
Shortest Paths with Curvature and Torsion

Petter Strandmark1 Johannes Ulén1 Fredrik Kahl1,2 Leo Grady3

1Lund University, Sweden 2Chalmers University of Technology, Sweden 3HeartFlow Inc.
{petter,ulen,fredrik}@maths.lth.se lgrady@heartflow.com

Abstract

This paper describes a method of finding thin, elongated
structures in images and volumes. We use shortest paths
to minimize very general functionals of higher-order curve
properties, such as curvature and torsion. Our globally op-
timal method uses line graphs and its runtime is polynomial
in the size of the discretization, often in the order of sec-
onds on a single computer. To our knowledge, we are the
first to perform experiments in three dimensions with cur-
vature and torsion regularization. The largest graphs we
process have almost one hundred billion arcs. Experiments
on medical images and in multi-view reconstruction show
the significance and practical usefulness of regularization
based on curvature while torsion is still only tractable for
small-scale problems.

1. Introduction
In differential geometry, the fundamental theorem of

curves states that any regular curve in three dimensions with

non-zero curvature has its shape completely determined by

its curvature and torsion [12]. Therefore, for curve recon-

struction problems, it makes sense to regularize the solution

with curvature and torsion priors. So, why is it that the ma-

jority of approaches in the literature only consider length

regularization? The reason is of course due to computa-

tional complexity. In this paper, we demonstrate that with

today’s modern CPUs and clever implementation choices, it

is actually possible to solve inverse problems involving both

curvature and torsion priors at reasonable running times.

Curvature regularization has been shown to be important

for a number of applications in computer vision. In [10],

it is shown that Euler’s elastica – the line integral of the

squared curvature – conforms better to intuitive comple-

tion of boundary curves. Other applications where curva-

ture plays an important role include saliency [17], inpaint-

ing [9], stereo [21], region-based image segmentation [15]

and surface reconstruction [19].

Torsion measures how much a curve deviates from its

osculating plane. In many applications, the reconstructed

Right coronary artery

Left coronary artery

Figure 1: A drawing of a heart. The thinner coronary vessels are

long with high curvature, but have low torsion as they lie approxi-

mately in a plane.

curve should follow closely the shape of an underlying sur-

face which is locally planar. In such situations, it may be

advantageous to penalize torsion. We are not aware of any

work that has previously used this as a prior. Figure 1 shows

a drawing of a heart. The coronary arteries are neither short

nor have low curvature, but they do have low torsion. Pe-

nalizing high torsion would be an ideal prior.

Related work. We follow a classic approach for comput-

ing the global minimum of an active contour model based

on shortest paths [2, 3]. This is a flexible and frequently

used tool for extracting 1D structures in both 2D and 3D

images, especially in medical image analysis [8]. Most of

these methods use only weighted length regularization, even

though the idea of applying shortest paths to higher-order

functionals involving curvature is not new. One early exam-

ple of minimizing a curvature-based energy can be found in

[1]. However, in order to obtain reasonable running times,

only a small band around the initial contour is considered.

In [16], the elastic ratio functional is proposed for edge-

based 2D image segmentation. Still, the run times are up to

several hours for medium-sized images on the CPU. An ex-

tension of the live-wire framework with curvature priors is

presented in [20]. The algorithm is applied to image squares

of up to 80×80 pixels with 8-connectivity. In [11], the stan-

dard 2D shortest path is lifted to 4D by incorporating 12

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.253

2024

discrete orientation angles and radii in the estimation, and

hence implicitly penalizing curvature. Many nice examples

of the benefits with curvature are given in both [11] and

[20], but no running times are reported. In [7], a heuristic

method is developed for minimizing a pseudo-elastica for

2D segmentation. The computational complexity of their

algorithm is attractive, but at the price of approximate solu-

tions. Our algorithm has comparable running times and the

same asymptotic complexity O(d2n log nd) where n is the

number of pixels and d depends on the neighborhood size.

