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Abstract

We propose a novel method to include a connectivity
prior into image segmentation that is based on a binary la-
beling of a directed graph, in this case a geodesic shortest
path tree. Specifically we make two contributions: First, we
construct a geodesic shortest path tree with a distance mea-
sure that is related to the image data and the bending energy
of each path in the tree. Second, we include a connectiv-
ity prior in our segmentation model, that allows to segment
not only a single elongated structure, but instead a whole
connected branching tree. Because both our segmentation
model and the connectivity constraint are convex, a global
optimal solution can be found. To this end, we generalize
a recent primal-dual algorithm for continuous convex op-
timization to an arbitrary graph structure. To validate our
method we present results on data from medical imaging in
angiography and retinal blood vessel segmentation.

1. Introduction
The task of image segmentation, the separation of an

image into meaningful parts, is one of the most important
and well studied problems in image processing and com-
puter vision. While state-of-the-art segmentation methods
[8, 18, 29] perform well for segmenting compact objects,
their performance on thin and elongated structures is often
not satisfying. The commonly used length regularizer sup-
presses small structures and the correct topology cannot be
reconstructed.

To overcome this shrinking bias, recently two different
approaches have been suggested in the literature. First,
curvature based measures have attracted the interest of re-
searchers in computer vision to include them in image seg-
mentation frameworks [17, 25, 14]. However, introduc-
ing these regularizers into segmentation algorithms leads to
higher order cost functions, which are hard to optimize.

Another way to preserve thin structures is to use topolog-
ical constraints. A special subclass of these constraints are
connectivity constraints, which ensure the connectedness of
a labeled region and therefore allow that thin connections

Figure 1: Segmentation of a blood vessel tree of the lung in
angiography. The connectivity constraint allows to connect
previously unconnected regions while noise is successfully
removed. Left image and top right: Lung vessel tree seg-
mented with the proposed method. Bottom right: Result
of the algorithm using the same parameters but without the
connectivity constraint.

between foreground regions are preserved in the final seg-
mentation result. To overcome the limitation of topology
preserving level set methods [19], that only locally optimal
solutions can be achieved, recent approaches include topo-
logical constraints in random field models [30, 23, 11]. So
far, these methods only allow to compute an approximate
solution of the global optimization problem.

1.1. Related Work

In Zeng et al. [31] a topology preserving extension of
the GraphCut method [9] is presented. The method is ini-
tialized on a coarser scale and then refines the segmentation
while preserving the topology. Similar to topology preserv-
ing level set methods [19] this method converges only to a
local minimum of the energy.
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Vicente et al. [30] introduce a Markov random field seg-
mentation model extended with a connectivity constraint for
user given seed nodes, that should be connected to the fore-
ground segment. They prove that even when the model only
contains unary terms solving the image segmentation prob-
lem with these constraints is NP-hard. Therefore they in-
troduce a heuristic algorithm that is essentially a Dijkstra
algorithm into which a graph cut algorithm is embedded,
but which can only provide an approximate solution when
the random field contains pairwise energies.

Another recent approach to enforce connectivity of the
foreground region is the work of Nowozin and Lampert
[23]. They formulate the constrained image segmentation
problem as a linear programming (LP) relaxation which can
in principle be solved globally optimally. Because the relax-
ation is not tight their algorithm is not guaranteed to con-
verge to a binary solution. Additionally, the LP-relaxation
does not scale well with the image size, limiting the method
to a problem size of a few hundred pixels.

One application field of methods that preserve elongated
structures is in angiography, were thin structures like blood
vessels need to be segmented. Some of the most promising
existing methods for this special task are based on geodesic
shortest paths. By using a local anisotropic metric and mod-
eling the segmentation task as a path search problem with
varying radius, of circles for 2D images [5] and spheres for
3D data [4], such methods are well suited for the special
case of tubular structures like blood vessels, but at the same
time are restricted to this specific task. Instead of modeling
the objects that should be segmented explicitly as connected
paths some authors propose to first preprocess the image
data with filters that show a strong response in areas were
elongated structures are present [16, 21]. In the recent work
of Bauer et al. [3] a similar approach leads to an explicit
model of short tubular segments that are in a second step
connected to a whole tree of branching tubular structures.
Therefore a connection confidence measure to join adjacent
tube segments is defined, that depends on the distance and
joining angle of the segments. The resulting minimization
problem is solved by using the graph cut algorithm [9]. For
a review on recent work in the particular application domain
of blood vessel segmentation see [22].

