
Weakly supervised learning of image partitioning
using decision trees with structured split criteria

Christoph Straehle
christoph.straehle@iwr.uni-heidelberg.de

Ullrich Koethe
ullrich.koethe@iwr.uni-heidelberg.de

Fred A. Hamprecht
fred.hamprecht@iwr.uni-heidelberg.de

HCI, University of Heidelberg

Abstract

We propose a scheme that allows to partition an image
into a previously unknown number of segments, using only
minimal supervision in terms of a few must-link and cannot-
link annotations. We make no use of regional data terms,
learning instead what constitutes a likely boundary between
segments. Since boundaries are only implicitly specified
through cannot-link constraints, this is a hard and noncon-
vex latent variable problem. We address this problem in a
greedy fashion using a randomized decision tree on features
associated with interpixel edges. We use a structured pu-
rity criterion during tree construction and also show how
a backtracking strategy can be used to prevent the greedy
search from ending up in poor local optima. The proposed
strategy is compared with prior art on natural images.

1. Introduction

This paper describes a new method to learn edge mod-

els from sparse user scribbles marking regions. Consider

Figure 1 and assume that we want to segment each kiwi.

Normally, scribbles as shown on the left would be used to

learn region appearance models that can then serve as po-

tential functions in energy-minimizing segmentation meth-

ods such as graph cuts. However, this does not work here

because the individual objects are indistinguishable by re-

gion appearance. Another popular approach would use the

scribbles as seeds for a suitable region growing algorithm

such as a seeded watershed or random walker. However,

such an approach would need a seed or scribble for each

and every object.

When region appearance alone is not informative, seg-

mentation must be based on an edge model. Our ambition

is to train such a model with minimal labeling effort on the

Figure 1. Segmentation example. Each connected component of

the user scribbles is treated as an individual label and the decision

tree is trained using must-link constraints inside each component

and cannot-link constraints between label components. The result-

ing tree learns an edge model consistent with the user-provided

constraints and successfully generalizes to the unlabeled part of

the image, where it segments many objects successfully.

user’s part. Traditional learning methods require the user

to place edge scribbles exactly on the desired edges. The

required localization accuracy makes this a time consuming

task. Section 1.1 describes recent proposals for a simplified

edge labeling. In contrast, we strive to use cheap region

scribbles like in Figure 1 to train edge models instead of the

usual region models.

Clearly, region scribbles cannot be used for edge learn-

ing directly because they are typically located far away from

edges. However, they provide a large number of constraints

that can control edge learning indirectly:

• Each pair of pixels from the same scribble defines a

must-link constraint, i.e. there must be at least one con-

necting path that does not cross any edge.

• Pixels from different scribbles define a cannot-link

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.232

1849

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.232

1849

constraint, i.e. any connecting path must cross at least

one edge.

We call this a “link-or-cut edge learning” problem. It turns

out that these constraints contain sufficient information for

successful training of an edge model, and we propose a

structured decision tree-type algorithm to solve this prob-

lem.

Since the training data does not contain direct edge anno-

tations, the training error cannot be defined as the fraction

of mis-classified pixels or edges. However, such a simplis-

tic criterion is unsuitable for segmentation quality assess-

ment anyway [30, 13]: It cannot penalize the global con-

sequences (big changes in the resulting connected compo-

nents) that may be caused by local errors such as a fine gap

in an object contour. Instead, we define the training error

in terms of a clustering quality score similar to the Rand

Index (eq. 1), which can be directly derived from the pair-

wise constraints. This has profound consequences for the

learning algorithm: Local decisions should be conditioned

on the state of the entire segmentation, and our new learning

algorithm reflects this requirement.

The proposed algorithm recursively builds a decision

tree that predicts the state of each edge of the image graph.

During tree construction we use a non-local split criterion

which takes into account the global connectivity conse-

quences of local edge predictions.

To summarize, the proposed algorithm relies on cheap

must-link and cannot-link annotations and has the following

virtues:

• it requires no region appearance terms,

• the number of segments need not be specified in ad-

vance,

• weak supervision in terms of sparse annotations is suf-

ficient and no explicit edge labels are needed,

• the training optimizes a global clustering score in a de-

cision tree.

To the best of our knowledge, this is the first time a de-

cision tree is trained using a non-local structured split crite-

rion.