Contributions. Our contribution is a global method to

find a curve of minimal curvature between two points using

line graphs. We are the first to demonstrate practical cur-

vature experiments in 3D and our two-dimensional running

times are in the order of seconds. Our approach extends to

higher-order properties of space curves such as torsion. As

the grid resolution and the neighborhood size increase, the

discretization errors of the continuous problem tend to zero.

This fact is experimentally verified.

We segment blood vessels in 2D (Section 3.2) and 3D

(Section 3.3), and we perform multi-view 3D reconstruction

(Section 3.4), which previously only have been possible us-

ing local optimization [6]. The framework has been imple-

mented in highly optimized C++ code and is made publicly

available to facilitate further research.

2. Shortest Paths with Curvature and Torsion
We are interested in finding a curve γ in two or three di-

mensions which minimizes an image-dependent functional

of its length, curvature and torsion, or more generally:

inf
γ,L

∫ L

0

f(I,γ(s), γ′(s), γ′′(s), γ′′′(s)) ds,

subject to γ(0) ∈ Estart and γ(L) ∈ Eend,

(1)

where γ : [0, L] → R2 or 3 is parametrized by arc-

length [12]. The curve has to start in the set Estart and end

in Eend. The image I is arbitrary. This problem has a finite

solution if f ≥ 0 everywhere. We will restrict our attention

to positive functionals f of the form

I(γ(s)) + ρ+ σκ(s)2 + ντ(s)2. (2)

Here κ(s) and τ(s) denote the curvature and the torsion,

respectively; see Section 2.1. The scalars ρ, σ and ν are

weighting factors of length, curvature and torsion, respec-

tively and can be made image-dependent as well. In the

framework of geodesic active contours, the first two terms

are merged and regarded as a general Riemannian metric.

Our approach is to solve (1) globally on a predefined dis-

crete mesh. Local refinement is always possible as a post-

processing step.

(a) Using points (b) Using edges (c) Using edge pairs

Figure 2: The same path through a mesh (shown in black) repre-

sented in three different ways. The graph nodes (shown in color)

correspond to (a) points, (b) edges, and (c) edge pairs in the mesh.

Terminology. The predefined mesh consists of points and

edges. The shortest path computation is carried out in a

graph, consisting of nodes and arcs. These two objects are

generally distinct.

Length. The mesh is stored explicitly in memory and is

the same no matter which regularization is used. Figure 2

shows the mesh in black. The structure and size of the

graph, however, depend on the regularization used. The

simplest case is length regularization (σ = ν = 0), for

which the graph is identical to the mesh. Each node in

the graph then corresponds to a point in the mesh. The arc

weights of the graph are computed by simply integrating (2)

over each arc.

Curvature. A pair of points always lie on a straight line.

It follows that we need to consider at least three points to

determine the curvature cost. To achieve this, a line graph

is constructed in which each node corresponds to an edge in

the mesh. Now any arc connecting two nodes corresponds

to the interaction of three points (one pair of edges). In

this manner we can compute the curvature cost of any path

through the original mesh. Figure 2b shows the same path

as before with the nodes of this graph highlighted.

Torsion. Because three points always lie in the same

plane, at least four points are needed to determine the tor-

sion cost. The process of constructing the line graph can

be iterated one more time to incorporate torsion. Figure 2c

shows the same path as before, with each node in the graph

corresponding to an edge pair in the mesh. The graph grows

very rapidly in size, but we never construct it explicitly;

only the mesh is explicitly created and stored.

2025

−0.5
0

0.5
1

−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

xy

z

Figure 3: Example curve (x, y, z) = (cos 6πt, sin 6πt, t).

2.1. Calculating Curvature and Torsion

Let (xi, yi, zi) for i = 1, 2, 3 be three ordered points.

The quadratic B-spline associated with these points is

r(t) =
1

2

⎡
⎣x1 y1 z1
x2 y2 z2
x3 y3 z3

⎤
⎦
T ⎡
⎣ 1 −2 1
−2 2 0
1 1 0

⎤
⎦
⎡
⎣t

2

t
1

⎤
⎦ . (3)

The curvature is defined as κ(t) = ‖r′(t)×r′′(t)‖
‖r′(t)‖3 [12]. It

is straightforward to analytically compute the squared cur-

vature as well as the length element ds = ‖r′(t)‖dt of the

spline using symbolic mathematics software. There is no

closed form for the integral
∫ 1

0
κ(t)2ds(t), so numerical in-

tegration is required to compute it. Since we cache all val-

ues, the execution time will not be affected by the choice of

numerical scheme.

