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Abstract

People tracking in crowded real-world scenes is chal-
lenging due to frequent and long-term occlusions. Recent
tracking methods obtain the image evidence from object
(people) detectors, but typically use off-the-shelf detectors
and treat them as black box components. In this paper
we argue that for best performance one should explicitly
train people detectors on failure cases of the overall tracker
instead. To that end, we first propose a novel joint peo-
ple detector that combines a state-of-the-art single person
detector with a detector for pairs of people, which explic-
itly exploits common patterns of person-person occlusions
across multiple viewpoints that are a frequent failure case
for tracking in crowded scenes. To explicitly address re-
maining failure modes of the tracker we explore two meth-
ods. First, we analyze typical failures of trackers and train
a detector explicitly on these cases. And second, we train
the detector with the people tracker in the loop, focusing
on the most common tracker failures. We show that our
joint multi-person detector significantly improves both de-
tection accuracy as well as tracker performance, improving
the state-of-the-art on standard benchmarks.

1. Introduction

People detection is a key building block of most state-

of-the-art people tracking methods [3, 22, 23]. Although

the performance of people detectors has improved tremen-

dously in recent years, detecting partially occluded people

remains a weakness of current approaches [8]. This is also

a key limiting factor when tracking people in crowded envi-

ronments, such as typical street scenes, where many people

remain occluded for long periods of time, or may not even

become fully visible for the entire duration of the sequence.

The starting point of this paper is the observation that

people detectors used for tracking are typically trained inde-

pendently from the tracker, and are thus not specifically tai-

Figure 1. Tracking results using the proposed joint detector on four

public datasets: (clockwise) TUD-Crossing, ParkingLot, PETS

S2.L2 and PETS S1.L2.

lored for best tracking performance. In contrast, the present

work aims to train people detectors explicitly to address

failure modes of tracking in order to improve overall track-

ing performance. However, this is not straightforward, since

many tracking failures are related to frequent and long-term

occlusions – a typical failure case also for people detectors.

We address this problem in two steps: First, we target

the limitations of people detection in crowded street scenes

with many occlusions. Occlusion handling is a notoriously

difficult problem in computer vision and generic solutions

are far from being available. Yet for certain cases, success-

ful approaches have been developed that train effective de-

tectors for object compositions [10, 17], which can then be

decoded into individual object detections. Their key ratio-

nale is that objects in such compositions exhibit regularities

that can be exploited. We build on these ideas, focusing

on person-person occlusions, which are the dominant oc-

clusion type in crowded street scenes. Our first contribution

is a novel structural loss-based training approach for a joint

person detector, based on structured SVMs.

In the second step of our approach, we specifically focus

on patterns that are relevant to improving tracking perfor-

mance. In general, person-person occlusions may result in
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a large variety of appearance patterns, yet not all of these

patterns are necessarily frequent in typical street scenes.

Furthermore, not every pattern will possess a discrimina-

tive appearance that can be detected reliably in cluttered

images. Finally, some of the person-person occlusion cases

are already handled well by existing tracking approaches

(e.g., short term occlusions resulting from people passing

each other). We argue that the decision about incorporating

certain types of occlusion patterns into the detector should

be done in a tracking-aware fashion, either by manually ob-

serving typical tracking failures or by directly integrating

the tracker into the detector training.

Our second contribution is to propose and evaluate two

alternative strategies for the discovery of useful multi-view

occlusion patterns. First, we manually define relevant oc-

clusion patterns using a discretization of the mutual ar-

rangement of people. In addition to that, we train the detec-

tor with the tracker in the loop, by automatically identifying

occlusion patterns based on regularities in the failure modes

of the tracker. We demonstrate that this tighter integration

of tracker and detector improves tracking results on three

challenging benchmark sequences.