1.1. Related Work

Previous work on edge learning includes many ap-

proaches which are based on training data with exact bound-

ary localization, e.g. [19, 34, 18, 23, 9]. The method pre-

sented in [26] learns an optimal edge labeling policy based

on context and gestalt features, but also requires dense

ground truth. An interesting approach using weaker super-

vision is the livewire method in [4] which snaps a path to

the most probable boundary predicted by a classifier which

is trained online. Another approach using weaker supervi-

sion is presented in [2]. The author learns an edge model

from inaccurate boundary annotations.

Small errors in the boundary predictions have large

global consequences when calculating the connected com-

ponents. To avoid this some authors introduce higher order

constraints (e.g. boundary closedness) to obtain a consis-

tent segmentation [16, 1, 17]. A novel take at edge learning

based on a non local clustering quality measure is used in

[28] to learn a neural network. A non-local warping error

that takes topological constraints into account is also pro-

posed in [13] but the authors also use a dense labeling dur-

ing neural network training.

The decision tree based edge learning algorithm that we

propose is related to [25]. The authors learn edge on/off

probabilities using a decision tree, but the method requires

a dense labeling as input and does not take the effect on the

connected components of the graph into account – it acts

locally. Our special split criterion is inspired for example

by [15] where a special loss function in the split nodes of a

decision tree is optimized. But in contrast to our approach

their objective is local, as is the case in [14]. The authors of

[20] have introduced a decision tree algorithm that works on

locally structured labels. We build on this idea and extend it

to a structured loss function on a complete image graph. In

[21] a decision tree is proposed whose intermediate learn-

ing state is used as a feature for further tree growing. This

is the basis for our proposed algorithm which evaluates a

structured split criterion with regard to the intermediate tree

state.

The must-link and cannot-link constraints that we use to

train our learning algorithm have also been used by [11, 32].

These algorithms partition an image graph into connected

components using said constraints. Both partitioning algo-

rithm use a single scalar value associated with each edge

whereas our method can take a multitude of edge features

into account and learns an edge model from the given con-

straints. The same type of partitioning constraints has been

considered in [12] where the authors introduce must-link

constraints in the context of the normalized cut algorithm.

In the context of the image foresting transform cannot-link

constraints have been investigated in [22]. To summarize,

must-link and cannot-link constraints haven been investi-

gated in the literature, but our approach is novel since we

use these constraits for weakly supervised boundary learn-

ing.

2. Problem Definition and Objective function
We consider a segmentation problem defined on a graph

G(E ,V) in which the nodes ni ∈ V correspond to the pix-

els of an image, and the edges (i, j) ∈ E correspond to the

pixel neighborhood of the image. We assume a suitable set

of edge features wijf (such as color gradients or structure

18501850

tensor eigenvalues on different scales) is available and can

be attributed to each edge (i, j). In addition we are given

a sparse constraint matrix C ∈ {−1, 0, 1}N×N that defines

whether a pair of pixels (i, j) must be in the same compo-

nent (Cij = 1), or in two different components (Cij = −1).

The decision variables xij ∈ {0, 1} determine whether an

edge (i, j) is removed from (xij = 0), or remains (xij = 1)

in the graph G. The objective function F (c,x) which we

seek to maximize depends on the set of constraints c and

the connected components or partitions π(x) implied by the

binary edge indicator variables xij :

F (c, π(x)) =

TP × TN − FP × FN
√
(TP + FP)(TP + FN)(TP + FP)(TN + FN)

(1)

where TP (c, π(x)) is the number of pairs of pixels which

are correctly (according to the constraints c) assigned to the

same component and FP (c, π(x)) is the number of pairs

of pixels which are incorrectly assigned to the same com-

ponent. TN(c, π(x)) and FN(c, π(x)) are the number of

true negative and false negative pairs respectively. Equa-

tion 1 is known as Matthews correlation coefficient [24].

Thus, in the optimum x̂ = argmaxx F (c, π(x)), the bi-

nary indicator vector x̂ corresponds to a partitioning of the

graph into a set of connected components π(x) that satisfy

the constraint matrix. Note that the number of connected

components defined by π(x) can be larger than the num-

ber of components defined by the constraints c: the uncon-

strained pixels of the image can be partitioned in many dif-

ferent ways.