1.2. Problem Formulation

Given an image I with the domain Ω, a bounded con-
nected subset of Rm, we wish to solve the constrained opti-
mization problem

min
`∈{0,1}

∫
Ω

f(x) `(x) dx+ λPer(Σ`=1) (1)

s.t.

∀x, x′ ∈ Σ`=1 : ∃Cx
′

x ⊂ Σ`=1. (C0)

The discrete label assignment ` : Ω → {0, 1} describes if
an image region belongs to the object of interest `(x) = 1
or the image background `(x) = 0. The set Σ`=1 =
{x ∈ Ω : `(x) = 1} is the foreground region, a sub-
set of the image domain. With Cx

′

x we formalize a con-
nected trajectory from x to x′ as a continuous function
Cx

′

x : [0, T ] → Ω with Cx
′

x (0) = x and Cx
′

x (T ) = x′.
The function f(x) = log P (I(x)|`(x)=0)

P (I(x)|`(x)=1) is a probabilistic
model that depends on the image data.

The solution of the optimization problem should satisfy
the connectivity constraint C0:

For each x, x′ ∈ Ω that belong to the foreground there
must exist a connected path from x to x′ such that all p ∈ Ω
in the path between x and x′ belong to the foreground.

This constraint ensures that the whole foreground region
is connected. Unfortunately even for the special case λ = 0,
minimizing Eq. 1 with C0 is NP-hard because the minimum
Steiner tree problem can be reduced to this problem [30].

1.3. Contribution

In this work, we propose to reformulate the connectiv-
ity constraint on the fixed topology of a discrete graph that
is constructed from a shortest geodesic path tree. While
solving the original problem is NP-hard, the reformulated
problem can be solved to global optimality in polynomial
time. We show how a-priori information about the geometry
of the structure of interest can be included when construct-
ing this shortest path tree. To solve the resulting labeling
problem, we generalize a recent primal-dual algorithm for
continuous convex optimization to an arbitrary graph.

2. Approximation with Shortest Paths Trees
To approximate the solution to Eq. 1 we propose to re-

formulate the connectivity constraint on a fixed topology.
We choose the shortest geodesic path tree Gs originating in
a given s ∈ Ω that contains the shortest path to every other
position in the image. Our reformulated connectivity con-
straint C1 can be formalized as

∀x ∈ Ω, `(x) = 1 : ∃Cxs ∈ Gs : ` (Cxs (t)) = 1. (C1)

In contrast to the original image segmentation problem,
we will show in section 3.3 that this constraint can be intro-
duced as a linear constraint in a convex optimization frame-
work and therefore allows for an optimal solution.

2.1. Constructing the Geodesic Shortest Path Tree

The shortest geodesic path topology is inspired by im-
age segmentation methods based on shortest geodesic dis-
tances, that have been successfully applied to medical im-
age segmentation [4] and general image segmentation as
well [2, 12]. It allows to use an image depending lo-
cal geodesic metric and additionally to incorporate a-priori
knowledge about the geometry of the object of interest.

23372337



First we have to choose an appropriate local geodesic
metric. If λ = 0 the labeling function u(x) takes the value
1 for f(x) < 0 and 0 for f(x) > 0. We leave out the spe-
cial case f(x) = 0 as it does not occur in practice. For all
xp ∈ Ω that do not belong to the foreground but need to
be added to the foreground to satisfy the connectivity con-
straint obviously u(xp) = 0 and therefore f(xp) ≥ 0. The
optimal cost of the connecting path between a fixed s and
any x in the region that should be connected on Gs is then
given by

min
Cx

s

∫ T

0

f+(C(t))dt, (2)

with f+ = max(0, f(x)). Thus, we choose the non nega-
tive cost function f+ as metric for the construction of Gs.

