) in the global 3D coordinate system.

�p(k, l) = �Ω+ (res(Bump(k, l)[0] + k))�x+

(res(Bump(k, l)[1] + l))�y +Bump(k, l)[2]�n.
(1)

The Mask image encodes the confidence for 3D points.

This allows us to perform a running average when integrat-

ing live measurements and also to eliminate erroneous mea-

surements. The values of the Mask image are initialized

when generating the Bump image. A pixel in the Mask im-

age is set to 1 if a point is projected onto the same pixel

in the Bump image, it is set to 0 otherwise. The Mask im-

age is then updated with live measurements as explained in

Section 4.2. The Color image takes the RGB values of the

points that are projected into the corresponding pixel in the

Bump image. We can thus recover color information of 3D

points as well.
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Figure 3. The pipeline of our proposed method.

4. Scene reconstruction

The implicit quadrangulation given by the 2D discretiza-

tion of each plane allows us to maintain our 3D mesh rep-

resentation of the scene. The global mesh is used to render

a dense and high-quality predicted depth image (see Sec-

tion 4.2) to accurately align incoming depth images. Our

scene representation is then updated with aligned live mea-

surements, and newly detected planes, if any, are added as

the camera moves through the scene. The pipeline of our

proposed method is illustrated in Fig. 3.

4.1. Camera tracking

Accurately tracking the camera is of crucial importance

for any 3D reconstruction method. As proposed in Kinect-

Fusion [13], we also employ the linearized version of the

GICP [17] because it is fast with sufficient accuracy when

using RGB-D sensors. Thanks to low memory use for our

scene representation, we still have the GPU memory space

available enough to combine the linearized GICP with the

SIFT-GPU [2] algorithm in the same way as [10]. This al-

lows us to reconstruct scene even when parts of the RGB-D

image sequence are poor in geometric features.

For the linearized GICP to work well, a key issue is to

align incoming frames with a dense and high-quality pre-

dicted depth image. Thereafter, the dense point matching

allows robust and accurate registration. For this reason, di-

rectly projecting all the points of the global model into the

current camera plane is not appropriate. This is because (1)

parts of the scene that are close to the camera would produce

relatively sparse depth information and (2) handling occlu-

sions would require significant efforts. Instead, we take ad-

vantage of the natural quadrangulation given by the 2D im-

age discretization to render a depth image using meshes.

From the Mask image of each plane, we identify cor-

rect quads (i.e. quads that have positive mask values at their

four summits). This straightforwardly gives us a quadran-

gulation for each plane (vertices are computed using Equa-

tion (1)), which can be quickly rendered into the current

camera plane using a 3D renderer such as OpenGL. Note

that for a given camera pose, only planes intersecting with

the perspective frustum of the current camera pose are ren-

dered, which eases computation.

Using the rendered color image is not good for SIFT

matching. This is because small errors in camera tracking,

misalignments between depth and color images and motion

blur tend to blur the color image, which is fatal when ex-

tracting and matching SIFT features. To avoid this problem,

we use the color image of the previous frame superimposed

over our predicted depth image to align the current frame.

4.2. Updating model with live measurements
With the estimated camera pose, and the live RGB-D

measurements, we can now update and refine our 3D scene

representation. We reason that RGB-D sensors such as the

Microsoft Kinect camera have strong noise in the viewing

direction. Therefore we propose to always fuse live mea-

surements in the viewing direction of the camera. The cur-

rently aligned depth image is merged with the predicted

depth image using a rendered Mask image. The newly ob-

tained 3D points are then projected onto different planes and

the attributes of each plane are updated by replacing mask,

color and bump values with newly computed ones (if avail-

able). In contrast, straightforwardly projecting live mea-

surements onto the different planes and then updating the

mask, color and bump values at the projected pixel does not

give nice results. This is because the point corresponding to

a pixel of the input depth image and the point represented

at the projected pixel in the plane do not likely represent the

same point at the surface.

Let us consider a model RGB-D image DM rendered

at the current camera pose, and a newly acquired RGB-D

image DT . We also render a Mask image Mask in the same

way as for DM but by replacing the RGB values of vertices

with the mask values. This allows us to perform a running

average. Thereafter we merge the two RGB-D images using

the Mask image and visibility constraints.

