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to a maximum number, to enable the characterization of 
multi-modal behaviors. The most similar approach to ours 
uses Hierarchical K-Means (HKM) to generate a 
“vocabulary tree” [14] for characterizing objects/images. 
However, this approach focuses on using the leaf clusters 
through entropy weighting and divides each cluster into K 
more clusters independent of the variability in their data, 
which can result in millions of sparse clusters. Our 
approach uses clusters from all layers in the pyramid and 
produces a smaller number of clusters that are dense in 
content. The dense clusters are created by bifurcating 
clusters based on the variance of their assigned data. Our 
bifurcation process also has an inherent subset of unique 
clusters (sparse pyramid) that are used to characterize the 
full pyramid. This sparse pyramid results in ��� � �� 
dense clusters instead of the ��� � �� ��  clusters from the 
full pyramid or the HKM’s �	 sparse clusters, where K is 
the number of clusters and L the number of layers.  

Our second contribution is the incorporation of local 
behavior context to compensate for both the low and 
indirect activity. Local behavioral context is captured by 
aggregating (pooling) behaviors from that surround the 
scene element of interest, not just a single grid cell 
[1,2,3,4]. This increases the observed amount of activity 
and couples the scene element with nearby activity. 

Our overall approach recognizes spatial regions that 
have similar functional behaviors as the presented training 
examples. Our framework for this is similar to those used 
by standard Pyramid Matching (PM) approaches for 
image/object classification [6,12], where there is a coding 
and a pooling step. The components of our coding step are 
shown in Figure 2 where we start with a set of descriptors 
derived from moving objects indicated by � , see section 
3. The spatially independent descriptors are then fed into 
the pyramid coding algorithms �  that use hierarchical 
divisive clustering based on Gaussian Mixture Models 
(GMMs) to form the pyramid of codebooks. This 
clustering process results in two unique clusters per layer 
as indicated by the red and blue clusters, where the red 
cluster has the highest variance and is bifurcated. 

After pyramid coding, a 2D spatial grid is applied to the 

scene’s ground plane and encoded once for each codebook 
in the pyramid of codebooks 
 . The encoding process 
first assigns descriptors to clusters (codewords) and then 
assigns the label of the most frequently occurring cluster 
within each grid cell to that grid cell. Each encoded scene 
is referred to as a functional region map [3].  

The scene element models are formed during the 
pooling step, where one model is created for each training 
example. Pooling involves accumulating the unique 
clusters/codewords for the Regions of Interest (ROIs) 
from each layer’s functional region map into a histogram 
model. To reduce processing time during the recognition 
process the unique codewords from the functional region 
maps are stored as integral images during training.  

The testing process is a recognition framework that 
identifies both the location and label of scene elements. 
During the testing process an “unknown” histogram model 
from a test ROI is compared to each learned model which 
returns the likelihood of fitting to each. The scene is raster 
scanned with the test ROI to produce a 2D likelihood map 
that is later smoothed with a Markov Random Field. 

Results are shown on two datasets, the Ocean City 
dataset from [1,2,3] and the “Autonomous Real-Time 
Ground Ubiquitous Surveillance-Imagery System” 
(ARGUS-IS) collected WAMI data. To date, no functional 
scene modeling approaches have been applied to WAMI 
data, which offers more challenges such as a more diverse 
set of behaviors and fewer pixels on vehicles and 
pedestrians (movers). Our experiments show how 
modeling local context along with applying the pyramid to 
the coding step significantly improves recognition results, 
particularly when compared to the most relevant coding 
[14] and functional recognition [2,3,4] approaches.  

2. Relevant Work 
Swears and Hoogs [1] introduced functional scene 

element recognition in outdoor surveillance video. This 
approach uses manually defined Bayesian classifiers and 
weak activity detectors to accumulate 2D likelihood maps 
over a scene for the elements of interest. This was later 

Figure 2, Overall pyramid coding approach. The track based descriptors �  are fed into the hierarchical divisive clustering process 
(red/blue clusters are unique) �  to produce the pyramid of codebooks. These are then used to encode the scene 
  for each layer. 
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extended in [2] by converting the likelihood maps to track 
descriptors and passing them into a hierarchical divisive 
clustering algorithm. The Functional-Category approach in 
[3] is a completely unsupervised method that clusters 
histograms of descriptors using a flat mean-shift clustering 
algorithm. These approaches only use the leaf or flat layer 
of clusters to characterize functional scene elements and 
do not take local context into account. 