Related work. Many recent methods for multi-person

tracking [1, 2, 3, 22] follow the tracking-by-detection

paradigm and use the output of people detectors as initial

state space for tracking. Although these methods are of-

ten robust to false positive detections and are able to fill

in some missing detections due to short term occlusions,

they typically require successful detection before and af-

ter the occlusion events, thus limiting their applicability in

crowded scenes. Various solutions to the detection of par-

tially occluded people have been proposed in the literature

[4, 9, 14, 18, 19]. Such methods often rely on additional

information, such as stereo disparity [9], or 3D scene con-

text [19]. Approaches that operate on monocular images

typically handle occlusions by carefully separating the evi-

dence coming from the occluder and the occluded objects,

either by reasoning on an image segmentation [14], or by it-

eratively discarding image evidence corresponding to fore-

ground objects [4, 18]. Recently, [17] proposed a people de-

tector for crowded street environments that exploits charac-

teristic appearance patterns from person-person occlusions.

This is motivated by the observation that most of the oc-

clusions in street scenes happen due to an overlap of mul-

tiple people, which can be leveraged. In a similar spirit,

approaches to object detection using visual phrases [10]

and detection of person-object interactions [7] have demon-

strated that detecting a constellation of objects can be easier

than detecting each object alone.

Most closely related to our work is the approach of [17],

which demonstrated the advantages of joint multi-person

detection for the simplified case of people seen from the

side. We generalize this approach in several ways: First, we

reformulate the approach as a structured prediction prob-

lem, which allows us to explicitly penalize activations of

single-person detector components on examples with two

people and vice versa. A novel formulation, in which con-

straints on the detection type are encoded into the struc-

tured loss function, significantly improves detection per-

formance. Moreover, we generalize the joint detection ap-

proach of [17] to cope with a variety of viewpoints, not just

side views, which is important when using the detector for

tracking in more general scenes. Note that varying view-

points are significantly more complex to handle than side

views, because the number of ways people can potentially

occlude each other increases considerably. To address this

we propose an approach tailored to the requirements of peo-

ple tracking, and in particular propose to train a people de-

tector based on feedback from the tracker.

Addressing both detection and tracking as a joint prob-

lem has been considered in the literature. In [13], the task

is formulated as a quadratic Boolean program to combine

trajectory estimation and detection. The objective is opti-

mized locally, by alternating between the two components.

In contrast, [21] formulate a joint integer linear program

and allow data association to influence the detector. How-

ever, their approach is based on background subtraction on

a discretized grid. Unlike previous work, we here not only

consider detection and tracking jointly, but also explicitly

adapt the detector to typical tracking failures.

2. Joint People Detection
Before describing our multi-view joint people detector,

let us briefly review the deformable parts model (DPM,

[11]), which forms the basis of our approach. The DPM

detector is based on a set of M detection components. Each

component is represented by a combination of a rigid root

filter F0, and several part filters F1, . . . , Fn, which can

adjust their positions w.r.t. the root filter in order to cap-

ture possible object deformations p1, . . . , pn. The detec-

tion score of the DPM model is given by the sum of the

responses of the root and part filters, a bias b, and the de-

formation costs between the ideal and the inferred loca-

tions of each part (with parameters d1, . . . , dn). The po-

sitions of the part filters and the component assignment m
are assumed to be latent variables h = (p1, . . . , pn,m),
which need to be inferred during training and testing. Given

training images with ground truth labels, the parameters

β = (F0, F1, . . . , Fn, d1, . . . , dn, b) are trained by iterat-

ing between finding the optimal position of the latent parts

in each training example and optimizing the model parame-

ters given the inferred part locations. At test time the model

is evaluated densely in the image and each local maximum

is used to generate a detection bounding box hypothesis,

aided by the model parts. The initial set of detections is

then refined by non-maximum suppression.
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(a) Double person outscores

single person with ΔVOC

(b) Double person outscores

single person with ΔVOC+DT

Figure 2. Structured training of joint people detectors: Green –

correct double-person bounding box. Red – single-person detec-

tion whose score should be lower by a margin.

Overview. We now use the DPM model to build a joint

people detector, which overcomes the limitations imposed

by frequent occlusions in real-world street scenes. In do-

ing so, we go beyond previous work on joint people detec-

tion [17] in several significant ways: (1) The approach of

[17] focused on side-view occlusion patterns, but crowded

street scenes exhibit a large variation of possible person-

person occlusions caused by people’s body articulation or

their position and orientation relative to the camera. To ad-

dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-

pose a structured SVM formulation for joint person detec-

tion, enabling us to incorporate an appropriate structured

loss function. Aside from allowing to employ common loss

functions for detection (Jaccard index, a.k.a. VOC loss), this

allows us to leverage more advanced loss functions as well.

