
Large-Scale Multi-Resolution Surface Reconstruction from RGB-D Sequences

Frank Steinbrücker, Christian Kerl, Jürgen Sturm, and Daniel Cremers
Technical University of Munich

Boltzmannstrasse 3, 85748 Garching
∗{steinbrf,kerl,sturmju,cremers}@in.tum.de

Abstract

We propose a method to generate highly detailed, tex-
tured 3D models of large environments from RGB-D se-
quences. Our system runs in real-time on a standard desk-
top PC with a state-of-the-art graphics card. To reduce the
memory consumption, we fuse the acquired depth maps and
colors in a multi-scale octree representation of a signed dis-
tance function. To estimate the camera poses, we construct
a pose graph and use dense image alignment to determine
the relative pose between pairs of frames. We add edges be-
tween nodes when we detect loop-closures and optimize the
pose graph to correct for long-term drift. Our implementa-
tion is highly parallelized on graphics hardware to achieve
real-time performance. More specifically, we can recon-
struct, store, and continuously update a colored 3D model
of an entire corridor of nine rooms at high levels of detail
in real-time on a single GPU with 2.5GB.

1. Introduction
Reconstructing the geometry and texture of the world

from a sequence of images is among the fascinating chal-

lenges in computer vision. Going beyond the classical

problem known as Simultaneous Localization and Mapping

(SLAM) or Structure-from-Motion (SFM), we want to esti-

mate the camera poses, the scene geometry and the scene-

texture.

While impressive progress in this domain has been

achieved over the last decade [2, 1, 9, 5], many of these

approaches are based on visual keypoints that are recon-

structed in 3D, which typically leads to sparse reconstruc-

tions in form of 3D point clouds. More recent methods

based on depth images such as KinectFusion [12] aim at

dense reconstruction using 3D voxel grids, which how-

ever requires a multiple in terms of memory and com-

putational complexity. Various methods have been pro-

posed to overcome this limitation, for example, by using

∗This work has partially been supported by the DFG under contract

number FO 180/17-1 in the Mapping on Demand (MOD) project.

Input Image Reconstructed model

Reconstructed view Octree Structure

Figure 1: Reconstruction of an office floor consisting of 9

rooms over an area of 45m×12m×3.4m.

rolling reconstruction volumes [14, 19] or octree data struc-

tures [7, 21]. However, in contrast to our approach, all of

the above works are either not real-time [7], lack texture

estimation [21], or do not support revisiting already tesse-

lated volumes [14, 20]. Our approach integrates all of these

features in a single system running at more than 15 Hz.

To estimate the camera poses, classical structure-from-

motion approaches match visual features across multiple

images and optimize the camera poses to minimize the re-

projection errors. In contrast, recently upcoming dense

methods aim at aligning the full image by minimizing the

photometric error over all pixels [3, 13, 15, 18], thereby ex-

ploiting the available image information better than feature-

based methods. It is important to note that approaches

that track the camera pose with respect to the recon-

structed model (such as all existing KinectFusion-based

methods [12, 21, 20]) are inherently prone to drift. In

contrast, we integrate dense image alignment in a SLAM

framework to effectively reduce drift while keeping the ad-

vantages of dense image registration.

Our key contributions are:

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.405

3257

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.405

3264

1. a fast, sparse, multi-resolution tree structure for geom-

etry and texture reconstruction of large-scale scenes,

2. a SLAM system based on a dense image alignment to

estimate a drift-free camera trajectory, with superior

performance to several state-of-the-art methods.

An example of a reconstructed model of a large office

floor is given in Figure 1: As it can be seen, the resulting

model is globally consistent and contains fine details, while

it still fits completely in the limited memory of a state-of-

the-art GPU.

This paper is organized as follows: In Section 2, we de-

scribe how we achieve memory-efficient surface reconstruc-

tion using octrees on the GPU. In Section 3, we present how

we extend dense tracking to compensate for drift by the de-

tection of loop closures. In Section 4, we present an evalu-

ation of our approach on various datasets, and close with a

conclusion in Section 5.