2.2. Bending Energy Prior

Further a-priori information about the geometry of the
object that should be segmented can be included in the
framework. For the special case of blood vessel segmenta-
tion in medical imaging a reasonable assumption would be,
that the structure of interest ideally minimizes its bending
energy. The probability of a discretized position to reside
inside the structure can be modeled as

P (xt) ∼ exp{−Ebend(xt)} (3)

where Ebend(xt) is the local part of the bending energy
that would add to the total bending energy of a curve, if it
was going through xt given the positions of its neighboring
nodes xt−1 and xt+1.

To compute the bending energy we use the discretized
bending energy of Bergou et al. [6] that can be applied for
curves in 2D as well as spacecurves in 3D. It is expressed
using the curvature binormal

(κb)t =
2et−1 × et

|et−1||et|+ et−1 · et
(4)

with et = xt+1 − xt and et−1 = xt − xt−1. Because
this is an integrated quantity, dividing it by the length of
the domain of integration, in this case half the length lt =
|et|+ |et−1| of the edges joining at xt, gives the discretized
version of the bending energy

Ebend(xt) =
1

2
α

(
(κb)t
lt/2

)2
lt
2

=
α(κb)2

t

lt
. (5)

The curvature binormal (κb)t depends not only on the po-
sition xt but also on the positions of the neighboring nodes
xt+1 and xt−1.

Finally, the combination of the non negative data term
and the bending energy prior lead to the shortest path prob-
lem

min
C

∫ T

0

f+(C(t)) + Ebend(C(t))dt. (6)

et 

et-1 

xt-1 

xt+1 

Figure 2: Discretized neighborhood on the pixel grid that
is used for the shortest path search. The bending energy
depends on the two edges et−1 and et joining at a node xt.

Note that this is not a usual geodesic measure, because
the bending energy term depends on the incoming and out-
going angle. Thus, standard first-order techniques [28, 26]
cannot be used. Instead, such cost functions can be mini-
mized by computing a shortest path on a higher order graph,
which contains a node for every edge in the original graph
i.e. for every pair of nodes that are connected by an edge
in the original graph [1]. Because our major contribution
in this paper is the labeling of the nodes via convex opti-
mization, we approximate the minimal path using a greedy
optimization scheme, in this case Dijkstra’s [13] algorithm
on the vertex graph. At every expansion step of Dijkstra’s
algorithm the value of Eq. 6 for the candidate nodes xt+1

is computed by taking the predecessor xt−1 in the current
shortest path to xt. Thus this approximation does not take
into account different incoming angles to the node xt but
assumes this angle to be fixed by xt−1.

3. Labeling the Shortest Geodesic Path Tree via
Convex Optimization

To formulate Eq. 1 in a convex optimization framework
the discrete label assignment ` : Ω → {0, 1} is relaxed
by introducing a continuous indicator function u : Ω →
[0, 1]. The boundary length of the foreground segment can
be measured by using the total variation of u, which is a
convex function.

In the continuous framework, the image segmentation
problem with C1 has the form

min
u∈[0,1]

∫
Ω

f(x)u(x) + λ|∇u| dx (7)

s.t.
∀x ∈ Ω, u(x) = 1 : ∃Cxs ∈ Gs : u (Cxs (t)) = 1. (C1)

In the following we show how this continuous image
segmentation problem can be equivalently transformed to
the domain of a discrete graph. We define the correspond-
ing operators on a weighted graph and derive a local varia-
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tion regularized segmentation model as theoretically sound
equivalent to the continuous total variation model. As a
consequence, the labeling problem on the weighted graph
can be solved efficiently using a recent algorithm for contin-
uous convex optimization [10]. While ensuring connectiv-
ity constraints in image segmentation algorithms is usually
difficult and in general not optimally solvable our method
allows to include the connectivity prior directly in the con-
vex optimization framework.