(3) We model our joint detector as a mixture of components

that capture appearance patterns of either a single person,

or a person/person occlusion pair. We then introduce an ex-

plicit variable modeling the detection type, with the goal of

enabling the joint detector to distinguish between a single

person and a highly occluded person pair. Incorporating the

detection type into the structural loss then allows us to force

the joint detector to learn the fundamental appearance dif-

ference between a single person and a person/person pair.

Before going into detail on learning occlusion patterns in

Sec. 4, let us first turn to our basic structured SVM formu-

lation for joint person detection.

Structural learning for joint detection. We adapt the

structured SVM formulation for DPMs proposed in [15]

for our joint person detection model. Given a set of train-

ing images {Ii|i = 1, . . . , N} with structured output labels

yi = (yli, y
b
i ), which include the class label yli ∈ {1,−1}

and the 2D bounding box position ybi , we formulate learning

the parameters of the DPM, β, as the optimization problem

min
β,ξ≥0

1

2
‖β‖2 + C

N

N∑
i=1

ξi (1)

sb.t. max
h
〈β, φ(Ii, yi, h)〉 −max

ĥ
〈β, φ(Ii, ŷ, ĥ)〉

≥ Δ(yi, ŷ)− ξi, ∀i ∈ {1, . . . , N}, ŷ ∈ Y,

Figure 3. Detection performance on TUD-Crossing.

where ξi are slack variables modeling the margin violations.

For the loss function Δ, we employ the area of the bounding

box intersection A(ybi ∩ ŷb) over their union A(ybi ∪ ŷb)

ΔVOC(y, ŷ) =

{
0, if yl = ŷl = −1
1− [yl = ŷl]A(yb∩ŷb)

A(yb∪ŷb)
, otherwise,

(2)

as it enables precise 2D bounding box localization. The ad-

vantage of the proposed structured learning of a joint people

detector is that it learns that a detection with larger overlap

with the ground truth bounding box has higher score than a

detection with lower overlap. Hence, the single person com-

ponent should also have a lower score than the double per-

son component on double person examples (see Fig. 2(a)).

Introducing detection type. One limitation of the loss

ΔVOC for joint person detection is that it does not encour-

age the model enough to distinguish between a single per-

son and a highly occluded double person pair. This is due

to the large overlap of the ground truth bounding boxes, as

illustrated in Fig. 2(b). In order to teach the model to dis-

tinguish a single person and a highly occluded person pair,

we extend the structured output label with a detection type

variable ydt ∈ {1, 2}, which denotes single person or dou-

ble person detection. The overall structured output is thus

given as y = (yl, yb, ydt). We can then additionally penal-

ize the wrong detection type using the loss

ΔVOC+DT(y, ŷ) = (1− α)ΔVOC(y, ŷ) + α
[
ydt 
= ŷdt

]
. (3)

Experimental results. In order to fairly compare our joint

detector with the joint detector proposed in [17], we explic-

itly train a side-view joint person detector using the same

synthetic training images1 and initialize the single and dou-

ble person detector components in the same way. Fig. 3

shows the benefit of the proposed structured training (Joint
detector, no det. type). By introducing the detection type

loss (Joint detector, α = 0.5), the joint detector further im-

proves precision and achieves similar recall as [17]. At 95%
precision it outperforms [17] by 20.5% recall.

1 The data is available at www.d2.mpi-inf.mpg.de/datasets.
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Method Rcll Prcsn MOTA MOTP MT ML

single (DPM) 78.0 94.1 72.1 % 78.5 % 4 0

Tang et al. [17] 79.9 96.5 75.6 % 79.1 % 6 0

Joint det. (no det. type) 81.9 93.2 75.1 % 79.1 % 8 0

Joint detector 82.7 93.9 76.0 % 78.6 % 7 1

Table 1. Tracking performance on TUD-Crossing evaluated by

recall (Rcll), precision (Prcsn) and standard CLEAR MOT met-

rics [5], including Multi-Object Tracking Accuracy (MOTA) and

Tracking Precision (MOTP). MT and ML show the number of

mostly tracked and mostly lost trajectories, respectively [20].