2. Multi-Resolution Surface Reconstruction
In this section, we describe our approach to memory-

efficient surface reconstruction. First, we provide a brief

introduction to implicit surface representations based on

signed distance functions. Subsequently, we replace the

regular grid by an adaptive octree and a narrow-band tech-

nique to significantly reduce the memory consumption.

2.1. Signed Distance Volume

Following the works of [4, 12], we store our surface im-

plicitly as a signed distance function in a 3D volume. The

volume is approximated by a finite number of voxels. At

every point in the volume the function indicates how far

away the closest surface is. Points in front of an object have

a negative sign and points inside a positive one. The zero

crossing indicates the location of the surface. When con-

sidering a geometry that is updated and changed over time,

the signed distance representation has the benefit of being

able to handle arbitrary changes in the surface topology, in

constrast to e.g. a surface mesh.

The signed distance function is incrementally con-

structed from a sequence of RGB-D images and associated

camera poses. Given an RGB-D image at time t with a color

valued image Ict and depth mapZt, the camera pose Tt, and

the intrinsic camera parameters, we integrate it into the vol-

ume using the following procedure.

For every voxel in the volume, we compute its center

point in the camera frame pc

pc = Tt p. (1)

Afterwards, we determine the pixel location x of the voxel

center pc in the depth map Zt using the projection function

of the standard pinhole camera model, i.e., x = π(pc). The

measured point is reconstructed using the inverse projection

function π−1(x, Z):

pobs = π−1(x,Zt(x)). (2)

The value of the signed distance function at the voxel center

is determind by

ΔD = max{min{Φ, |pc| − |pobs|},−Φ}. (3)

The choice of the truncation threshold Φ depends on the ex-

pected uncertainty and noise of the depth sensor. The lower

Φ is, the more fine scale structures and concavities of the

surface can be reconstructed. If Φ is too low however, ob-

jects might appear several times in the reconstruction due

to sensor noise or pose estimation errors. We chose it to

be twice the voxel scale of the grid resolution for the ex-

periments in this paper. Furthermore, we compute a weight

for the measurement ΔD using the weight function w(ΔD),
that expresses our confidence in the distance observation ac-

cording to our sensor model. Figure 2 visualizes the trun-

cated signed distance and the weight function used in our

experiments. The distance D(p, t) and the weight W (p, t)
stored in the voxel are updated using the following equa-

tions:

W (p, t) = w(ΔD) +W (p, t− 1), (4)

D(p, t) =
D(p, t− 1)W (p, t− 1) + ΔDw(ΔD)

w(ΔD) +W (p, t− 1)
. (5)

Similar to the distance update we compute the new voxel

color C(p, t) as

C(p, t) =
C(p, t− 1)W (p, t− 1) + Ict (x)w(ΔD)

w(ΔD) +W (p, t− 1)
. (6)

We use a weighting function that assigns a weight of 1

to all pixels in front of the observed surface, and a linearly

decreasing weight behind the surface (cf. Figure 2):

w(ΔD) =

⎧⎨
⎩

1 if ΔD < δ
Φ−ΔD

Φ−δ if ΔD ≥ δ and ΔD ≤ Φ.

0 if ΔD > Φ
(7)

For the experiments in this paper we chose the value 0.005

for δ, which is one tenth of the voxel resolution.

2.2. Sparse Representation of the Distance Values

One of the key observations leading to a sparse geometry

representation is the fact that all distance values at positions

p, that have an associated weight W (p, t) = 0, do not need

to be stored explicitly. As we require online-capability for

our system, it is not feasable to perform an update in ev-

ery voxel for the fusion of every new depth map. We rather

want to restrict the computation effort to those parts in space

32583265

−2 −1 0 2

−1

0

1

δ Φ

distance from surface

ΔD

w

Figure 2: Visualization of the truncated signed distance

function and the linear weighting function.

that are actually being updated. Therefore, we need to infer

which voxels need to be updated from the camera pose and

the depth map recorded at that pose. A naive narrow-band

approach of a voxel array, storing the data for the voxel as

well as its position, would require an iteration over all vox-

els to find the ones that need to be updated and therefore

contradict this demand. Another naive approach of storing

a full pointer-grid would save us the computation time for

unnecessary voxel updates, but already a 4 byte pointer ar-

ray of size 10243 requires 4GB of memory. For a 5mm

resolution, this alone would restrict the scene to (5m)3, not

even accounting for the actual distance, weight, and color

values. To overcome both problems we propose to use an

octree data structure to store the values: In a tree, the re-

trieval of voxels required for update is feasible in logarith-

mic time and the memory required for storage of the tree is

linear in the amount of leaves.