2.1. Overview: global optimization using decision
trees

The objective function F (c, π(x)) defines a global ob-

jective which depends on the structure of the graph G. Max-

imizing F may be a simple task when the constraint set

is very small: many different possible edge assignments x
may partition the graph correctly. But depending on the size

of the constraint set and the structure of the graph the prob-

lem can become computationally infeasible. The objective

function is highly non-smooth and non-convex: switching

a single binary indicator variable xij – for example on the

boundary between two objects – may have a huge influence

on the value of F .

In contrast to existing approaches which use classifiers

to learn local pixel class probabilities or which learn pair-

wise boundary probabilities [25] from strong edge/no-edge

examples, our aim is to learn from weak labels: the learner

will be trained only from the constraint set c derived from

sparse user scribbles and the structure of the problem, the

pixel neighborhood graph G.

We have chosen to optimize Equation 1 using a greedy

method inspired by traditional decision trees. Decision trees

are constructed in the following fashion: Given a set of

examples Si associated with a decision tree node i, a tree

is built starting at the root node 0 by partitioning the set

of examples into two subsets SL and SR. The decision

how the set Si is partitioned depends on the parameters

θi for node i and the features of the samples. These pa-

rameters are obtained by optimizing a split criterion func-

tion θ̂i = argmaxθi CFi(SL, SR, θi;Si). Examples of such

split criteria CF include the Gini-Impurity or the Informa-
tion Gain. Important is the purely local dependency of the

split functions that are usually used – the function which

is optimized only depends on the split parameters θi of the

node i that is optimized and the set of training examples

Si over which this node optimizes and their associated fea-

tures.

We however propose to optimize a global function at

each split node. In other words, we condition the split crite-

rion function CFi on the parameters θ0, ..., θi−1 of all other

split nodes of the tree. Intuitively speaking, in each node we

optimize the split parameters θi of that node, given all split

decisions of all other nodes at the current state of the tree.

Formally we find the parameters of node i:

θ̂i = argmaxθi CFi(SL, SR, θi;Si, θ0, ..., θi−1)

In our case we seek to optimize the objective function F
over the connected components of a graph G obeying con-

straints on pairs of nodes. The samples and features of the

decision tree consist of edges and their associated features

on this graph.

2.2. Decision Tree Building Algorithm

Our algorithm seeks to discriminate object boundaries by

their features such that the boundaries satisfy a set of must-

link and cannot-link constraints. Tree construction starts by

trying to satisfy as many of the given constraints as pos-

sible by thresholding a single feature and thereby splitting

the edges of the graph into one set that is removed from

and another one that remains in the graph. The decision on

the split parameters θi of node i is optimized by sorting the

edges Si associated with decision tree node i on mtry differ-

ent feature values. For each of the mtry features all possible

split points are evaluated by first removing all edges Si as-

sociated with the decision tree node from the graph G. It is

important to realize that only the edges of the currently con-

sidered split node are removed, the presence and absence of

all other edges, as defined by the current state of the deci-

sion tree, remains unchanged. In a second step, the edges

associated with split node i are re-inserted into the graph

one after the other in the order of increasing feature weight.

After each edge insertion, its effect on the connected com-

ponents of the graph is efficiently evaluated using a union

18511851

Figure 2. Illustration of our decision tree building process. Starting at the root node (1) the edges are partitioned into two sets, one of which

is assigned xij = 1 (thick, edges stays in the graph) while the edges of the other partition are assigned xij = 0 (thin, edges are removed

from the graph). In the next steps this initial decision on the edge states is revised by partitioning the two edge sets recursively further into

an on and off set such that the objective function F (x, c) is maximized. The value of the objective function depends on the connected

components of the graph G that are induced by the edge state defined in the leaf nodes. The connected components are distinguished by

the node colors.

find data structure. In addition, we count how many true

positive and false positive pairs are generated with respect

to the global constraint set c which specifies which nodes

should be in the same component and which nodes should

be in different components. Using the TP , FP , TN and

FN counts we compute the value of the objective function

F and remember the best split position that we encountered

while inserting the edges into the graph. The same proce-

dure is executed in descending sort order. After determining

the feature and split position that yield the highest objective

function value, two child nodes are added to the currently

considered node i and the split parameters θi of the node are

set accordingly. These two child nodes determine the new

state of their associated edges until they are further refined

in a recursive fashion. The recursive partioning continues

until no further improvement in the objective function can

be made.