When approximating torsion, four points and derivatives

of up to degree 3 are needed. Hence, cubic B-splines are

suitable:

r(t) =
1

6

⎡
⎢⎢⎣
x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

⎤
⎥⎥⎦
T ⎡
⎢⎢⎣
−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
t3

t2

t
1

⎤
⎥⎥⎦ .

(4)

Similar to curvature, the torsion [12]

τ(t) = det
[
r′(t) r′′(t) r′′′(t)

]
/ ‖r′(t)× r′′(t)‖2,

(5)

of the B-spline can also be analytically calculated.

Figure 3 graphs an example curve (a helix), for which the

exact curvature and torsion are well known: they are both

constant. Figure 4 shows the error when approximating the

curvature and torsion using three and four points, respec-

tively. The experimental section will demonstrate conver-

gence of the entire system (Figure 7).

10−4 10−3 10−2 10−1 100 101
10−8

10−6

10−4

10−2

100

102

Length of edge pair/triplet

A
p

p
ro

x
im

at
io

n
re

la
ti

v
e

er
ro

r

|τ |
|κ|

Figure 4: Error when computing the curvature and torsion using

the middle point of a spline fit to two or three edges on the curve

in Figure 3.

2.2. Our Implementation

Dijkstra’s algorithm for computing the shortest path is

well known. An important property is the fact that it does

not require the entire graph to be stored. Two things are

required: (i) The number of nodes along with a start set

and a end set. (ii) An oracle that given a node returns its

neighbors and arc weights. Using an oracle means that the

weight does not have to be computed for every arc in the

graph. As Section 2.1 shows, computing the arc weights

can become quite involved.

A common improvement to Dijkstra’s algorithm is A*,

which changes the node visitation order. It requires a func-

tion l, which for each node returns a lower bound of the dis-

tance to the end set. Any such l yields a correct algorithm,

and if l ≡ 0, then A* becomes Dijkstra’s.

When computing the path with shortest length, the dis-

tance “as the crow flies” can be used as a lower bound, ig-

noring any obstacles in the graph. For curvature, however,

computing a useful lower bound is more difficult (it has to

be done really fast to make a difference). One option is to

set σ = ν = 0 in (2), solve (1) for all nodes (this is fast),

and use the result as a lower bound. We will evaluate this

heuristic in Section 3.1.

We use the same implementation of Dijkstra’s algorithm

for all experiments in the paper. It uses the C++ standard

library for all data structures. Many of the graphs have bil-

lions of arcs, which puts big demands on the memory effi-

ciency. The following items are stored.

• An array of points, where each point contains its coor-

dinates and a set of its neighbors.

• An array of edges, where each edge contains the in-

2026

dices of its two points.

• An array of edge pairs, where each pair contains the

indices of its three points.

In our C++ implementation, “array” and “set” mean

std::vector. Edges and edge pairs are represented by

std::tuples of integer point indices. Each edge and

edge pair in the mesh then require 8 and 12 bytes, respec-

tively.

The array of edges is sorted after the mesh is created,

which makes it possible to find the index of a given edge in

logarithmic time. The neighbors of a given edge are com-

puted with an oracle. It first fetches the neighbors of the end

point of the edge – this takes constant time. Then it looks

up the edge index for each pair of points in the sorted edge

array. This procedure can be made faster if the neighbors of

each edge are stored in the mesh. However, we only found

it to be slightly faster and it requires much more memory.

Storing the neighbors of each edge pair is out of the ques-

tion. Instead, the neighbors of an edge pair are computed

via the edge neighbors of its last edge as above.