Multiscale Approach For disparity-based depth sensors,

the depth Z in each pixel is a reciprocal function of a mea-

sured disparity value d. In a standard pinhole camera model,

this dependency is given as

Z =
fB

d
, (8)

where f is the focal length and B the baseline. A common

assumption is that the disparity measurements of the sensor

lie in the interval

[d− σ, d+ σ] (9)

around the true disparity d. Substituting (8) in (9) and ap-

plying a first order Taylor expansion in σ we get the depth

interval [
Z +

Z2

fB
,Z − Z2

fB

]
. (10)

For further information on this topic we refer to [8]. As (10)

shows the error of the depth measurement grows quadrati-

cally with the measured depth. Accordingly, we update the

signed distance function at a coarser resolution for points

far away from the camera, saving memory. To store val-

ues at a lower resolution we allocate leaves at intermediary

Figure 3: Example of a small octree. We store the geometry

at multiple levels of resolution.

. . .

.

. 00 77
branch array

leaf array

leaves sub-branches

k k + 1root

distance weight color

queue

Q P S

0 1 2

Figure 4: Octree representation in memory. We store all

branches in one array. One branch comprises 8 pointers to

sub-branches and 8 pointers to its leaves. All leaves are

stored in a second array. For fast access during the integra-

tion of a new RGB-D image a queue maintains pointers to

the leaves that have to be updated.

branches that are located higher in the tree. The estimated

error interval described above is used to determine the scale,

i.e., the octree level.

Structure of the Tree In an octree every branch has 8

children, either leaves or sub-branches, due to the binary

sub-division in every dimension. The spatial structure is

depicted in Figure 3. In our representation every intermedi-

ary branch contains not only its children, but also 8 leaves to

enable storage of our multi-scale signed distance function.

Figure 4 depicts the memory layout of our octree on the

GPU. We store the branches in a 4 byte pointer array. Each

branch has 8 pointers for its sub-branches and 8 pointers

for its leaf nodes. The branch pointers hold offsets into the

same array. In contrast, the leaves are stored in a separate

array. Every leaf is a brick containing 83 voxels. Each voxel

contains its current distance, color and weight. In total, each

voxel requires 14 bytes of memory. Additionally, we store

some meta data for every brick comprising the position in

32593266

the volume, the scale, and a pointer into the update queue.

Overall one brick occupies 7,180 bytes , 512*14 bytes for

the voxels, 3*2 bytes for the position of the brick, 2 bytes

for its scale, and 4 bytes for its queue index. The queue

contains pointers to all leaves, which have to be updated to

integrate a new RGB-D image. In the following we explain

the steps to fuse a new RGB-D image into the octree.

Traversal of a Depth Map in the Tree As explained in

Section 2.1, for a given depth map and camera pose, only

the voxels around the surface of that depth map are assigned

with positive weights and are thus updated. Therefore, only

a small number of voxels, the so-called “narrow band” need

to be allocated on the first access and updated later on.

For a depth map, we iterate over all pixels in parallel

on the GPU. If a pixel contains a valid depth measurement,

we compute its corresponding point in 3D with the given

camera pose and intrinsic parameters. Depending on the

measured depth, we compute the bandwidth and the leaf

scale for this point. Then we intersect a box with a side

length of twice the bandwidth around the point with the tree.

As it would be too computationally expensive to traverse

the tree from top to bottom for every leaf intersecting the

box, we perform a depth-first-search on the tree. The only

values that need to be stored in this search for every level

in the tree are a 4 byte index of the current branch and one

byte for the children remaining to be searched in that level.