3.1. Gradient and divergence operators on weighted
graphs

Let G = (V,E,W ) be a graph with the set of vertices
V with |V | = n, a set of edges E ⊂ V × V and a posi-
tive n × n weight matrix W that assigns a weight to every
edge of the graph. In the following we will use the shortest
path tree computed by Dijkstra’s algorithm as explained in
the previous section as the underlying graph structure. This
graph is a directed tree, thereforeW is not symmetric, as for
an undirected graph, and an edge eij = (i, j) is a directed
edge from i to j with the positive weight wij . Furthermore
the tree structure implies that

∑
i δ>0(wij) = 1∀j where

δ>0 is the indicator function of values strictly greater zero.
We define the gradient and divergence operators on a dis-

crete graph following [20] and [7, 15]. Let f : V → R be a
function ofH(V ), the Hilbert space of real-valued functions
on the vertices of G that is equipped with the inner product
〈f, g〉H(V ) =

∑
v∈V f(v) g(v). We define the difference

operator d : H(V )→ H(E) of f on an edge (i, j) ∈ E as

(df)(eij) =
√
wij(f(j)− f(i)). (8)

This difference operator can be interpreted as the direc-
tional derivative δifj := (df)(eij) of a function f at a ver-
tex i along the edge to vertex j.

We define the weighted gradient operator as the vector
operator ∇if = (δifj : (i, j) ∈ E)T . The L2 norm of this
vector is the local variation of f at v

|∇if | :=

√ ∑
(ij)∈E

(δifj)2 (9)

=

√ ∑
(ij)∈E

wij(fj − fi)2 (10)

Equivalently, let p : E → R be a function of H(E),
the Hilbert space of real-valued functions on the edges of
G, that is equipped with the inner product 〈f, g〉H(E) =∑

(i,j)∈E f(i, j) g(i, j). The adjoint d∗ : H(E) → H(V )
of the difference operator is given by

〈df, p〉H(E) = 〈f, d∗p〉H(V ). (11)

Following the definitions of the inner products, the di-
vergence operator of p at a node i is

div pi = −d∗(p)i (12)

=
∑

(ji)∈E

√
wjipji −

∑
(ij)∈E

√
wijpij . (13)

3.2. The segmentation model in the weighted graph
framework

In this section we derive our image segmentation al-
gorithm in the weighted graph framework. The relaxed
labeling function u assigns a value to every vertex, thus
u : V → [0, 1] is a function of H(V ). Furthermore we are
given a function f : V → R that is defined by the condi-
tional probabilities for foreground and background at every
node as fi = − logPF (xi) + logPB(xi). The dual func-
tion p : E → R is defined over the edges of the graph and
belongs toH(E).

Given above definitions, we are able to formulate our
segmentation model with local variation regularization on
a weighted graph

min
u∈[0,1]

∑
i∈V

fiui + λ|∇iu|. (14)

By comparing this term with the definition of the local vari-
ation Eq. 10 we observe that the weight of the regularizer
λ ∈ R+ corresponds to the edge weights wij = λ2.

3.3. Including the Connectivity Constraint

Modeling the image segmentation model on a tree-
structured graph has two benefits. First, by defining the
local variation regularization prior along the edges of the
graph we are able to model anisotropic smoothness in di-
rection of the elongated structure, similar to the method of
[4] for tubular structure segmentation. The second advan-
tage of our framework is that a connectivity constraint can
be included very easily. Other researchers have already pro-
posed such connectivity constraints, as they allow richer in-
put to the algorithm especially in a user interactive setting
[30]. While it is numerically expensive to include these con-
straints in graph cut frameworks [30] we will see in the fol-
lowing that they can be integrated into our framework very
efficiently.

The segmentation model of Eq. 14 is extended with
the connectivity constraint C1 which ensures that for ev-
ery pixel labeled as foreground in the image there exists a
connected path of foreground pixels to the root node. This
is equivalent to the constraint that the label ui of a node i is
always greater or equal than the label of its neighbors with
a larger distance to the root node: d(i) < d(j) ⇒ ui ≥ uj .
Because the graph structure is a shortest path tree, the con-
dition d(i) < d(j) is satisfied for all nodes i and their child
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nodes j. The constraint ui ≥ uj then implies∇iu ≤ 0 ∀i ∈
V . This constraint is linear in u, which preserves convexity
of Eq. 14 and allows for an optimal solution.