Let [k, l] be a pixel and Dmerged be the merged RGB-D

image. Then Dmerged[k, l] is computed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dmerged[k, l] = DM [k, l] and Mask[k, l] = Mask[k, l]
if DT [k, l] is not available

Dmerged[k, l] = DT [k, l] and Mask[k, l] = 1
if DM [k, l] is not available

Dmerged[k, l] = DT [k, l] and Mask[k, l] = 1
if DM [k, l] > DT [k, l] + δ (occlusion)

Dmerged[k, l] = DM [k, l] and Mask[k, l] = Mask[k, l]− 1
if DM [k, l] < DT [k, l]− δ (visibility violation)

Dmerged[k, l] =
DT [k,l]+Mask[k,l]×DM [k,l]

Mask[k,l]+1

and Mask[k, l] = Mask[k, l] + 1 otherwise .

The threshold δ is used to check visibility violations and

occlusions (we used δ = 10 cm in the experiments). Note

that color and depth values are merged similarly.

From the merged RGB-D image we can compute a new

set of 3D points and record them into the attributes of each

plane. Each point is first projected onto its corresponding
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plane. Then, for a point �p, if the mask value at the projected

pixel is smaller than that of �p, then mask, color and bump

values are all replaced by the newly computed values for the

point �p. Note that if the mask values are the same, then we

record the values of the point closest to the plane.

All points that do not belong to any existing planes are

kept in a residual image from which new planes are de-

tected. With the updated 3D scene representation, we can

now proceed to the next frame. We set the RGB values of

Dmerged to those of DT and use the obtained Dmerged as

the predicted RGB-D image for camera tracking.

Resizing planes From a single depth image, only some

parts of planes are visible in general (like the ground for

example). It is not possible to know the complete size of

a plane right after detecting it. Therefore, we dynamically

resize each plane (i.e. its bounding box) with live measure-

ments. To do so, we use an arbitrary resizing step s (s = 32
pixels in the experiments). At each iteration, we evaluate

whether points are added close to the boundary (closer than

s). If added, we extend the size of the bounding box by

s in the corresponding direction (for example, if points are

close to the left boundary, then the bounding box’s size is

increased in the left direction). The information for the

bounding box is updated accordingly to the new one and

the Mask, Color and Bump images are-computed.

Merging planes Because of the noise in the depth im-

ages, false planes may be detected. However, since the

Bump image records exact 3D point positions, after refin-

ing the plane parameters (see Section 3.1), the plane equa-

tion becomes correct. Then multiple planes may represent

the same parts of the scene, which must be avoided. We

identify such planes by computing the intersection of the

bounding boxes of planes having similar parameters. If two

planes have non-empty intersection between their bounding

boxes, then the two planes are merged. To do so, we iden-

tify the parameters (�n, d) and (�x, �y) of the largest plane and

compute the union of the two bounding boxes of the largest

plane and a plane to be merged in order to create the bound-

ing box of the merged plane. Thereafter, points from the

two planes are projected onto the merged plane with their

respective color and mask values. Note that if two points

project onto the same pixel in the merged plane, only the

one with the maximum mask value is kept. The visibility of

the merged plane is set to the one of the largest plane.

5. Experimental results
To demonstrate the effectiveness of our proposed

method, we evaluated our algorithm using data that we cap-

tured using the Microsoft Kinect camera. We compared

results by our method with those obtained using the Kin-

FuLargeScale whose code is available in the PCL [1]. We

(a) Results obtained by our method 

(b) Results obtained by KinFuLargeScale 

Figure 4. Results obtained with our method and KinFuLargeScale

(untextured mesh on the left and normal image on the right).

also demonstrate the usefulness of our proposed method to

tackle RGB-D image sequences whose parts do not have

rich geometric features. All scenes were captured at 30 fps.

For all results obtained by our method, we used a resolu-

tion of 0.4 cm for the attribute images and a threshold of

0.5 cm for the RANSAC outlier removal used after running

the SIFT-GPU matching algorithm [2].

We evaluate the accuracy of our method to reconstruct an

indoor scene in fine details by comparing our results with

those by KinFuLargeScale. We captured a small scene with

rich geometric features, which is an ideal situation for Kin-

FuLargeScale. Figure 4 shows the results obtained with this

data by our method and by KinFuLargeScale. On the left

side of the figure, we show the reconstructed 3D mesh with-

out color and with double side lighting (we used MeshLab

to generate the images). Figure 4 also shows the normal im-

ages (on the right side), which consist of the mesh colored

with the normal vector of each vertex.

As we can see in Fig. 4 our method obtained results

whose accuracy is similar to those obtained using KinFu-

LargeScale. For this data-set, our scene representation re-

quired 4.27 MB (including texture), while, the 512× 512×
512 floating TSDF volume alone requires 536 MB. In this

example, our method obtained similar results with KinFu-

LargeScale, but our method required at least 100 times less

memory. On the other hand, we observe that our method

could not reconstruct all the parts of the scene. This is be-

cause we only detect planes to build the 3D scene.