These 5 bytes per level comfortably fit into the shared and

register memory of newer GPUs.

For every branch, we check which child branches inter-

sect the box and allocate them if necessary. Once we reach

the desired leaf level in our search, we check whether the

desired leaf has already been allocated (i.e. the correspond-

ing index in the branch array has been set) and allocate

it otherwise. After the leaf has been allocated, we check

whether it is already in the queue and if not, insert its leaf

index at the end of the queue and update the queue index in

the leaf structure.

Note that we already allocate all GPU memory during

initialization to avoid memory allocation during reconstruc-

tion. Allocating new branches and leaves in the tree and

adding leaves to the queue are both performed by atomic

additions on three global counter variables.

Update of the Distance, Weight, and Color Values Af-

ter the traversal step all new branches and leaves intersect-

ing the band of the current surface have been allocated

and all the leaves, previously allocated and newly allocated

ones, have been placed in the queue.

Given the index, position, and scale of every leaf we now

efficiently update the position, weight, and color values in

every voxel in the queue according to equations (4), (5) and

(6). This step is performed in parallel for all voxels, with

one thread block per leaf in the queue. The update involves

reading the leaf index and the leaf position and scale under

that index from memory, which is an O(1) operation. Pro-

jecting the voxel positions into the images is done with high

efficiency using the GPU texture hardware.

Growing the Tree In a large-scale setting, its not feasable

to compute the bounding box of the final reconstruction

beforehand. Therefore, we start with the geometry of one

depth map and subsequently grow the tree, if the geometry

of a new depth map exceeds the current bounding volume.

This involves adding a new root node, inserting the cur-

rent root node as one of its children, shifting all branches

and adding an increment to all leaf positions. This is an

O(n) operation in the number of leaves, however it amor-

tizes over the number of images because the tree will only

grow an O(log n) number of times.

To summarize, we introduced in this section our dense

reconstruction algorithm using a sparse, adaptive tree struc-

ture. It allows us to fuse large-scale RGB-D sequences in

terms of structure and texture with high spatial resolution.

3. Dense RGB-D SLAM
The surface reconstruction approach described above re-

quires an accurate camera pose for each RGB-D image in

the sequence. Our goal is to estimate the camera motion

solely from this sequence. The motion estimation algo-

rithm comprises two main parts: We employ a dense im-

age alignment method to find the relative transformation

between two RGB-D frames. Based on this, we construct

a pose graph and add loop-closure edges where we detect

them. After construction, we optimize the pose graph to

compensate for drift and to obtain a metrically correct cam-

era trajectory.

3.1. Dense Alignment of RGB-D Frames

We seek to estimate the camera motion T ∗ between two

consecutive grey valued intensity images I1 and I2 with

corresponding depth maps Z1,Z2. Our dense motion es-

timation algorithm is based on the following ideas: For

every scene point p observed from the first camera pose

with an associated intensity and given the correct motion

T ∗ we can compute its pixel location in the second inten-

sity image. In the ideal case we can formulate the photo-

consistency constraint, that the intensity measurement in

the first image I1(x) should be equal to the intensity mea-

sured at the transformed location x′ in the second image,

i.e., I1(x) !
= I2(x′). This constraint should hold for every

pixel. Therefore, we can use it to compute the camera mo-

tion T ∗ given two intensity images and one depth map. A

similar constraint can be formulated for the depth measure-

ments. For every scene point observed from the first camera

32603267

pose, we can predict the measured depth value and pixel lo-

cation in the second depth map given the correct motion T ∗.
Using this constraint we can compute the motion T ∗ given

two depth maps. In the following we formalize these ideas

into a non-linear minimization problem to estimate the cam-

era motion T ∗ from two RGB-D pairs.