We use caches to avoid having to perform the same com-

putation twice. For example, the curvature cost between

two edges is the same even if both edges are translated by

the same amount. Thus, the integrated curvature needs only

be computed once for each configuration. The cache has to

be fast, since when working with torsion there are millions

of different configurations of two edge pairs. Our imple-

mentation uses an std::map with the coordinates (mean

subtracted) as keys.

Our implementation works with arbitrary meshes. If

only regular meshes with fixed point neighborhoods are de-

sired, memory can be saved by not even storing the mesh

explicitly.

Parallelization. Computing the shortest path between

two nodes efficiently in parallel is not a trivial task. There-

fore Dijkstra’s is sequentially run and the neighbors of each

node are sequentially computed. However, the oracle can

compute the arc weights for all neighbors in parallel on a

multi-core CPU. Since these computations are a large por-

tion of the total computational cost (even with the above-

mentioned cache), some parallelization is obtained. The

curvature or torsion cache is filled before the computation

starts. With this partial parallelization, using two CPU cores

was about 30% faster in our experiments.

3. Experiments
We have performed a number of experiments. First, we

would like to demonstrate the differences between length,

curvature, and torsion with a couple of synthetic experi-

ments. We then proceed with experiments in medical image

analysis and 3D multi-view reconstruction.

�1
�2

�3
�4

Figure 5: The interpolated data cost for an edge from the lower

right pixel to the upper right pixel. The cost is
∑4

i=1 �iU(i),
where U(i) is data cost for voxel i.

σ = 0.25 σ = 50 σ = 500

886,966 (3.45 s) 1,328,045 (9.70 s) 916,061 (9.14 s)

196,553 (0.86 s) 885,415 (6.67 s) 740,683 (7.54 s)

Table 1: Number of nodes visited using Dijkstra’s (first row) and

A* (second row) for the curvature experiments in Figure 6. Natu-

rally, the heuristic works best for low curvature regularization.

Data-dependent term. The function g in (2) is the data

term and it depends on the image. We view the image as a

function which is piecewise constant on all pixels (or vox-

els). The integral
∫
g(I, γ(s)) ds is then equal to a sum; see

Figure 5.

Connectivity. All of our 2D (3D) experiments are per-

formed with a mesh whose points are arranged in a square

(cubic) lattice. All points within a specified distance d are

connected with an edge. For example, d = 2.5 gives each

point a degree of 16.

3.1. Synthetic Experiments

The first experiments highlight the differences between

length and curvature. We manually sampled the river im-

age in Figure 6 at different locations and calculated the data

cost for every pixel as the shortest (Euclidean) distance in

L*a*b* space to any of the color samples of the river delta.

The start set is the upper boundary and the end set is the

lower boundary of the image.

Figures 6a and 6b present the results. Curvature regu-

larization yields a long path which does not turn much. No

amount of length regularization is able to find that path as

indicated by Figure 6a. The running times are compared in

Table 1 for Dijkstra’s and A*, and it is evident that large

speed-ups are obtained with A*.

Figure 7 shows an experiment where some edges have

been removed around the start and end sets in such a way

that the optimal analytical solution is a circle of maximum

radius. This experiment shows that low regularization radii

introduce significant bias when minimizing the squared cur-

vature. The first result that looked approximately like a cir-

cle was using 32-connectivity (d = 4).

Finally, in Figure 10 an experiment indicating the dif-

2027

(a) Length regularization;

mean time: 0.33 s.

(b) Curvature regularization;

mean time: 5.0 s.

(c) Visit order using Dijkstra’s. (d) Visit order using A*.

Figure 6: Segmentation of the Irrawaddy river delta in Burma. The

underlying mesh has 220,443 points (373 × 591) and 3,509,756

edges (16-connected). For both the length and curvature regu-

larization, we show the results with three different strengths of

the regularization. The blue path corresponds to low strength, red

stronger regularization, and green very strong regularization. Fig-

ures (c) and (d) show the order in which the nodes were visited for

medium curvature with and without A*, from blue (early) to red

(late). Photo by Jan Ševčı́k.

ference between a curve with curvature regularization and

torsion regularization is given. High torsion regularization

forces the curve to stay within a plane, but within the plane,

the curve may have high length and curvature. The graph

used for the torsion regularization had about 75 billion arcs.