3. Multi-Target Tracking
Our proposed detector learning algorithm (Sec. 4) is

generic and can, in principle, be employed in combination

with any tracking-by-detection method. Here, we use a re-

cent multi-target tracker based on continuous energy mini-

mization [2]. The tracker requires as input a set of person

detections in a video sequence, and infers all trajectories

simultaneously by minimizing a high-dimensional, contin-

uous energy function over all trajectories. The energy con-

sists of a data term, measuring the distance between the tra-

jectories and the detections, and several priors that assess

the (physical) plausibility of the trajectories. We use a fixed

parameter setting throughout all experiments. Note that the

employed tracking approach does not include any explicit

occlusion handling. It is thus important to consider occlu-

sions directly at the detector level, so as to provide more

reliable information to the tracker.

Baseline results. Table 1 shows tracking results on the

TUD-Crossing sequence [1], using various detector vari-

ants as described above. As expected, tracking based on the

output of the joint detector shows improved performance

compared to the single-person DPM detector. Note that the

side-view joint detector of Tang et al. [17] was specifically

designed to handle the occlusion pattern prevalent in se-

quences of this type. Even so, structured learning with a

detection type variable slightly increases the multi-object

tracking accuracy (MOTA, [5]). This experiment is meant

to serve as a proof of concept and demonstrate the validity

of the joint people detector. Please refer to Sec. 5 for an

extensive experimental study on more challenging datasets.

4. Learning People Detectors for Tracking
So far we have shown that the proposed structured learn-

ing approach for training joint people detectors shows sig-

nificant improvements for detection of occluded people in

side-view street scenes. This suggests the potential of lever-

aging characteristic appearance patterns of person/person

pairs also for detecting occluded people in more general set-

tings. However, the generalization of this idea to crowded

scenes with people walking in arbitrary directions is rather

challenging due to the vast amount of possible person-

front person

A
BC

no heavy 
occlusion

D

not 
realistic

walking 
direction

Camera

no heavy 
occlusion

Occlusion 
pattern

A

B

C

walking 
direction

Figure 4. Bird’s eye view of occluded person’s state space (left).
Synthetically generated training images for different occlusion

patterns and walking directions (right).

person occlusion situations. This variation may arise from

several factors, such as people’s body articulation, or their

position and orientation relative to the camera. The number

of putative occlusion patterns is exponential in the number

of factors. The crucial point here is, however, that not all

of them are equally relevant for successful tracking. For ex-

ample, short term occlusions resulting from people cross-

ing each other’s way are frequent, but can be often easily

resolved by modern tracking algorithms. Therefore, find-

ing occlusion patterns that are relevant in practice in order

to reduce the modeling space is essential for applying joint

person detectors for tracking in general crowded scenes.

We now propose two methods for discovering occlusion

patterns for people walking in arbitrary directions by (a)
manually designing regular occlusion combinations that ap-

pear frequently due to long-term occlusions and are, there-

fore, most relevant for tracking (Sec. 4.1); and (b) automat-

ically learning a joint detector that exploits the tracking per-

formance on occluded people and is explicitly optimized for

the tracking task (Sec. 4.2).

4.1. Designing occlusion patterns

For many state-of-the-art trackers, the most impor-

tant cases for improving tracking performance in crowded

scenes correspond to long-term partial occlusions.

Occlusion pattern quantization. We begin by quantizing

the space of possible occlusion patterns as shown in Fig. 4

(left). Given the position of the front person, we divide the

relative position of the occluded person with respect to the

occluder into 6 equal angular sectors. We consider the full

half circle of the sectors behind the occluder, and do not ex-

plicitly quantize the space of possible relative distances be-

tween subjects; instead we only consider a fixed threshold,

below which the second subject is significantly occluded.