Photometric and Geometric Error We define the pho-

tometric error as:

eI(T ,x) = I2
(
π(T p)

)− I1(x) (11)

where T is the rigid body motion represented as 4×4 homo-

geneous transformation matrix, π(p) is the projection func-

tion of the pinhole camera model, and p is the 3D point re-

constructed from pixel x and its depth measurement Z1(x)
using the inverse projection function π−1(x, Z). Similarly,

the geometric error is given as:

eZ(T ,x) = Z2

(
π(T p)

)− [
T p

]
Z

(12)

where [p]Z extracts the Z coordinate of a point p. The

parametrization of the rigid body motion as a transforma-

tion matrix is problematic for optimization as it has 16 pa-

rameters, but only six degrees of freedom. Therefore, we

use the minimal twist parametrization ξ provided by the

Lie algebra se(3) associated with the group of rigid body

motions SE(3). The transformation matrix is related to the

twist parameters by the matrix exponential: T = exp(ξ̂).

Non-linear Minimization We adapt the probabilistic

framework proposed in [10] to combine the photometric

and geometric error. This stands in contrast to [18, 19]

where the terms are additively combined using a heuris-

tically chosen weight. To this end, we assume the com-

bined error r = (rI , rZ)T to be a bivariate random variable

following a t-distribution, i.e., r ∼ pt(μr,Σr, ν). The t-

distribution has mean μr , scale matrix Σr , and ν degrees

of freedom. We fix the mean to zero and the degrees of free-

dom to five. By minimizing the negative log-likelihood of

p(ξ | r) we obtain the following non-linear, weighted least

squares problem:

ξ∗ = argmin
ξ

n∑
i

wi r(ξ,xi)
T Σ−1

r r(ξ,xi) (13)

where n is the number of pixels. The per pixel weight wi is

defined as:

wi =
ν + 1

ν + ri Σ
−1
r ri

. (14)

The resulting normal equations are:

AΔξ = b
n∑
i

wiJ
T
i Σ

−1
r JiΔξ = −

n∑
i

wiJ
T
i Σ

−1
r ri

(15)

where Ji is the 2×6 Jacobian matrix containing the deriva-

tives of the photometric and geometric error with respect to

the motion parameters ξ. We iteratively update and solve

the normal equations for parameter increments Δξ. The

scale matrix Σr of the error distribution and the weights

are re-estimated at every iteration. Furthermore, we em-

ploy a coarse-to-fine scheme to account for a larger range

of camera motions.

Parameter Uncertainty We assume the estimated pa-

rameters ξ to be normally distributed with mean ξ∗ and co-

variance Σξ. The inverse of the A matrix in the normal

equations gives an estimate of the parameter covariance,

i.e., Σξ = A−1.

3.2. Keyframe-based Pose SLAM

The presented visual odometry method has inherent

drift, because of a small error in every frame-to-frame

match, that accumulates over time. The elimination of the

drift is an important prerequisite to obtain a metrically cor-

rect reconstruction. Therefore, we embed our dense visual

odometry method into a SLAM system.

To eliminate local drift, we match the latest frame against

a keyframe instead of the previous frame. As long as the

camera stays close enough to the keyframe, no drift is accu-

mulated. From all keyframes we incrementally build a map

of the scene. Whenever a new keyframe is added to the map,

we search for loop closures to previously added keyframes.

The loop closures provide additional constraints, which al-

low to correct the accumulated drift. In the following we

describe a consistent measure to select new keyframes and

detect loop closures. Afterwards, we describe our map rep-

resentation and global optimization.

Keyframe Selection Different strategies for keyframe se-

lection exist. Common approaches use a threshold on a dis-

tance measure, e.g., the number of frames or translational

distance between the frames. In contrast, we want a mea-

sure taking into account how well the motion between the

current keyframe and latest frame could be estimated. The

naive approach of comparing the final error values (cf. (13))

is not applicable, because the scale matrix Σr varies be-

tween different frame pairs.

In contrast, we found a relationship between the entropy

of the parameter distribution H(ξ) and the trajectory error.