The technique of not storing the graph explicitly is of course

imperative for such a graph.

3.2. 2D Retinal Images

Automated segmentation of vessels in retinal images is

an important problem in medical image analysis, which, for

example, can be used when screening for diabetic retinopa-

thy. We have investigated whether curvature regularization

is useful for this task on a publicly available dataset [18].

Figure 8 shows the experiment. We iteratively computed

shortest paths from a user-provided start point to any point

on the image boundary. A curve could start anywhere along

the previously found curves, but not end close to a previous

end point.

We performed experiments with different amounts of

length regularization (Figures 8b–8e). No or low length

regularization resulted in noisy, wiggling paths. This prob-

lem expectedly disappeared for medium regularization, but

sharp turns were still present in the solution (sharp turns

usually change direction in the vessel tree). When using too

high regularization (Figure 8e), the solution almost ignores

the data term and prefers paths along the image boundary.

(a) d = 1 (b) d = 4 (c) d = 10

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

10
2

Connectivity

In
te

gr
at

ed
 s

qu
ar

ed
 c

ur
va

tu
re

 r
el

. e
rr

or d=1

d=2
d=3

d=4
d=5

d=6

d=7
d=8

d=9
d=10

(d) Convergence of integrated squared curvature.

Figure 7: Circle experiment with a mesh size of 40×40. All points

within a distance d of each other are connected. The start and end

points have been chosen in such a way that the analytical solution

when minimizing the integrated squared curvature is a circle with

cost π/10.

In contrast, curvature regularization is able to more cor-

rectly capture the vessel tree. We knew this would be the

case from a theoretical analysis; this experiment shows that

the segmentation is feasible in practice.

3.3. 3D Coronary Artery Centerline Extraction

Finding the centerlines of coronary arteries is of high

clinical importance [14], but is very time consuming when

performed manually. We use a public data set [14] consist-

ing of 32 CT angiography scans to evaluate our method.

The CT volume size can be halved in each dimension

without the loss of any information [5]. Each segmentation

is initialized by manually specifying the start and end of

each vessel – information which is included in the dataset.

To further speed up the process we cut out a bounding box

encapsulating the start and end set.

To model the vessel we adopt the speed image S from

[5], which combines the probability of a voxel being a ves-

sel, measured by “vesselness” [13] and a soft threshold of

the image. We use (1− S)2 as our data cost.

The accuracy of the segmentation is reported as over-

lap [14], which is the fraction of the segmented curve inside

the ground truth vessel. The previously reported results in

the database vary between 70-98% overlap, with different

amounts of human interaction and model complexity. Most

reported methods use some variant of shortest paths. Ta-

2028

(a) Data term. (b) ρ = σ = 0. Mean time: 0.41 s. (c) Details of (b) and (f), respectively.

(d) ρ = 0.1, σ = 0. Mean time: 0.56 s. (e) ρ = 1, σ = 0. Mean time: 0.66 s. (f) ρ = 0, σ = 100. Mean time: 10.1 s.

Figure 8: Segmenting a vessel tree with 8 leaves in a 2D retinal image from the DRIVE [18] database. The green dots show the computed

best starting points for the new branches. The underlying mesh has 329,960 points (584 × 565) and 10,496,766 edges (32-connected).

The arrows point at sharp turns where the segmented vessel changes direction in the vessel tree and at particularly noisy parts. All length

regularizations (b-d) have various issues and curvature regularization (e) finds a reasonable tree.

ble 2 presents quantitative result on the training data of [14]

and compares length to curvature regularization. A example

where curvature regularization outperforms length is given

in Figure 9.

3.4. Multi-View Reconstruction of Space Curves

Curvature has previously been used to reconstruct space

curves from multiple calibrated views of a static scene [6],

but only using local optimization. Given start and end

points, we are now able to reconstruct the curves optimally.

Figure 11 shows an experiment on the same data as [6].

We reconstructed a tree iteratively in the same way as in

Figure 8 and, as expected, length regularization introduces

similar artifacts. Integrating the image along the projected

3D edge gives the edge cost for a single view. The data term

we used for an edge is simply the maximum of the cost over

all views.