Splitting a node and the associated edge set further thus

re-optimizes the state of the edges associated with that node:

the final leaf node with which an edge is associated defines

the edge state within the tree. This process is illustrated in

Figure 2.

It is important to see that during this recursive partition-

ing the optimization in each leaf node involves only the

edges associated with that particular node. The state of the

other edges is determined by the already existing leaf nodes

and is assumed fixed. Thus each leaf node is optimized con-

ditioned on the graph state given by the current complete

decision tree.

While the insertion of edges and its effect on the con-

nected components of the graph can be computed very effi-

ciently, handling edge removal is more difficult. Handling

edge removal requires either extremely intricate algorithms

[27] or a linear scan over possibly all edges in G even

though the removed edge set is very small. For this rea-

son we compute the connected components of the graph a

single time once all edges associated with a decision tree

node are removed. We then trace all changes to the union

find data structure and to the TP , FP , TN and FN pair

counts caused by inserting an edge into the graph when we

test for a split position. This allows us to unwind all changes

once the objective function has been evaluated for all split

points along one feature and to efficiently begin testing for

better splits using the next feature without recomputing the

connected component state from scratch.

2.3. Backtracking for greedy global decision trees

It is intuitively clear that the greedy tree building proce-

dure that was outlined in the previous section may get stuck

in local minima: when partitioning the edge set recursively,

the sets assigned to the leaf nodes quickly get smaller and

the edges associated to one decision tree leaf are not nec-

essarily close to each other in the underlying graph. It be-

comes very likely that the edges in any single leaf are un-

able to form a linking path between two isolated connected

components regardless of their labeling – this implies that

it would be impossible to satisfy any constraint that would

require linking those components in the current state of the

decision tree. Similarily it becomes more unlikely that the

edges in small leaves are sufficient to build a cut across

a connected component – thus it can become impossible

to satisfy any constraint that would require splitting some

component into two isolated parts because the edges that

could form such a cut are distributed across different leaf

nodes of the decision tree. For these reasons, we propose

a novel backtracking scheme during decision tree building:

we allow for split nodes to be inserted at arbitrary posi-
tions in the tree, not only at the leaves of the tree. Since

we allow these nodes to be inserted at any tree level, these

split nodes can optimize over a larger set of edges com-

18521852

Figure 3. Illustration of split node insertion for backtracking. First

a random subtree of the decision tree is selected (green overlay).

Then a split node is inserted above this subtree whose split func-

tion is optimized under the assumption that the left partition below

the inserted node is passed onto the existing subtree, while the

right partition is passed to a new leaf node and is assigned either

to 0 or 1. The insertion of a split at a higher tree level effectively

optimizes over a larger set of samples compared to adding a split

ad a leaf node. The insertion split takes away some samples from

an existing part of a decision tree and overrides the existing subtree

partially.

pared to a node at a decision tree leaf. In the extreme case

of inserting such a node above the current root of the tree,

the new node can reoptimize over all edges of the graph.

This novel insertion split partitions the edge set arriving at

an inserted node into two parts, such that the left partition

is passed to the already existing subtree below the inserted

split node as before while the right partition is either as-

signed to xij = 0 or xij = 1. Thus an existing learned

combination of rules, defined by the subtree below the in-

serted node, is partially reused and the decision for a subset

of the edges below/above a feature threshold is reconsid-

ered.

The optimization of an inner node of the decision tree

is executed in the same manner as already described for a

leaf node. The only difference is that when scanning over

the edges in the partition in increasing/decreasing feature

weight order, not all edges are re-inserted into the graph. In-

stead, the current state of the edge xij which is determined

by the subtree of the node currently under consideration is

used as a mask. In a first trial only edges with current state

xij = 1 are re-inserted. This corresponds to overriding the

subtree for the edges right (increasing sort order) / left (de-

creasing sort order) of the split position with a xij = 0
assignment. In a second trial, only the edges with xij = 0
are removed from the graph before inserting all edges in in-

creasing/decreasing order. This corresponds to overriding

the subtree for some edges with a xij = 1 assignment left

or right of the split position.

2.4. Decision tree prediction algorithm

Once a decision tree has been built in the described man-

ner, it can be used to determine a segmentation of the graph

by predicting the binary indicator xij for all edges. Pre-

diction proceeds as in any normal decision tree: samples

(in our case edges (i, j)) are passed down the tree, starting

from the root node 0 by comparing the value wijf of edge

feature f with the split value that is stored in a tree node.