 The functional scene element recognition approach in 
[4] implements supervised binary scene element detectors 
to produce 2D likelihood maps for each element and then 
imposes local class adjacency constraints to perform 
spatial smoothing with a Markov Random Field (MRF). 
However, it does not scale to a wide variety of descriptors 
and there is no local behavioral context taken into account. 
The work in [5] offers a more complex approach that uses 
manually defined complex Markov Logic Networks to 
recognize interactions between moving objects specific to 
the scene element of interest. However, the logic 
representation is limited to evidence that has well-defined 
semantic meaning, which is not always available, is 
subjective, and requires a subject matter expert to define.  

Other work to classify images/objects uses HKM 
clustering [14] to form the pyramid of codebooks. This 
work has shown that a larger set of leaf clusters leads to 
improved recognition when focusing on the leaf clusters. 
However, our work shows that using our dense clusters 
from all layers in the model leads to improved recognition 
over emphasizing sparse leaf clusters. 

3. Track Based Descriptors 
Our pyramid coding algorithms can use virtually any 

feature derived from detections or tracks, where both are 
referred to as track based descriptors. Moving objects are 
detected in video using a standard background subtraction 
algorithm [9] and then associated to tracks [10] resulting 
in multiple detections per track. Tracks are converted to 
the ground plane using an approximate image-to-ground 
projective camera model that is computed from available 
metadata. The tracks are then processed through event 
detectors [4,5], track-type classification [1], and normalcy 
modeling algorithms [1,2]. Table 1 shows the set of 
descriptors used here. For brevity only summaries of these 
algorithms are discussed here, see [1,2,4,5] for details. 

Simple low-level event detectors based on speed 
thresholds are used here to generate the probability of 
events on a per detection basis such as vehicle-stopping 
and vehicle-driving-fast. Similarly, the vehicle-turning 
event detector is based on angular difference thresholds. 
The person/vehicle/other (PVO) classifier descriptors are 
generated from a simple Bayesian classifier where the 
parameters for the person, vehicle, and other classes have 
been manually defined, as in [1,2]. Spatial normalcy 
models are 2D likelihood maps that show where a 

behavior of interest is more likely to occur. A portion of 
the normalcy model for doorways is shown in Figure 2 �  
as a heat map, where darker red regions indicate where 
doorways are likely to exist. These normalcy models are 
generated by accumulating evidence from weak detectors 
over time to produce stronger signatures [1,2]. Each of the 
track’s detections, �, is assigned a value from the D 
descriptors resulting in a �
 � ���� descriptor vector. 
  All of the descriptors are whitened using FAST ICA 
[15]. That is, eigenvalue decomposition is used to remove 
correlation and to enforce a variance of one. This 
whitening creates a descriptor space that is better 
conditioned for optimization during hierarchical divisive 
clustering. Note, any event detector, PVO classifier, or 
normalcy model generator can be used as descriptors here.      

4. Pyramid Coding 
The pyramid coding process first forms the sparse-

dense pyramid of codebooks and then encodes the scene 
into a pyramid of functional region maps. This process 
starts with a set of descriptors that are derived from all the 
track’s detections, � � ���� � � ���� � ����, where N is 
the number of detections and D the number of descriptors. 
The GMM based hierarchical divisive clustering algorithm 
starts at layer two, k=2, by bifurcating � into two clusters 
using an Expectation Maximization (EM) algorithm, 
which is initialized with two points farthest from each 
other in the �� � ���� sense. The two new dense clusters 
maximize the following likelihood: 

 � �!"��#$� � % & '(�()��
)� *��
#+(� ,(�,   (1) 
 

where $ � -'� +� ,., ' is the prior distribution, and *�/� is 
their normal distribution with mean vector + and 
covariance ,. The N data points are then assigned to their 
most likely cluster. The next layer is created by bifurcating 
the cluster in layer two that has the largest variance 
(determinant of the cluster’s covariance) and applying the 
GMM EM algorithm to only its data points. This process 
is repeated at each layer until the maximum number of 
clusters is reached, or until the model fit to the data vs. 