When the object of interest is not a tree of thin elongated
structures, for example in interactive image segmentation
as depicted in Fig. 5, the local variation regularizer on the
tree structure might lead to inappropriate results. In this
case, we instead define the regularizer on the image grid
which results in the standard total variation regularizer, that
measures the boundary length in Euclidian space. While the
connectivity constraint is still defined on the shortest path
tree, the boundary length is measured on the 4-connected
graph of the image grid.

3.4. A primal-dual method for graph node labeling

The definition of the weighted gradient and weighted di-
vergence operators allows to formulate Eq. 14 as saddle-
point problem on a weighted graph

min
u∈[0,1]

max
|p|≤1

∑
i∈V

fiui + 〈∇iu, p〉H(E). (15)

The primal-dual formulation follows from the definition of
the adjoint operator

min
u∈[0,1]

max
|p|≤1

∑
i∈V

fiui + 〈ui, div pi〉H(V ). (16)

The update equations for the segmentation problem on a
weighted graph can be derived similar to [24, 10]. For the
basic segmentation model without connectivity constraint
they are equivalent to the continuous model, but in addition
consistent with the different domains E and V :

uk+1
i = uki + τ div pi − τf (17)
pk+1
ij = π|·|≤1(pkij + σ∇iūk) (18)

ūi
k+1 = uk+1

i + θ (uk+1
i − uki ) (19)

The parameter θ ∈ [0, 1] controls the amount of overrelax-
ation. The primal and dual step sizes τ, σ > 0 need to be
chosen according to τσL2 < 1, where L = ||∇i|| is the
operator norm of the local variation operator [10].

Projections from one Hilbert space to the other are
achieved by the corresponding operators div and ∇i. The
projection π|·|≤1(·) computed by

π|·|≤1(pij) =
pij

max(|pi|, 1)
(20)

projects the values of pij to the unit ball, where

|pi| =
√ ∑

(ij)∈E

wijp2
ij (21)

is the vector norm |pi| over the edges incident to vertex i.

λ = 0 λ = 0.5 λ = 1.0

Figure 3: The connectivity prior allows to reconstruct a con-
nected structure with superior suppression of noise com-
pared to the same segmentation method without the con-
nectivity prior. Different values of the regularizer weight λ
allow different levels of noise suppression. First column: a
noisy input image and the data term. Upper row: without
connectivity prior. Lower row: with connectivity prior.

The connectivity constraint is included by adding the in-
dicator function

δ≤0(∇iu) =

{
0 if∇iu ≤ 0,

∞ if∇iu > 0.
(22)

to the segmentation model

min
u∈[0,1]

∑
i∈V

fiui + λ|∇iu|+ δ≤0(∇iu). (23)

The resulting optimization problem of Eq. 23 can be for-
mulated in the primal-dual framework via the Legendre-
Fenchel transform of the indicator function:

δ∗≤0(∇iu) = sup
α≥0
〈∇iu, α〉H(E). (24)

Thus optimizing the image segmentation model with the
connectivity constraint is equivalent to solving the saddle-
point-problem

min
u∈[0,1]

max
|p|≤1
α≥0

∑
i∈V

fiui + 〈∇iu, p〉H(E) + 〈∇iu, α〉H(E).

(25)
Finally, the update equations with connectivity con-

straint are

uk+1
i = uki + τ div pi + τ divαi − τf (26)
pk+1
ij = π|·|≤1(pkij + σ∇iūk) (27)

αk+1
ij = π≥0(αkij + µ∇iūk) (28)

ūi
k+1 = uk+1

i + θ (uk+1
i − uki ). (29)

where the values of αij are defined over the edges of the
graph and are projected to positive values by π≥0.
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Input image Result from [14] Without connectivity prior With connectivity prior

Figure 4: Results on two-dimensional medical image data. For comparison we show the results on images from [14]. First
column: input image. Second column: Segmentation results from [14]. Third column: Segmentation without connectivity
prior. Fourth column: Segmentation result with the proposed method. The connectivity prior enables to connect sparse
foreground regions.

Input image Results from [30] Without connectivity prior With connectivity prior

Figure 5: Results for user interactive segmentation. For comparison we show the results on an image from [30]. First
column: Input image with user scribbles. The red scribble is the source foreground region of the geodesic shortest path tree,
green scribbles are foreground regions that should be connected and blue scribbles are background regions. Second column:
Segmentation results from [30]. Third column: Segmentation without connectivity prior. Fourth column: Segmentation
result with the proposed connectivity prior.