Overlap

Median (mean)
Wins Regularization

Length 91% (74%) 10 ρ = 0 (3 · 10−4)

Curv. 94% (72%) 11 σ = 10−4 (7.2 · 10−3)

Table 2: Length and curvature regularization for coronary vessel

segmentation. We segmented each vessel in the training set of

[14] with length and curvature regularization. Like in Figure 9 we

tested different regularization strengths (10). For both length and

curvature we choose the strength giving the best result and applied

it to all vessels. The second column reports the number of vessels

for which length and curvature performed best, respectively, not

counting any vessel with less than 50% overlap (6 out of 28 ves-

sels) or ties (5 vessels). The number of wins is calculated using

the median regularization.

2029

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Length regularization ρ, with σ = 0.

O
v
er

la
p

10−4 10−3 10−2 10−1 100 101 102
0

0.2

0.4

0.6

0.8

1

Curvature regularization σ, with ρ = 0.

O
v
er

la
p

Figure 9: Example of coronary artery segmentation in 3D using length (left) and curvature (right). The start and end sets are indicated

by orange and green dots, respectively. Each plot shows three different regularizations, where the color corresponds to the strengths

displayed in the overlap plots. The black wireframe tube is the ground truth of the database [14]. Curvature regularization obtains a better

solution (88.66% overlap) than any length regularization does (max. 70.33% overlap). The mesh has 841,662 points (114× 107× 69) and

60,271,574 edges. The average segmentation times were 1.8 s and 36.2 s for length and curvature, respectively.

Figure 10: Synthetic 3D experiment for torsion with volume-

rendered data cost. Darker regions correspond to lower cost. The

start and end sets are indicated by orange and green dots, respec-

tively. We run the segmentation with either very high curvature

(yellow) or very high torsion regularization (red). The underlying

mesh has 32,560 points (22 × 74 × 20), 4,118,200 edges (146-

connected) and 538,717,792 edge pairs. Run times are 0.08 s for

curvature and 10.6 s for torsion (harder problems will take longer

time to solve).

(a) ρ = 10,

σ = 0
(b) ρ = 100,

σ = 0
(c) ρ = 0,

σ = 10

(d) 3D

Figure 11: Reconstructing a tree in 3D from 4 different views (only

one shown). Using length regularization gives similar artifacts

(sharp turns) as in Figure 8. The underlying mesh has 125,000

points and 24,899,888 edges (218-connectivity). Run times are 4.8

minutes for length and 13.8 hours for curvature. Data from [6].

2030

4. Conclusions
This paper has demonstrated the possibility of incorpo-

rating curvature and torsion to shortest path problems. The

fact that the discretized problem converges to the underlying

continuous problem follows from the fact that quadratic and

cubic splines approximate second and third-order deriva-

tives arbitrary well. We have also demonstrated conver-

gence in practice (Figures 4 and 7).

Although all of our methods find the global optimum in

polynomial time, using torsion can not be considered feasi-

ble, as we have only used it for quite small problems. On the

other hand, using curvature is not that expensive for many

problems and we believe we have demonstrated its useful-

ness for medical imaging problems, both in 2D (Figure 8)

and in 3D (Figure 9).

The quality of the solution depends a lot on the con-

nectivity of the mesh. Previous works have used 8-

connectivity [20] and the highest we have seen is 16 [7] with

approximate solutions. In contrast, we think that 16-

connectivity is the bare minimum and we have used 32-

connectivity for our two-dimensional medical experiments.

As demonstrated in Figure 7, low connectivities introduce

large discretization errors; these errors are also visible in the

solution curves.

Future work. The “vesselness” measures [4, 13] com-

monly used for blood vessel segmentation use the eigen-

values of the Hessian. An interesting avenue for future re-

search is to include the eigenvectors with anisotropic curva-

ture, resulting in a direction-aware curvature regularization.

This is also possible using our open-source framework1.