The differential entropy of a random variable x having a

multivariate normal distribution with m dimensions and co-

variance Σ is defined as:

H(x) = 0.5m
(
1 + ln(2π)

)
+ 0.5 ln(|Σ|)

H(x) ∝ ln(|Σ|). (16)

Dropping the constant terms it is proportional to the natural

logarithm of the determinant of the covariance matrix. The

32613268

estimation errortrue distance

di
st
an
ce

[m
]

frame
0 100 200 300 400 500

0

0.1

0.2

0.3

(a) error of the estimate w.r.t. frame 50

thresholdentropy ratio α

4362508450

loop closure detected
tracking lost

en
tr

o
p
y

ra
ti

o

frame

0 100 200 300 400 500

0.5

0.7

0.9

1.1

1.3

1.5

(b) uncertainty of the estimate w.r.t. frame 50

(c) Frame 50 (d) Frame 84 (e) Frame 250 (f) Frame 436

Figure 5: Frame 50 of the fr1/desk dataset matched against

all frames of the dataset. Plot (a) shows the groundtruth dis-

tance of each frame to frame 50 and the error in the estimate.

Note that the upper part of the plot above 0.3m has been cut

off. Plot (b) displays the entropy ratio α. High entropy ratio

values coincide with low error in the estimate. The second

peak in the entropy ratio indicates a detected loop closure.

entropy of the estimated motion parameters is then H(ξ) ∝
ln(|Σξ|). As the parameter entropy varies between different

scenes, a direct thresholding is not applicable. Therefore,

we use the ratio α between the parameter entropy of the first

estimate towards the kth keyframe ξk:k+1 and the current

one ξk:k+l, i.e.,

α =
H(ξk:k+1)

H(ξk:k+j)
. (17)

The reasoning is that the first frame matched against a

keyframe is closest and the parameter estimate is therefore

the most accurate. Figure 5b shows a plot of the entropy

ratio for frame 50 of the fr1/desk sequence matched against

all other frames and Figure 5a displays the translational er-

ror in the estimate compared to the groundtruth. Its clearly

visible, that high values of entropy ratio coincide with small

errors in the estimate.

Loop Closure Detection The entropy ratio criterion can

also be applied to detect loop closures. As Figure 5b shows

the entropy ratio rises again around frame 436 and the er-

ror in the estimate drops as the camera returns to the pre-

viously visited region. To compute the entropy ratio with

a loop closure candidate we do not use the parameter en-

tropy of the first match, but the average entropy of all suc-

cessful matches against the keyframe, i.e., in (17) instead of

H(ξk:k+1) we use:

Havg =
1

l

l∑
j=1

H(ξk:k+j). (18)

The argument here is similar, that the frames matched

against the keyframe were closest and the estimates have

high accuracy. Furthermore, our keyframe selection cri-

terion ensures that there are no outliers in the averaging.

As this criterion requires actual parameter estimation lin-

ear search over all existing keyframes becomes quickly in-

tractable. Therefore, we limit the number of loop closure

candidates by only considering keyframes in a certain dis-

tance to the new keyframe. Afterwards, we first estimate

the motion parameters on a coarse scale and check the en-

tropy ratio criterion. If this first test succeeds, we estimate

the final parameters and test again. In case this test is also

successful we add the loop closure constraint to the map.

Map Representation and Optimization We represent

the map as a graph. The vertices represent camera poses and

the edges correspond to relative transformations between

two RGB-D images estimated by our dense visual odom-

etry algorithm. Every edge is weighted with the estimated

motion covariance Σξ. The camera poses are optimized by

minimizing the squared error in the graph. The corrections

are distributed according to the weights of the edges. After

estimating the pose of the last RGB-D image when process-

ing a dataset, we search for additional loop closures over all

keyframes and optimize the final graph with a larger number

of iterations than during online tracking. For the implemen-

tation of the graph structure and optimization we use the

g2o framework [11].

In this section, we described a SLAM system based on a

dense visual odometry method, which outputs a metrically

correct trajectory. The optimized camera poses are the input

to the proposed surface reconstruction algorithm.

4. Results
We evaluated the performance of our dense visual SLAM

system on the TUM RGB-D benchmark [17]. Furthermore,

we compare our results to results obtained with several

state-of-the-art systems. These include the RGB-D SLAM

system [6], Multi-Resolution Surfel Maps (MRSMap)

[16], and the open-source implementation of KinectFu-

sion (KinFu) [12] included in the pointcloud library (PCL).