Edges with a smaller (larger) feature value are passed to the

left (right) child of the current node. Once a leaf node is

reached, the x label of this leaf node is assigned to the edge.

Now all edges with xij = 1 are switched on in the graph

and its connected components are determined.

In an unsupervised segmentation setting, the resulting

connected components of the graph are the final output.

In a foreground/background segmentation setting as

shown in Figure 6, the number and type of user labels that

are located inside each component are determined and the

component is labeled with the winning label. Since not nec-

essarily all induced components contain user given labels,

the unlabeled components are assigned a label by determin-

ing the closest (node distance) labeled component in the ad-

jacency graph.

3. Experiments
Unfortunately, at present there is no suitable benchmark

for the sparse must-link/cannot-link edge learning problem

that we propose. To indicate the usefulness of the proposed

method we apply our method to a related benchmark dataset

[31] and show that our method is applicable to a range of

typical unsupervised segmentation problems. Examples of

such problems are given in Figure 1 and Figure 4.

Edge features: a range of simple local filters such

as Gaussian smoothing, Hessian eigenvalues and Gra-

dient magnitude computed over several scales (σ =
1.0, 1.3, 1.6, 2.5) have been used as interpixel edge features.

To obtain features that can be associated with an interpixel

edge, these pixel features have been linearly interpolated

from two neighboring pixels.

Postprocessing: When our algorithm satisfies a cannot-

link constraint between nodes, it does so by introducing a

closed boundary between these nodes. This boundary often

consist of many isolated 1-pixel components, as can be ob-

served in Figure 4. This thick boundary is a result of the am-

biguity in the data. A simple way to obtain a visually more

pleasing segmentation as in Figure 1 is to perform a seeded

region growing from all large regions, and to reassign the

1-pixel components to the nearest larger component.

Analysis of training and test error is given in Figure 5.

The scores were obtained by sparsely labeling all objects in

the images of Figure 1 and Figure 4 and splitting the indi-

vidual images into two parts. Training was done on the left

half and testing on the right half and vice versa. The two ex-

amples with inhomogenous boundary appearance (apples,

kiwis) profit from deeper trees, as can be seen from the test

score which increases until a depth of 4. The examples with

homogenous boundary appearance (cells, neural tissue) do

not profit from more decision tree levels - the tree starts to

18531853

Figure 4. Segmentation examples of different characteristics, all

segmented with the same parameter settings. The last two rows

show yeast cells in light microscopy, and dendrites in electron mi-

croscopy [6, 7], respectively. Individual objects do not differ in

appearance and can be discriminated via their boundaries only.

These are learned in a weakly supervised fashion from the con-

nectivity constraints that are implicit in the seeds. In contrast to

seeded segmentation only a subset of objects need to be marked

and the learned classifier can be applied to similar images. Region

types that are not represented in the training set (no labels) receive

an incoherent prediction (bottom example, arrows).

overfit after the first level. This ovefitting behaviour of sin-

gle decision trees is well known. In the future we intend to

remedy this problem by training an ensemble of randomized

trees which are trained on different subsets of the training

data.

Quantitative evaluation: In addition to the qualita-

tive examples, we test our algorithm on the LHI [31] in-

teractive segmentation benchmark. The Benchmark con-

sists of several natural images and provides ground truth

and three different types of foreground/background user

Figure 5. The plots show the training and testing score over the de-

cision tree depth. The two examples with inhomogenous boundary

appearance (apples, kiwis) profit from deeper trees, as can be seen

from the test score which increases until a depth of 4. The exam-

ples with homogenous boundary appearance (cells, neural tissue)

do not profit from more decision tree levels - the tree starts to over-

fit after the first level.

Bai et al. [3] 0.50

Gradi [10] 0.56

Couprie et al.[8] 0.58

our algorithm w/o. insertion splits 0.68

Boykov et al. [5] 0.69

our algorithm 0.71

Unger et al. [29] 0.73

Zhao et al.[33] 0.79

Table 1. Quantitative Evaluation on the LHI interactive segmen-

tation dataset [31]. The dataset consist of several foreground-

background segmentation tasks with varying seed quality (see Fig-

ure 6 for examples). Results for other algorithms were taken from

[33].

scribbles with varying difficulty. We adapt the problem

to our algorithm by introducing must-link constraints for

all foreground-foreground label pairs and all background-

background label pairs. In addition we introduce cannot-

link constraints for all mixed foreground-background label

pairs. We ran the benchmark on all three kinds of user scrib-

bles and calculated the average foreground object precision

(S+
gt

⋂
S+
res/S

+
gt

⋃
S+
res) over all images.