In addition to quantizing the relative position, we also

quantize the orientation of the front person with respect to

the camera. To keep the number of constellations man-

ageable, we use four discrete directions corresponding to
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four diagonal views. Independent of the orientation of the

front person, the first and last sectors shown in Fig. 4 (left,

no heavy occlusion) correspond to people walking side-by-

side, slightly in front or behind each other. We found that

these cases are already handled well by current person de-

tectors. We denote the remaining four sectors as “A”, “B”,

“C” and “D”, according to the relative position of the oc-

cluded and occluding person. The sector “D” corresponds

to a constellation of people walking directly behind each

other at close proximity. Although physically possible, this

configuration is extremely unlikely in real-world scenes, be-

cause people usually tend to leave some space to the person

in front when walking. We restrict ourselves to cases in

which people walk in the same direction, as they cause long-

term occlusions and moreover appear to have sufficient reg-

ularity in appearance, which is essential for detection per-

formance in crowded scenes. The occlusion patterns that

we consider in the rest of this analysis correspond to a com-

bination of the four walking directions of the subjects and

one of the three remaining sectors (“A”, “B” or “C”).

Joint detector with designed occlusion patterns. Our

joint detector uses a mixture of components that capture

appearance patterns of either a single person or of a per-

son/person occlusion pair. In case of double person com-

ponents, we generate two bounding boxes of people instead

of one for each of the components’ detections. The training

procedure in Sec. 2 is based on the optimization of a semi-

convex objective, thus susceptible to local minima. There-

fore, a meaningful initialization of the detector components

is important for good performance. One option is to ini-

tialize the double-person components with different degrees

of occlusion [17]. However, in the multi-view setting, the

same degree of occlusion can result in very different occlu-

sion patterns. Here, we instead initialize the components

from the quantized occlusion patterns from above (Fig. 4,

left), combining different walking directions with relative

positions of the person/person pair; we construct 6 double-

person components. The single-person components are ini-

tialized with different orientations, clustering appearance

into 10 components, and mirroring.

Generating synthetic training examples. Training of our

model requires a sufficient amount of training images. As

it is very difficult and expensive to collect a representative

training dataset with accurate occlusion level annotation for

each image, we choose to synthetically generate training

data. Most importantly, this allows us to control the data’s

variation with respect to viewpoint, degree of occlusion, and

variability of backgrounds, as opposed to uncontrolled clut-

ter often present in manually collected datasets.

We collect 2400 images of people walking in 8 different

walking directions to construct a synthetic training image

pool. We mirror the training images to double the train-

ing set. For each captured image, we segment the person

and use the segmentation to generate a number of training

examples by combining the segmented person with novel

backgrounds. In a similar fashion, we are able to generate

training examples for different occlusion patterns and walk-

ing directions by overlaying people on top of each other in

a novel image. In our experiments, we use 4000 synthetic

images for training the single-person components, and up to

1200 synthetic images for the double-person components.

Fig. 4 (right) shows several examples of our synthetically

generated training images for different constellations illus-

trated in Fig. 4 (left).

Occlusion-aware NMS. We perform non-maximum sup-

pression in two rounds: First, we consider single-person de-

tections and the predicted occluder bounding box of double-

person detections. If the occluder is suppressed by a single-

person detection, then the occludee is also removed. For the

second round, we allow the predicted individual bounding

boxes to suppress each other, except when two bounding

boxes are generated by the same double-person component.

4.2. Mining occlusion patterns from tracking

As we will see in Sec. 5 in detail, carefully analyzing

and designing occlusion patterns by hand already allows to

train a joint detector that generalizes to more realistic and

challenging crowded street scenes. Nonetheless, the ques-

tion remains which manually designed occlusion patterns

are most relevant for successful tracking. Furthermore, it

is still unclear whether it is reasonable to harvest difficult

cases from tracking failures and explicitly guide the joint

detector to concentrate on those. In the following, we de-

scribe a method to learn a joint detector specifically for

tracking. We employ tracking performance evaluation, oc-

clusion pattern mining, synthetic image generation, and de-

tector training jointly to optimize the detector for tracking

multiple targets. The approach is summarized in Alg. 1.