32623269

Input image

Reconstructed view

Novel view

Figure 6: Sample reconstructions of two different se-

quences (left and right columns). Top row: Example input

image. Middle row: Visualization of the 3D model from the

same viewpoint. Bottom row: Visualization from a differ-

ent viewpoint.

This set of experiments was conducted on a PC with In-

tel Core i7-2600 CPU with 3.40GHz and 16GB RAM. Ta-

ble 1 shows the results. As an evaluation metric we use

the root mean square error (RMSE) of the absolute trajec-

tory error (ATE). In 9 out of 10 datasets our method out-

performs the existing state-of-the-art methods. Especially

on complex trajectories like fr1/room and fr1/teddy, our ap-

proach demonstrates a significant improvement compared

to existing feature-based systems.

The whole visual SLAM system runs on the CPU. The

frontend and backend run in separate threads. The dense vi-

sual odometry runs at 25Hz on a single CPU core. The run-

time of the backend depends on the number of keyframes

and loop closure constraints, but typical average timings for

the insertion of a keyframe are between 100ms to 200ms.

Next to the evaluation on the benchmark datasets,

we recorded an office scene of approximately

45m×12m×3.4m consisting of 24076 images. We

estimated the camera poses and reconstructed the scene

with a voxel resolution of 5mm. As we use a multi-scale

Entire reconstruction Top view

Flat-shaded side view Flat-shaded colored closeup

Figure 7: Geometry reconstructions of the fr3/office dataset.

approach, not all the geometry is stored at all resolutions.

For example, at a resolution of 5mm, we only consider

depth measurements up to 1m distance of the camera.

Figure 1 shows a view of the entire reconstructed geometry

and the tree structure it is embedded in. The ceiling of

the offices has been removed in a postprocessing step for

a better view of the office interior from this position. We

used the marching cubes algorithm to create a mesh at the

0-isolevel of the signed distance function for visualization.

Each brick is reconstructed at finest resolution and voxels

with zero weight are filled from coarser levels, if available.

Figure 6 shows some comparisons of RGB images at

different camera positions on the trajectory. It shows that

we are able to reconstruct fine details in the scene where

they are available, even though the entire scene fits into

approximately 2.5GB GPU memory. The fusion was

performed on an NVIDIA GTX680 GPU at an average of

220 frames per second (without post-processing such as

marching cubes and visualization).

5. Conclusion
In this paper, we presented a method for the recon-

struction of large scenes at high detail from an RGB-D

sequence in real-time on a standard desktop PC. We con-

struct a pose graph using dense image alignment that we

optimize to eliminate for drift and to establish a metrically

correct camera trajectory. Subsequently, we fuse both the

depth and the color values of all frames into a multi-scale

oct-tree structure that allows us to obtain high accuracies

while keeping the memory usage low. In extensive experi-

ments, we demonstrated that our approach outperforms ex-

isting feature-based methods on publicly available bench-

mark sequences. Furthermore, we presented reconstruc-

tions of large scenes showing both the preservation of fine

32633270

Dataset Images Processing Time Memory Absolute Trajectory Error (RMSE)