Acknowledgments. We gratefully acknowledge fund-

ing from the Swedish Foundation for Strategic Research

(FFL), European Research Council (grant no. 209480) and

Swedish Research Council (grant no. 2012-4215).

References
[1] A. Amini, T. Weymouth, and R. Jain. Using dynamic

programming for solving variational problems in vision.

IEEE Trans. Pattern Analysis and Machine Intelligence,

12(9):855–867, 1990.

[2] L. Cohen and R. Kimmel. Global minimum for active con-

tour models: A minimal path approach. Int. Journal Com-
puter Vision, 24(1):57–78, 1997.

[3] M. Fischler, J. Tenenbaum, and H. Wolf. Detection of roads

and linear structures in low-resolution aerial imagery us-

ing a multisource knowledge integration technique. Comput
Graph Image Process, 15(3):201–223, 1981.

1https://github.com/PetterS/curve extraction

[4] A. F. Frangi et al. Multiscale vessel enhancement filtering.

In MICCAI, Cambridge MA, USA, 1998.

[5] O. Friman, C. Kühnel, and H.-O. Peitgen. Coronary center-

line extraction using multiple hypothesis tracking and mini-

mal paths. In MICCAI, New York, USA, 2008.

[6] F. Kahl and J. August. Multiview reconstruction of space

curves. In Int. Conf. Computer Vision, Nice, France, 2003.

[7] M. Krueger, P. Delmas, and G. Gimel’farb. Robust and ef-

ficient object segmentation using pseudo-elastica. Pattern
Recognition Letters, 2013. In press.

[8] D. Lesage, E. Angelini, I. Bloch, and G. Funka-Lea. A re-

view of 3d vessel lumen segmentation techniques: models,

features and extraction schemes. Medical Image Analysis,

13(6):819–845, 2009.

[9] S. Masnou. Disocclusion: A variational approach using level

lines. IEEE Trans. on Image Processing, 11(2):68–76, 2002.

[10] D. Mumford. Elastica and computer vision. In C. Bajaj,

editor, Algebraic Geometry and its Applications. Springer,

1994.

[11] M. Péchaud, R. Keriven, and G. Peyré. Extraction of tubular

structures over an orientation domain. In Conf. Computer
Vision and Pattern Recognition, Miami, USA, 2009.

[12] A. Pressley. Elementary Differential Geometry. Springer,

second edition, 2010.

[13] Y. Sato et al. Three-dimensional multi-scale line filter for

segmentation and visualization of curvilinear structures in

medical images. Medical image analysis, 2(2):143–168,

1998.

[14] M. Schaap et al. Standardized evaluation methodology and

reference database for evaluating coronary artery centerline

extraction algorithms. Medical Image Analysis, 13/5:701–

714, 2009.

[15] T. Schoenemann, F. Kahl, S. Masnou, and D. Cremers. A lin-

ear framework for region-based image segmentation and in-

painting involving curvature penalization. Int. Journal Com-
puter Vision, 99(1):53–68, 2012.

[16] T. Schoenemann, S. Masnou, and D. Cremers. The elastic

ratio: Introducing curvature into ratio-based globally opti-

mal image segmentation. IEEE Trans. on Image Processing,

20(9):2565–2581, 2011.

[17] A. Shashua and S. Ullman. Structural saliency: The detec-

tion of globally salient structures using a locally connected

network. In Int. Conf. Computer Vision, Tampa Florida,

USA, 1988.

[18] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and

B. van Ginneken. Ridge based vessel segmentation in color

images of the retina. IEEE Transactions on Medical Imag-
ing, 23(4):501–509, 2004.

[19] P. Strandmark and F. Kahl. Curvature regularization for

curves and surfaces in a global optimization framework. In

EMMCVPR, St Petersburg, Russia, 2011.

[20] H. Wang. G-wire: A livewire segmentation algorithm based

on a generalized graph formulation. Pattern Recognition Let-
ters, 26(13):2042–2051, 2005.

[21] O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global

stereo reconstruction under second-order smoothness pri-

ors. IEEE Trans. Pattern Analysis and Machine Intelligence,

31(12):2115–2128, 2009.

2031