Table 1, Track based descriptors including PVO 
classification, event detection, and normalcy model types. 
ID Description Type 
1 Probability of being a person PVO 
2 Probability of being a vehicle PVO  
3 Probability of vehicle driving slow Event  
4 Probability of vehicle driving fast Event  
5 Probability of vehicle starting Event  
6 Probability of vehicle stopping Event 
7 Probability of vehicle turning Event 
8 Probability of person walking Event 
9 Doorway likelihood map Normalcy 
10 Parking-spot likelihood map Normalcy 
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complexity no longer improves, as determined using the 
Bayesian Information Criterion [8]. 

One significant benefit of this approach is that the data 
points in X have a clear path through the pyramid, where 
the sum of the points in the child clusters equals the 
number in their parent cluster. This results in only two 
unique clusters at each layer, which reduces the model 
complexity and creates our sparse pyramid.  

The 012 layer in the pyramid initially results in a full 
codebook with k clusters (codewords), which are used to 
encode the scene. This is accomplished by overlaying an 3 � 4 grid onto the ground plane and assigning each grid 
cell the most frequently occurring codeword. More 
specifically, each of the data points in grid location (i,j) 
are assigned to one of the k codewords. Grid cell (i,j) is 
then assigned the codeword label, � � -��� 0., that 
occurs most frequently for layer k. 
 56�7� 8� � 9:;<9=(>-?@6�(�7� 8�>?.,         (2) 

 

where ?@6�(�7� 8�>? denotes the number of times that 
codeword m occurs in grid cell (i,j) for layer k. Since the 
codewords represent groups of common track descriptors, 
they characterize different types of behaviors. Therefore, 56�7� 8� captures the normal behavior that occurs in grid 
cell (i,j), where 56 is the “functional region map”. The 
final result of the encoding process is a pyramid of 
functional region maps, Figure 2 
 . After the functional 
region maps are created only the two unique clusters per 
layer are kept, which reduces the full pyramid from 595 
clusters to 68 for the sparse-dense pyramid when K=35. 

5. Modeling Local Behavioral Context  
Local behavioral context is modeled by performing the 

pooling step on the training example’s ROI from each 
layer in the pyramid of functional region maps. Average-
pooling accumulates the number of times that the two 
unique clusters (mixture of behaviors) occur in each layer 
into a histogram model, ABC� for training example ex and 
then normalizes by the size of the region, Equation 3. By 
design, the two new clusters always have indices b=1 and 
b=2, resulting in the following histogram model: 

 ABC�DE� � �
FGBF�H� ?@6�I�J�?�  b’=2k-2+b      (3) 

 

where D � -���.>K>0 and ?@6�I�J�? is the number of times 
that codeword @Ioccurs in region R of 56. 

To improve processing speeds during recognition the 
codeword counts, ABC�DE�, are stored as integral images, LIE � �M�N, [7] during training. Compared to a brute force 
search and count during testing this reduces the per 
example processing for a 
O�P � �
OP AOI from 25 
minutes to 32 seconds using Matlab on a laptop with quad 
core I7 processor and 8GBs of memory.  

6. Functional Recognition 
The recognition process starts by cycling through each 

training examples, ex, from the scene element type of 
interest, Q � -�� R R � �.. For each training example the scene 
is raster scanned using a test window whose center (i,j) is 
the point being evaluated based on its local context. The 
local context during testing is captured by pooling the 
codewords from region R, defined by the current training 
example, into the test histogram, A1BS1. The unique 
codeword counts, A1BS1�DE�, are easily extracted from the 
integral images using R’s upper-left corner point �7TU� 8TU� 
and lower-right corner point �7UG� 8UG�: 
 

 A1BS1�DE� � LIV�7UG� 8UG� � LIV�7TU � �� 8UG� � >>>>>>>>>>>>>>>>>>>>>>>LIV�7UG� 8TU � �� W LIV�7TU � �� 8TU � ��   (4) 
 

The Laplace kernel shown in Equation (5) is used for 
matching the histogram from training example ex and the 
test window at every (i,j) grid cell location.  