Acq. SLAM Geo. Total Ours RGB-D MRSMap KinFu

Fusion Speed SLAM

fr1/xyz 792 26s 44s 2.46s 16.7Hz 65MB 0.013m 0.014m 0.013m 0.026m

fr1/rpy 694 23s 41s 2.94s 15.7Hz 113MB 0.021m 0.026m 0.027m 0.133m

fr1/desk 573 19s 30s 1.89s 17.8Hz 135MB 0.021m 0.023m 0.043m 0.057m

fr1/desk2 620 20s 38s 2.54s 21.9Hz 186MB 0.027m 0.043m 0.049m 0.420m

fr1/room 1352 45s 72s 4.96s 17.5Hz 453MB 0.054m 0.084m 0.069m 0.313m

fr1/360 744 24s 72s 2.79s 9.6Hz 333MB 0.073m 0.079m 0.069m 0.913m

fr1/teddy 1401 46s 111s 4.78s 11.9Hz 248MB 0.036m 0.076m 0.039m 0.154m

fr1/plant 1126 37s 62s 4.15s 16.8Hz 221MB 0.021m 0.091m 0.026m 0.598m

fr2/desk 2893 96s 101s 12.0s 25.5Hz 178MB 0.019m - 0.052m -

fr3/office 2488 82s 106s 10.8s 21.0Hz 297MB 0.030m - - 0.064m

average 1286 41s 67s 4.93s 17.4Hz 223MB 0.026m 0.054m 0.043m 0.297m

Table 1: Quantitative evaluation of our system. From left to right: Number of images in the dataset, acquisition time of the

dataset, processing time for SLAM, geometry fusion time of the dataset, average time for fusing one depth map, memory

requirements for reconstruction, absolute trajectory error comparison of our method against the state-of-the-art.

details and the global consistency. In the future, we plan to

integrate photoconsistency constraints in the geometric re-

construction to complement the depth measurements. With

this work, we hope to contribute to the development of a

mobile 3D scanner that can be used to acquire accurate 3D

models of entire buildings.

References
[1] S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R.Szeliski.

Building rome in a day. In ICCV, 2009.

[2] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. 3-D motion and

structure from 2-D motion causally integrated over time: Im-

plementation. In ECCV, 2000.

[3] A. Comport, E. Malis, and P. Rives. Accurate Quadri-focal

Tracking for Robust 3D Visual Odometry. In ICRA, 2007.

[4] B. Curless and M. Levoy. A volumetric method for building

complex models from range images. In SIGGRAPH, 1996.

[5] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and

W. Burgard. An evaluation of the RGB-D SLAM system.

2012.

[6] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard.

Real-time 3D visual SLAM with a hand-held camera. In

RGB-D Workshop on 3D Perception in ERF, 2011.

[7] S. Fuhrmann and M. Goesele. Fusion of depth maps with

multiple scales. ACM Trans. Graph., 30(6):148, 2011.

[8] D. Gallup, J. Frahm, P. Mordohai, and M. Pollefeys. Variable

baseline/resolution stereo. 2008.

[9] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-

D mapping: Using depth cameras for dense 3D modeling of

indoor environments. 2010.

[10] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estima-

tion for RGB-D cameras. In ICRA, 2013.

[11] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and

W. Burgard. g2o: A general framework for graph optimiza-

tion. In ICRA, 2011.

[12] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and

A. Fitzgibbon. KinectFusion: Real-time dense surface map-

ping and tracking. In ISMAR, 2011.

[13] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM:

Dense tracking and mapping in real-time. In ICCV, 2011.

[14] H. Roth and M. Vona. Moving volume KinectFusion. In

BMVC, 2012.

[15] F. Steinbrücker, J. Sturm, and D. Cremers. Real-time visual

odometry from dense RGB-D images. In Workshop on Live
Dense Reconstruction with Moving Cameras at ICCV, 2011.

[16] J. Stückler and S. Behnke. Integrating depth and color cues

for dense multi-resolution scene mapping using rgb-d cam-

eras. In MFI, 2012.

[17] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-

mers. A benchmark for the evaluation of RGB-D SLAM

systems. In IROS, 2012.

[18] T. Tykkälä, C. Audras, and A. Comport. Direct iterative clos-

est point for real-time visual odometry. In Workshop on Com-
puter Vision in Vehicle Technology at ICCV, 2011.

[19] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. Mc-

Donald. Robust real-time visual odometry for dense RGB-D

mapping. In ICRA, Karlsruhe, Germany, 2013.

[20] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard,

and J. McDonald. Kintinuous: Spatially extended Kinect-

Fusion. In RSS Workshop on RGB-D: Advanced Reasoning
with Depth Cameras, 2012.

[21] M. Zeng, F. Zhao, J. Zheng, and X. Liu. A Memory-Efficient

KinectFusion using Octree. In Computational Visual Media,

volume 7633 of Lecture Notes in Computer Science, pages

234–241. Springer Berlin Heidelberg, 2012.

32643271