The results show that our purely edge based decision

tree achieves a segmentation quality that surpasses many

established methods, without learning local class probabil-

ities (unary potentials describing region appearance) from

the user labels. These local class probabilities usually work

very well on the benchmark images. In addition the other

methods rely on a hand-crafted edge probability. We show

experimentally that it is possible to achieve the same seg-

18541854

mentation quality without relying on local class probabili-

ties and without hand-crafting binary potentials for edges.

Our method exclusively relies on the edge probabilities

learned from sparse user scribbles.

4. Conclusion

We propose “link-or-cut edge learning”, i.e. to learn

an edge model from sparse region scribbles interpreted as

must-link and cannot-link constraints. To solve this prob-

lem, a novel global structured learning scheme based on de-

cision trees is introduced. We explain how decision trees

can be trained using a global structured loss criterion and

show how they can be used to learn an edge model on an

image graph. In addition, we show how local minima dur-

ing tree construction can be overcome by a split node in-

sertion that reuses the already learned decision structure.

When applied to interactive foreground/background seg-

mentation problems on natural images, the proposed algo-

rithm produces results comparable to other methods which

do rely on local appearance models. The real strength of

the proposed method, however, does not lie in the fore-

ground/background segmentation, but in the discrimination

of multiple, and possibly similarly-looking foreground ob-

jects. Unfortunately the presented approach does have some

limitations which we want to discuss. A current limitation

is the reliance on axis-orthogonal splits. If there is no sin-

gle feature that can discriminate the edges around an object

relatively well, the algorithm cannot construct a closed cut

around this object and cannot escape from this situation –

the objective function only improves, if an object is com-

pletely separated from its cannot-link partners. The same

problem holds for the must-link constraint: if there is no

single feature that can be used to build a linking path be-

tween two must-link partners, the objective function cannot

be improved.

In future work we hope to remedy some of these prob-

lems, either by using a relaxed version of the objective func-

tion that allows to increase the objective value also by par-

tially separating a node. In addition one could introduce

oblique splits that may prevent some of the problems since

the algorithm could construct a suitable linear combination

of existing features. Another promising avenue is to ex-

tend the supervised segmentation learning algorithm using

region homogeneity priors.

References

[1] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Ham-

precht. Probabilistic image segmentation with closedness

constraints. In ICCV, 2011. 2

[2] S. Bagon. Boundary driven interactive segmentation. In In-
formation Science and Applications (ICISA), 2012. 2

[3] X. Bai and G. Sapiro. Geodesic matting: A framework for

fast interactive image and video segmentation and matting.

IJCV, 2009. 6

[4] W. A. Barrett and E. N. Mortensen. Interactive live-wire

boundary extraction. Medical Image Analysis, 1997. 2

[5] Y. Boykov and M. Jolly. Interactive graph cuts for optimal

boundary & region segmentation of objects in nd images. In

ICCV, 2001. 6

[6] A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng,

J. Pulokas, P. Tomancak, and V. Hartenstein. An integrated

micro-and macroarchitectural analysis of the drosophila

brain by computer-assisted serial section electron mi-

croscopy. PLoS biology, 2010. 6

[7] A. Cardona, S. Saalfeld, J. Schindelin, I. Arganda-Carreras,

S. Preibisch, M. Longair, P. Tomancak, V. Hartenstein, and

R. J. Douglas. Trakem2 software for neural circuit recon-

struction. PLoS One, 2012. 6

[8] C. Couprie, L. Grady, L. Najman, and H. Talbot. Power wa-

tersheds: A new image segmentation framework extending

graph cuts, random walker and optimal spanning forest. In

ICCV, 2009. 6

[9] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of

edges and object boundaries. In CVPR, 2006. 2

[10] L. Grady. Random walks for image segmentation. PAMI,
2006. 6

[11] P. He, X. Xu, and L. Chen. Constrained clustering with local

constraint propagation. In ECCV. Workshops and Demon-
strations, 2012. 2

[12] M. Heiler, J. Keuchel, and C. Schnörr. Semidefinite clus-

tering for image segmentation with a-priori knowledge. In

DAGM, 2005. 2

[13] V. Jain, B. Bollmann, M. Richardson, D. R. Berger, M. N.