 

XBC�U�7� 8� � YZ[
\]^_`^a>]_b�c\d >e

               (5) 
  

This results in a 2D likelihood map for functional scene 
element type l, where higher likelihood values indicate a 
better match to the model. Averaging over all E likelihood 
maps for class l produces the mean likelihood map:  
 fU�7� 8� � �

g & XBC�	�7� 8��hBChg             (6) 
 

The mean likelihood map, fU�7� 8�, is then 
discriminatively normalized by calculating two CDFs, one 
from the positive training examples, "�i j k�, and one 
from all negative training examples, "�l j m�. The values 
for the CDFs are extracted from their corresponding 
manually annotated bounding polygons. The normalized 
likelihood map is then their joint probability, with an 
independence assumption: 
  fUV � "�n� o� � >"�i j n�"�l j o�            (7)  
 

Intuitively, this normalization is a probabilistic 
interpretation of contrast enhancement [13] that enhances 
regions associated with the positive distribution. Other 
normalization approaches such as histogram equalization, 
min-max, z-score, and tanh where initially used, but they 
are either not discriminative or require significant 
parameter tuning. A Bayesian classifier was also used, but 
had no significant improvement.  

7.  MRF Scene Element Decoding 
The likelihood maps produced by Equation (7) have 

been assumed to be independent up to this point which can 
lead to spatial inconsistencies when labels are assigned to 
the scene. To overcome this we use an MRF, as in [4], to 
perform spatial smoothing that enforces class adjacency 
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constraints. These constraints enforce the likelihood that 
two scene element types occur next to each other spatially. 

This smoothing problem is formulated as 2D lattice 
MAP-MRF inference with max-product belief propagation 
[16] and pair-wise potentials. The optimization problem 
finds the labels that maximize the joint probability of the 
set of discrete hidden label nodes, -p. � �M�N, that have L 
states and data compatibility matrix fV � �M�N�	. Notice fV is the normalized likelihood maps from Equation (7), 
which are derived from the track descriptors and the 
observations, O. For the purpose of analyzing the joint 
probably these are converted to 1D arrays with M 
elements, where>q � 3 � 4, -p. � �r, and fV � �r�	. 
The joint probability of the hidden nodes (labels) and the 
observations is then:  

   "�-p.� s� � �
t% u�pG� pS��G�S��* % fV�pG�G     (8) 

 

where Z is a normalization factor, v � �r, and * is the 
neighboring four nodes. 
 The class constraints, u�pG� pS� in Equation (8), are 
imposed using an adjacency graph, Figure 3. The edges in 
the graph represent classes that are more likely to be 
spatially adjacent to each other. More specifically, u�pG� pS� � >w where there is an edge, one for self-
adjacency, and x> otherwise, where w y x.  

Automatically defining the class constraints requires 
extensive training data and can lead to unrecoverable 
errors. Fortunately, the edges here are very intuitive, easily 
defined and if needed easily changed by the user. Because 
of this, we manually define the adjacency graph, where  w � ORz and x � OR{ for the WAMI data.  

The output of the MRF inference process produces the 
decision labels for each grid cell along with updated belief 
probability maps, which are used for evaluation. 

8.  Experiment Approaches and Results 
 Experiments are performed on two datasets that cover 
the high altitude aerial domain as well as the ground 
surveillance domain of outdoor scenes. The ARGUS-IS 
collected WAMI data is captured from a moving aerial 
platform while the Ocean City data from [1,2,3] is from a 
stationary webcam. Results from our approach are 
compared against three similar state-of-the-art functional 
recognition approaches [2,3,4]. The performance is 
determined by using several metrics: Mean Average 
Precision (mAP), Precision-Recall (PR) curves, and 
Probability of Correct Classification (PCC). The PCC is 

the number of correctly classified examples divided by the 
number of total examples.   
 Our evaluation focuses on how well the entire manually 
annotated functional scene element regions are detected.  
Therefore, all the grid cells within the bounds of each of 
the test examples are evaluated. The evaluation of our 
pyramid coding approach is carried out using a two-fold 
cross-validation approach. In order to ensure a fair 
comparison all approaches use the same track-based 
descriptor set from Table 1.  