Input: For our study, we use the first half (frames 1–218) of

the challenging PETS S2.L2 dataset [12] as our mining se-

quence. We use the same synthetic training images to train

a single-person baseline detector, as we used for training

the single-component of our joint detector with manually

designed occlusion patterns (see Sec. 4.1). Moreover, we

employ a recent multi-target tracker [2], c.f . Sec. 3.

Output: A joint detector that is tailored to detect occlusion

patterns that are most relevant for multi-target tracking.

Tracking evaluation (step 4): We concentrate on missed

targets, which are the main source of failure in crowded sce-

narios. To that end, we extract all missed targets, evaluated

by the standard CLEAR MOT metrics [5] for the next step.

Occlusion pattern mining (step 5): The majority of

missed targets are occlusion related. For our mining se-

quence, the total number of missed targets is 1905, only 141

of them are not caused by occlusions (Fig. 5(a)). Missed tar-
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(a) (b) (c) (d) (e)

Figure 5. Missed targets from PETS S2.L2 mining sequence and

mined occlusion patterns: (a) No person nearby; (b) interfered by

one person; (c) interfered by more persons; (d) mined occlusion

pattern – 1st iteration; (e) mined occlusion pattern – 2nd iteration.

gets can be occluders and/or occludees for a pair of persons

(Fig. 5(b)), or within a group of multiple people (Fig. 5(c)).

Here, we concentrate on mining occlusion patterns for pairs

of persons and consider the multiple people situation as a

special case of a person pair, augmented by distractions

from surroundings. Note that our algorithm can be eas-

ily generalized to multiple people occlusion patterns given

sufficient amount of mining sequences that contain certain

distributions of multi-people occlusion patterns. From the

missed targets (step 4), we determine the problematic oc-

clusion patterns and cluster them in terms of the relative po-

sition of the occluder/occludee pair. We only consider the

most dominant cluster. Fig. 5(d) and 5(e) show the domi-

nant occlusion pattern of the first and second mining iter-

ation. Note that we only mine occlusion patterns and no

additional image information (see next step).

Synthetic training example generation (step 6): We gen-

erate synthetic training images for the mined occlusion pat-

tern using the same synthetic image pool as in Sec. 4.1,

which requires the relative position of a person pair, as well

Algorithm 1 Joint detector learning for tracking

Input:
Baseline detector

Multi-target tracker

Synthetic training image pool
Mining sequence

Output:
Joint detector optimized for multi-target tracking

1: run baseline detector on mining sequence
2: run target tracker on mining sequence, based on the detection

result from baseline detector

3: repeat
4: collect missing recall from the tracking result

5: cluster occlusion patterns
6: generate training images for mined patterns

7: train a joint detector with new training images
8: run the joint detector on mining sequence
9: run the target tracker on mining sequence

10: until tracking results converge

as the orientation of each person. To that end, we sample

the relative position of a person pair from a Gaussian dis-

tribution centered on the dominant relative position cluster

from step 5. We further extract a dominant orientation of

the mined examples for occluders and occludees. Training

image generation, in principle, thus enables us to model ar-

bitrary occlusion patterns in each iteration. We generate 200

images for every new occlusion pattern, which amounts to

the same number of training images as we used in the con-

text of manually designed occlusion patterns. The major

benefit of learning these patterns is that more training im-

ages can be easily generated for the next iteration, specifi-

cally for those relevant cases that still remain unsolved.

Joint detector training with mined occlusion patterns
(step 7): The single-person component of the joint detector

is initialized with the same training images as the baseline

detector. For each iteration, we introduce a new double-

person component that models the mined occlusion pattern.

Joint training is based on the structured SVM formulation

from Sec. 2. Learning stops when the tracking performance

does not improve further on the mining sequence.

5. Experiments

We evaluate the performance of the proposed joint per-

son detector with learned occlusion patterns and its applica-

tion to tracking on three publicly available and particularly

challenging sequences: PETS S2.L2 and S1.L2 [12], as well

as the recent ParkingLot dataset [16]. All of them are cap-

tured in a typical surveillance setting. S2.L2 and S1.L2

show a substantial amount of person-person occlusions, in

particular. We employ the first half of S2.L2 (frames 1–218)

as our only mining sequence and use the remaining data for

testing. Note that our mining algorithm only extracts oc-

clusion patterns and no additional image information. Also

note that we do not mine on any of the other sequences, and

that the results on the second PETS sequence (S1.L2) and

ParkingLot allow to analyze the generalization performance

of our approach to independent sequences.