Helmstaedter, K. L. Briggman, W. Denk, J. B. Bowden, J. M.

Mendenhall, W. C. Abraham, et al. Boundary learning by

optimization with topological constraints. In CVPR, 2010. 2

[14] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific train-

ing of non-parametric image restoration models: A new state

of the art. In ICCV, 2012. 2

[15] J. Jancsary, S. Nowozin, T. Sharp, and C. Rother. Regression

tree fieldsan efficient, non-parametric approach to image la-

beling problems. In CVPR, 2012. 2

[16] S. Kim, S. Nowozin, P. Kohli, and C. Yoo. Higher-order

correlation clustering for image segmentation. NIPS, 2011.

2

[17] S. Kim, S. Nowozin, P. Kohli, and C. Yoo. Task-specific

image partitioning. Image Processing, IEEE Transactions
on, 22(2):488–500, 2013. 2

[18] I. Kokkinos, R. Deriche, O. Faugeras, and P. Maragos. Com-

putational analysis and learning for a biologically motivated

model of boundary detection. Neurocomputing, 2008. 2

[19] S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. Sta-

tistical edge detection: Learning and evaluating edge cues.

PAMI, 2003. 2

[20] P. Kontschieder, S. Buló, H. Bischof, and M. Pelillo. Struc-

tured class-labels in random forests for semantic image la-

belling. In ICCV, 2011. 2

18551855

Figure 6. Supervised segmentation example. The images shown are two examples from the LHI interactive segmentation benchmark,

also displayed are the benchmark provided scribbles. Our decision tree iteratively partitions the image graph into connected components

(indicated by same color). In each tree level (1,2,3) the decisions are refined such that a global objective function over the image graph is

optimized that enforces the pairwise connectivity and exclusion constraints that are implicitly defined by the labels.

[21] P. Kontschieder, S. Rota, A. Criminisi, H. Bischof, P. Kohli,

and Pelillo. Context-sensitive decision forests for object de-

tection. In NIPS, 2012. 2

[22] F. Malmberg, R. Strand, and I. Nyström. Generalized hard

constraints for graph segmentation. In Image Analysis. 2011.

2

[23] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect

natural image boundaries using local brightness, color, and

texture cues. PAMI, 2004. 2

[24] B. W. Matthews. Comparison of the predicted and observed

secondary structure of t4 phage lysozyme. Biochimica et
Biophysica Acta (BBA)-Protein Structure, 1975. 3

[25] S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and

P. Kohli. Decision tree fields. In ICCV, 2011. 2, 3

[26] N. Payet and S. Todorovic. Sledge: Sequential labeling of

image edges for boundary detection. International Journal
of Computer Vision, 104(1):15–37, 2013. 2

[27] M. Thorup. Near-optimal fully-dynamic graph connectivity.

In Proceedings of the thirty-second annual ACM symposium
on Theory of computing, 2000. 4

[28] S. Turaga, K. Briggman, M. Helmstaedter, W. Denk, and

H. Seung. Maximin affinity learning of image segmentation.

arXiv preprint arXiv:0911.5372, 2009. 2

[29] M. Unger, T. Pock, W. Trobin, D. Cremers, and H. Bischof.

Tvseg-interactive total variation based image segmentation.

In BMVC, 2008. 6

[30] R. Unnikrishnan, C. Pantofaru, and M. Hebert. A measure

for objective evaluation of image segmentation algorithms.

In CVPR Workshops, 2005. 2

[31] B. Yao, X. Yang, and S. Zhu. Introduction to a large-scale

general purpose ground truth database: methodology, anno-

tation tool and benchmarks. In Energy Minimization Meth-
ods in Computer Vision and Pattern Recognition, 2007. 5,

6

[32] S. Yu and J. Shi. Segmentation given partial grouping con-

straints. PAMI, 2004. 2

[33] Y. Zhao, S. Zhu, and S. Luo. Co3 for ultra-fast and accurate

interactive segmentation. In Proceedings of the international
conference on Multimedia, 2010. 6

[34] S. Zheng, A. Yuille, and Z. Tu. Detecting object boundaries

using low-, mid-, and high-level information. Computer Vi-
sion and Image Understanding, 2010. 2

18561856