8.1. Data 
 Experiments on the ARGUS-IS collected WAMI data 
use the 
O�P � �
OP AOI shown in Figure 1 that 
represents 21 minutes of video at ~3.33Hz. This data 
generated 3.9k fragmented tracks on both vehicles and 
pedestrians. The Ocean City (OC) web-cam data [1,2,3] is |OP � PzO at ~2Hz with significant perspective changes 
between near-field and far-field. There are over 10k highly 
fragmented tracks from 8 hours of video with many false 
tracks caused by camera artifacts and lighting changes. 

The WAMI data includes numerous examples of 
various functional scene elements that have varying levels 
of shape, appearance, and behaviors, particularly within 
the same class. On the other hand, the OC data is 
characteristic of the video in [4] in that there are only a 
few examples of functional scene elements that are also 
very similar in both appearance and behaviors. 
Unfortunately, the data used in [4] is not available for 
comparison and the CAVIAR dataset in [2] only has two 
to three scene element types with few examples of each.   

8.2. Comparison Approaches 
Our approach is compared against the “Direct-

Clustering”, “Functional-Category”, and “Supervised-
MRF” approaches from [2], [3], and [4], respectively. 
Additional comparisons are also made against two 
discriminative variations of our approach and the HKM 
and KM coding approaches. 

The Direct-Clustering approach uses descriptors from 
scene element specific normalcy models as an input to a 
hierarchical divisive clustering algorithm. This approach 
relies on a flat codebook using the leaf clusters and does 
not take into account local behavioral context. Our 
comparison against this approach is to demonstrate the 
performance impact of the pyramid of codebooks.  
Therefore, we limited our approach to just the leaf clusters 
and show the overall improvement.  

The unsupervised Functional-Category approach [3] 
clusters the descriptors into a codebook and then clusters 
the histograms into functional categories using mean-shift 
clustering for both. This approach has the benefit of not 
needing to define training examples or scene element 
detectors [2,4]. However, we found that it is very sensitive 

Figure 3, Adjacency matrix for WAMI scene elements.
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PCCs and mAP values per 
scene element.  

 The Functional-Category 
approach required a resolution 
of ��| � �Pz to achieve 
reasonable results, which is 
much coarser than the 
PP � �{} grid used for the 
other two approaches. This is 
because the Functional-
Category approach needs 
larger grid cells to accumulate 
statistics per grid cell. As in 
[3] we used a mean shift 
clustering algorithm for 
implementation with bandwidths of 2.3 for the descriptors 
and of 0.25 for clustering the histograms. Figure 7(a) 
shows the final clusters (Functional Categories) as they are 
assigned to grid cells. These results are quantified in Table 
2 by manually assigning the clusters to the most likely 
scene element type. The lower performance is due to the 
algorithm’s sensitivity to the grid cell size, mean shift 
parameter, and because it does not model local context.  

The supervised MRF based approach [4] was 
implemented using the same MRF adjacency constraints 
as defined in Section 7. The Roadway and Sidewalk are 
detected well, as seen in Figure 7(b) and by the PCCs in 
Table 2, while the others appear to have very low 
performance. We believe the lower overall performance 
here is also due to the fact that the data compatibility 
matrix does not capture the local behavioral context and 
because the statistics are calculated from grid cells.   
 Experiments with discriminative approaches were also 
conducted. Using a Support Vector Machine with a 
nonlinear Laplace kernel (mAP=0.68) or discriminatively 
down-selecting the histogram bins using Adaboost feature 
selection (mAP=0.67) lead to slightly lower performance. 
Pyramid coding experiments were also performed that 
replaced our coding approach with the KM or HKM 
approaches. Our pyramid coding approach has a 24.3% 
and 51.1% reduction in mAP error when compared to the 
KM and HKM, respectively. The lower performance is 

because both approaches rely entirely or heavily on the 
leaf nodes. That is, the former approach assumes that you 
know the number of clusters and the latter assumes that 
the relevant information for classification is in the sparse 
and under-represented leaf clusters, when it is the denser 
high content clusters that are more informative here. 