4. Experimental Results

We applied our method to different types of image data.
Figure 1 shows the result of our segmentation algorithm for
the task of blood vessel segmentation in three dimensional
CT angiography data 1. When using our tree shape prior,
even the small distal tips of the blood vessels are preserved
in the final segmentation, while image noise that does not
belong to the connected foreground region is successfully
suppressed. For segmenting the whole blood vessel tree,
only a single root node needs to be selected and the result
is very robust to changes in this selection. To segment the
volume of size 512× 512× 355 voxels our algorithm needs
330 seconds on a single threaded 2.27 GHZ Intel Xeon ar-
chitecture, which is less than 1 second per 512×512 volume
slice. Another example, that demonstrates the advantage of
the connectivity prior is shown in Figure 3. The connectiv-
ity prior clearly improves the segmentation result especially

1 CT dataset taken from the Vessel Segmentation in the Lung 2012
Grand Challenge http://vessel12.grand-challenge.org.

for noisy input data. Figure 4 shows additional results of our
tree shape prior on two dimensional medical image data.

Furthermore, the connectivity prior is also a useful ex-
tension in an interactive segmentation framework. Figure 5
shows an input image with additional user scribbles, that
provide hard constraints for foreground and background
regions. With these scribbles the user can describe how
the shortest path tree is constructed. One foreground re-
gion acts as the root node of the shortest path tree. Ad-
ditional foreground regions can be added via brush strokes
that should be connected to the root region. Given the user
scribbles the probability density functions for foreground
and background are estimated with a Parzen window esti-
mator, with a kernel function, for example a Gaussian ker-
nel kσ(I(x) − Is), centered at every image value Is of the
user scribbles.

The method was quantitatively evaluated on the DRIVE
database [27] of digital retinal images for vessel extraction.
Because the main contribution in this work is the connectiv-
ity prior and not the design of a special data term for retinal
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Accuracy Sensitivity Specificity
2nd Observer 94,73%
Connectivity Prior
w Bending Energy 94,57% 84,54% 95,83%
w/o Bending Energy 94,56% 84,69% 95,79%
Staal 94,42%

Figure 6: Quantitative evaluation results of the proposed
method on the DRIVE database [27]. A combination of
the connectivity prior with the method of Staal leads to the
most accurate method on this dataset, almost reaching the
performance of a second human observer.

Without bending energy With bending energy

Figure 8: Magnified result from the DRIVE dataset. The
bending energy term changes the topology of the connected
structure.

blood vessel detection, the performance of the tree shape
prior was evaluated by using the method of Staal [27] as
data term. This is the currently best performing method in
the benchmark with an accuracy of 94,42%. By combining
this method with the proposed connectivity prior the accu-
racy can be increased to 94,57%. Therefore this is the high-
est accuracy reported for this database and we were able to
reduce the distance to the human observer (94,73%) by a
factor of two. Fig. 7 shows the segmentation results on one
of the images in the dataset.

Including the bending energy term leads to an increased
specificity and a slightly increased accuracy, while the sen-
sitivity is decreased. Overall, the number of true positive
classified pixels is increased and the number of true nega-
tives is slightly decreased. The topological difference of the
segmentation result is depicted in Fig. 8.

5. Conclusion

In this work we presented a novel method for image seg-
mentation with connectivity constraints. While solving the
image segmentation problem with general connectivity con-
straints is NP-hard, we propose to formulate the constraint
on a shortest geodesic path tree, leading to the novel tree
shape prior.

We show that our method can be successfully applied to
medical image segmentation problems in angiography and

retinal blood vessel extraction, where thin structures other-
wise would not be preserved by boundary length regular-
izers. Experiments on a public dataset show that combin-
ing the connectivity prior with existing image segmentation
methods clearly improves the performance.

To solve the optimization problem, we generalized an
efficient primal dual optimization algorithm for arbitrary
graphs. Future work will focus on utilizing the iterative
structure of the algorithm for a parallelized implementation
on the GPU.
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