To quantify the tracking performance on the test se-

quences, we compute recall and precision, as well as the

standard CLEAR MOT metrics [5]: Multi-Object Tracking

Accuracy (MOTA), which combines false alarms, missed

targets and identity switches; and Multi-Object Tracking

Precision (MOTP), which measures the misalignment of the

predicted track with respect to the ground truth trajectory.

Single-person detector. We begin our analysis with the

baseline detector, which is a standard DPM single-person

detector [11]. For a fair comparison, we use the same syn-

thetic training images and component initialization as for

the joint detector. Note that this already yields a rather

strong baseline, with far better performance than DPM-

INRIA and DPM-VOC2009 (see Fig. 6). Tracking results
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Method Rcll Prcsn MOTA MOTP

Single (DPM) 60.8 83.8 47.5 % 73.5 %

Joint-Design 65.0 91.7 57.6 % 75.2 %

Joint-Learn 1st 60.6 95.0 56.5 % 75.7 %

Joint-Learn 2nd 64.0 91.7 56.9 % 74.4 %

HOG [2] 51.0 95.5 47.8 % 73.2 %

Particle filter [6] - - 50.0 % 51.3 %

(a) PETS S2.L2 (frames 219–436).

Method Rcll Prcsn MOTA MOTP

Single (DPM) 24.8 90.1 21.8 % 70.6 %

Joint-Design 28.5 86.3 23.0 % 70.8 %

Joint-Learn 1st 28.9 86.2 23.4 % 69.8 %

Joint-Learn 2nd 32.7 86.7 26.8 % 69.3 %

HOG [2] 24.2 83.8 19.1 % 69.6 %

(b) PETS S1.L2.

Method Rcll Prcsn MOTA MOTP

Single (DPM) 90.5 97.7 87.9 % 77.2 %

Joint-Design 91.3 97.5 88.6 % 77.6 %

Joint-Learn 1st 91.0 98.5 89.3 % 77.7 %

Joint-Learn 2nd 91.0 98.0 88.7 % 76.9 %

Part-based [16] 81.7 91.3 79.3 % 74.1 %

GMCP [23] 95.0 94.2 89.1 % 77.5 %

(c) ParkingLot.

Figure 6. Tracking (top) and detection (bottom) performance on PETS S2.L2, S1.L2, and ParkingLot: Single (DPM): single-person detector;

Joint-Design: joint detector with designed occlusion patterns; Joint-Learn 1st: joint detector with learned occlusion pattern after the first

mining iteration; Joint-Learn 2nd: joint detector with learned occlusion pattern after the second mining iteration.

using this baseline detector are also quite competitive and

already outperform a state-of-the-art method [2] on S1.L2.

Joint detector with designed occlusion patterns (4.1).
Next, we evaluate the performance of our joint detector with

manually designed occlusion patterns (see Fig. 6). The joint

detector (blue) shows its advantage by outperforming the

single-person detector on all sequences. It achieves 10%

more recall at high precision for S1.L2 and ParkingLot. For

the S2.L2 test sequence, the joint detector outperforms the

baseline detector by a large margin from 0.9 precision level.

These detection results suggest that the joint detection is

much more powerful than the single detector; the designed

occlusion patterns correspond to compact appearance and

can be detected well.

The performance boost is also reflected in the track-

ing evaluation. Using the joint detector (Joint-Design)

yields a remarkable performance boost on the S2.L2 test

sequence (reaching 57.6% MOTA), improving MOTA by

10.1% points and MOTP by 1.7% points at the same time.

It also improves Recall by 4.2 and Precision by 7.9 com-

pared to the single-person detector (Single DPM). On the

S1.L2 and the ParkingLot sequences, the joint detector also

outperforms the single-person detector with a significantly

higher recall achieved by detecting more occluded targets.

By carefully analyzing and designing the occlusion pat-

terns, we obtain very competitive results on publicly avail-

able sequences, both in terms of detection and tracking,

which shows the advantage of the proposed joint detector

for tracking people in crowded scenes.