8.4. Ocean City Webcam Results 
 The decoded OC scene results are shown in Figure 8 for 
the Functional-Category [3], Supervised-MRF [4], and our 
pyramid coding approach along with the truth 
assignments. Five scene elements are analyzed here: 
Building, Roadway, Sidewalk, Doorway, and Parking- 
spot, with 5, 13, 21, 5, and 24 examples respectively. This 
dataset uses features 1, 2, 9, and 10 from Table 1. The 
event descriptors are not used because the very high levels 
of track fragmentation and large number of false tracks 
make them unreliable. Table 3 shows the PCC and mAP 
scores for all three approaches. 
 The results shown in Figure 8(a) for the Functional-
Category approach are slightly better than those shown in  
 [3], particularly for the Doorway class. This is mostly 
because of the use of the doorway normalcy maps as 
descriptors. Also notice that this approach appears to 
detect the Building class. While this is the correct label, it 
is for the wrong reason. That is, the buildings are detected 
because of the many short false tracks that are clustered 
together and not because of pedestrian or vehicle 
behaviors. These results were obtained using mean shift 
bandwidth parameters of 1.5 for the descriptors and of  
0.25 for clustering the histograms with a P� � zO grid. 

Figure 6, PR curves for the 
pyramid coding approach. 

Table 2, mAPs and PCCs on the WAMI data 

Legend Functional 
Category [3] 

Supervised 
MRF[4] Pyramid Coding 

 FE Names mAP / PCC% mAP / PCC% mAP / PCC% 
 Building NA 0.6 0.06 0.02 0.92 79.6 
 Intersection NA 18.3 0.50 0 0.58 52.2 
 Cross-walk NA 4.5 0.15 18.7 0.21 32.4 
 Roadway NA 50.3 0.42 66.1 0.63 44.3 
 Sidewalk NA 34.9 0.46 66.0 0.53 65.0 
 Doorway NA 5.9 0.01 0 0.03 0 
 Overall NA 9.0 0.19 16.8 0.72 68.0 

 
(a) Functional-Category [3] 

 
(b) Supervised-MRF [4] 

Figure 7, Functional scene element labels assigned to grid cells (a) Functional-Category approach (��| � �Pz grid) (b) Supervised-MRF 
approach (
PP � �{} grid). 
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The Supervised-MRF approach performs very well on 
the Sidewalk class, but at the expense of the Doorway and 
Building detections. A class adjacency matrix similar to 
Figure 3 was used here with w � OR�{ and x � OR�{. 

Overall our pyramid-coding method shows significant 
improvements compared to the other two approaches, 
particularly on the Parking-spot, Roadway, and Building 
classes. Our higher mAP performance on the Building 
class is due to the incorporation of local behavioral 
context, which enables it to detect not just the building but 
the activity regions associated with them.   

9. Conclusion 
 We presented two contributions to current state-of-the-
art functional scene element recognition approaches that 
lead to significant recognition improvements. The first is 
the incorporation of sparse-dense pyramid of codebooks to 
better characterize multi-model scene elements. The 
second is the incorporation of local behavioral context 
through pooling behaviors in and around scene elements. 
This enables the detection of elements with low and/or 
indirect evidence. Comparisons are made to the most 
relevant functional scene element recognition and coding 
approaches [2,3,4,14] on ground surveillance video and 
for the first time on WAMI data. Significant improvement 
in recognition rates were shown for both datasets. 
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Table 3, mAPs and PCCs on the OC data 

Legend Functional 
Category [3] 

Supervised 
MRF[4] Pyramid Coding

 FE Names  mAP / PCC% mAP / PCC% mAP / PCC% 
 Building NA 54.0 0.24 0.3 0.81 63.6 
 Roadway  NA 75.8 0.96 50.6 0.95 81.4 
 Sidewalk  NA 80.7 0.64 1 0.68 52.9 
 Doorway  NA 21.4 0.19 0 0.39 18.7 
 Parking Spot NA 56.1 0.27 0.2 0.76 73.4 
 Overall  NA 54.0 0.50 33.0 0.81 63.6 

 
(a) Functional-Category [3] (P� � zO) (b) Supervised-MRF [4] (��� � ���)

 
(c) Pyramid-Coding (��� � ���) (d) Truth 

Figure 8, Qualitative results on OC dataset for the three approaches using five scene element types.  Legend in Table 3 shows color code.
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