To illustrate the usefulness of combining both depth and

color images, we captured a large scene called Room1 con-

taining parts that do not have rich geometric features. Fig. 5

shows an example of RGB-D images without rich geometric

features in the sequence. In such a case using depth alone

fails, as shown in Fig. 6 (b). However, by combining both

depth and color images, as expected, we could successfully

track the camera and reconstruct the 3D scene using the

frame-to-global-model strategy as shown in Fig. 6 (a). Re-

sults obtained using KinFuLargeScale with a similar cam-

era motion are shown in Fig. 7 (c). Tracking failed when

RGB-D images do not have rich geometric features, and the
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RGB image Depth image 

Figure 5. One input RGB-D image of the data-set Room1.

reconstruction stopped prematurely. The obtained recon-

structed scene with our method was of 1532 K vertices and

2423 K faces and our scene representation required 34 MB.

The RGB-D image sequence was processed at 2.4 fps in av-

erage when using SIFT for camera tracking, and at 7.3 fps

in average when using depth only.

Results obtained with another scene called Room2 are

shown in Fig. 7 (b), (d) and in Fig. 8. In this experiment, we

illustrate one interesting output of our scene representation.

That is, more than 3D meshes, our method directly outputs

roughly segmented 3D meshes. Therefore, we can easily

remove some parts of the reconstructed scene directly after

reconstruction; this enriches possible usage of our method

as seen below. The example shown in Fig. 8 was obtained

by simply hiding mesh layers in MeshLab. As we can see it

becomes easy to remove undesired objects from the recon-

structed scene (see Fig. 8 (d)), or on the contrary to keep

only objects of interest (see Fig. 8 (c)). We remark that,

like data Room1, KinFuLargeScale failed to reconstruct the

scene as parts of the sequence did not have rich geometric

features. Note that with the Room2 data we observed that

about 10% of points were missing because of non-planarity.

A possible usage of our scene representation is for the

operation of cleaning or repairing the reconstructing scene.

By using standard 2D painting softwares such as Photoshop,

it is easy to edit the Bump, Mask and Color images of differ-

ent planes that compose the scene. For example, the ground

(b) Results by our method without using color 

(a) Results by our method when using color 

Figure 6. Results obtained with our method for the data-set Room1
with and without using color for the camera motion tracking.

(c) Data Room1 (d) Data Room2 

Results obtained by our method 

Results obtained by KinFuLargeScale 

(a) Data Room1 (b) Data Room2 

Figure 7. Results obtained by our method and KinFuLargeScale.

(a) The reconstructed scene 

(c) The reconstructed table (d) The scene without the table 

(b) The normal image 

Figure 8. Results obtained with our method for the data-set Room2.

always contains holes because objects lying on it hide some

parts. By simply in-painting the Bump, Color and Mask

images, it is possible, in a post-process to fill the holes and

obtain a complete mesh for the ground. In the same manner,

it is also possible to remove outliers by putting their mask

value to 0.

Figure 9 shows an example where parts of the sequence

have neither geometric nor color features. As we can see

in Fig. 9 (a), the reconstruction failed when reconstructing

the scene as it is. But, as shown in Fig. 9 (b), by putting

a few boxes on the ground we could successfully track the

camera and obtain a correct reconstruction with the addi-

tional objects. Note that both image sequences were cap-

tured along similar path (i.e. parts of the image sequences
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(a) Results without dummy objects (b) Results with dummy objects 

(c) Results after editing ground attributes (d) Normal image 

Figure 9. Results obtained for a sequence that contains parts with-

out either rich geometric or color features.

have neither geometric nor color features). After editing

the Bump, Mask and Color images of the plane correspond-

ing to the ground we could obtain the original scene even

though it was featureless, as shown in Fig. 9 (c) and (d).

6. Conclusions
We proposed a new 3D scene representation using a set

of planes that achieves accurate and efficient 3D reconstruc-

tion of an indoor scene from an RGB-D image sequence,

even when the scene has poor geometric features. By pro-

jecting the scene onto different planes of the scene, we in-

troduced attributes to each plane in the scene, with which

we can reduce significantly the size required for the scene

representation and thus we can generate a global textured

model that is light in memory use and, nevertheless, accu-

rate and easy to update with live RGB-D measurements. In

this paper, we focused only on planes to represent the scene,

however, our approach can be directly applied to other para-

metric shapes such as spheres and even to a combination of

parametric shapes. Our low memory-required representa-

tion allows to effectively use the GPU memory for other

operations such as SIFT-GPU.
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