Joint detector with learned occlusion patterns (4.2). We

report the joint detector performance for one and two min-

ing iterations. As mentioned above, we employ the first half

of S2.L2 (frames 1–218) as mining sequence, extracting oc-

clusion patterns, but no further image information.

On the S2.L2 test sequence (frames 219–436), which is

more similar to the mining sequence than the other two se-

quences, our joint detector (black, Joint-Learn 1st, 56,5%

MOTA) is nearly on par with the hand-designed patterns af-

ter the first iteration, as shown in Fig. 6(a). This is because

the most dominant occlusion pattern is captured and learned

by the joint detector already. For the second iteration (cyan,

Joint-Learn 2nd), we also achieve higher recall on the S2.L2

test sequence, but the precision slightly decreases because

the dominant occlusion pattern of the second iteration only

contains about 48 missed targets, compared to 5861 ground

truth annotations, thus limiting potential performance im-

provement and introducing potential false positives.

Additionally, we compare our tracking results with [2]

and [6] on the S2.L2 sequence, as shown in Tab. 6(a). They

report tracking performance for the whole sequence, ours is

for the second half of the sequence. After the second itera-

tion of mining, we obtain a tracking performance of 56.9%

MOTA, significantly outperforming the other methods.2

Next, we verify the generalization ability of our algo-

rithm on two more sequences: PETS S1.L2, which is ex-

tremely crowded, and the ParkingLot sequence, which con-

tains relatively few occlusions. On PETS S1.L2, the learned

joint detector (black) is already slightly better than the Joint-

Design detector after the first iteration, as shown in Fig.

6(b). The second iteration (cyan) once again improves the

performance, both in terms of recall and precision. The

tracking result is also very promising. Directly mining

2Note that, for the first half of the S2.L2 sequence where we mine the

occlusion patterns, we even achieve 63.8% MOTA.
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occlusion patterns from the tracker improves the accuracy

(MOTA) with each iteration (from 21.8% over 23.4% to

26.8% MOTA). Note that, similar to the findings above,

the tracking performance reaches competitive levels after

only one iteration, when compared to manually designed

occlusion patterns. This is remarkable, since for the S1.L2

sequence many targets are occluded for long time periods.

Our mining algorithm is able to fully recover twice as many

trajectories and increase the recall by over 8%.

The ParkingLot sequence contains relatively few occlu-

sions, such that our mining algorithm cannot fully unfold

its benefits, and does not improve further after the first it-

eration. As shown in Fig. 6(c), the joint detector from the

first iteration outperforms all other detectors, and reaches

similar performance for tracking (Tab. 6(c)). We also com-

pare our method to two other state-of-the-art multi-person

trackers [16, 23]. To enable a fair comparison, we compute

the performance of [23] using the authors’ original results

and ground truth. Our joint detector yields state-of-the-art

results, both w.r.t. MOTA and MOTP.

Discussion. We observed that the proposed approach con-

verges already after two iterations; further iterations do not

lead to an additional performance boost for detection or

tracking. We attribute this mainly to the limited size of

the mining sequence and its limited diversity. Still, the ex-

perimental results on the S1.L2 and ParkingLot sequences

suggest that our detector learning algorithm is not limited

to particular occlusion patterns or crowd densities. For

more complex scenes such as PETS S1.L2, the performance

could be further improved by utilizing a more crowded min-

ing sequence. To that end, we plan to build a large dataset

of crowded street scenes to mine a more diverse set of oc-

clusion patterns. Another promising future extension would

be to learn a joint upper-body detector on extremely dense

scenes, yielding specialized upper-body occlusion patterns.

6. Conclusion
We presented a novel joint person detector specifically

designed to address common failure cases during tracking

in crowded street scenes due to long-term inter-object oc-

clusions. First, we showed that the most common occlusion

patterns can be designed manually, and second, we pro-

posed to learn reoccurring constellations with the tracker

in the loop. The presented method achieves competitive

performance, surpassing state-of-the-art results on several

particularly challenging datasets. We make the code of our

approach and pre-trained models publicly available.3
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