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Abstract

With the advent of cheap, high fidelity, digital imaging
systems, the quantity and rate of generation of visual data
can dramatically outpace a humans ability to label or an-
notate it. In these situations there is scope for the use of
unsupervised approaches that can model these datasets and
automatically summarise their content. To this end, we
present a totally unsupervised, and annotation-less, model
for scene understanding. This model can simultaneously
cluster whole-image and segment descriptors, thereby form-
ing an unsupervised model of scenes and objects. We show
that this model outperforms other unsupervised models that
can only cluster one source of information (image or seg-
ment) at once. We are able to compare unsupervised and su-
pervised techniques using standard measures derived from
confusion matrices and contingency tables. This shows that
our unsupervised model is competitive with current super-
vised and weakly-supervised models for scene understand-
ing on standard datasets. We also demonstrate our model
operating on a dataset with more than 100,000 images col-
lected by an autonomous underwater vehicle.

1. Introduction

In many applications, the quantity and rate at which

visual data is collected can far outpace a humans ability

to label or annotate even a small percentage of it. One

example of this is the collection of scientific visual data

by autonomous agents such as planetary rovers, unmanned

air vehicles (UAVs), or autonomous underwater vehicles

(AUVs). Unsupervised “scene understanding” algorithms

could summarise this data in the absence of any annotations.

A human expert would then only need to view these sum-

maries before directing their attention to relevant subsets of

the data for subsequent analysis.

Scene understanding is an active area of research in com-

puter vision. It refers to frameworks that incorporate and

(a) Image clusters. (b) Segment clusters.

Figure 1. (a) A random selection of images from 8 of the 15 im-

age clusters found by our proposed model on the MSRC dataset

and (b) some of the (28) corresponding segment clusters. The im-

age clusters have a normalised mutual information (NMI) score of

0.731, the segment clusters have an NMI of 0.580. No training or

annotation data is used.

model multiple sources of visual, annotation or other in-

formation to improve some visual inference task. An early

attempt proposed in [2] extends latent Dirichlet allocation

(LDA) so both visual and textual data can be used for infer-

ring image tags in untagged images. Subsequent research,

[4, 7, 13, 15, 21, 25] (amongst others) present Bayesian

models that combine multiple bag-of-words based image

representations to simultaneously classify scenes and recog-

nise objects. These models can be supervised at the scene

level, object level, or both. They can also use “weak” la-

bels, or annotations, at the image or object levels [7, 13, 25].

We refer to these models as “weakly-supervised”. Some

of these models also explicitly model the spatial layout of

scenes [15, 21], or may make use of a non-parametric pro-

cess to enforce segment-label contiguity [7]. An interesting

model is presented in [12], which eschews a bag-of-words
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representation in favour of learning a sparse-code based

image representation, while also simultaneously modelling

scenes and annotations.

Some of the aforementioned models can also be used

in a fully unsupervised setting, where no annotation or la-

bel data is available. However, these models may operate

in a reduced capacity. For instance [4] loses its ability to

classify images while inferring objects. Generally unsu-

pervised methods for understanding visual data have been

given less focus than supervised and weakly-supervised

methods. This is because many applications have at least

some annotation data available (like Flickr photos). There

has been research into unsupervised methods for object dis-

covery [17, 19, 24, 11] and scene discovery [8, 14], which

are related but distinct problems to scene understanding.

In this paper, we present a Bayesian graphical model

specialised for truly unsupervised scene understanding ap-

plications. We refer to it as the multiple-source clustering
model (MCM). It is able to model multiple albums of im-

ages at both scene and object levels without human supervi-

sion. Rather than relying on human-generated scene labels,

it infers scene-types by clustering images. It uses a whole-

image descriptor as well as a latent distribution of “object”

types to represent images. These object-types are formed

by simultaneously clustering image-segment descriptors –

hence multiple-source. See Figure 1 for an example of the

MCM’s output.

The structure of our model is such that scene-types can

influence the objects found in an image (we would likely

find trees in a forest). This is conceptually similar to the

work in [23], which is inspired by research on the human

visual cortex [16]. Global visual features are used to under-

stand the context of a scene without explicitly registering

the individual objects that compose the image. This scene

recognition provides context that aids the recognition of ob-

jects, which otherwise may be difficult to recognise in isola-

tion. Also, in the MCM the co-occurrence and distribution

of objects within an image can influence the type of scene

it belongs to (cows and grass likely make a rural scene).

The primary contribution of this work is in showing that

the MCM can synergistically cluster both image and seg-

ment descriptors. It outperforms unsupervised models that

only consider one source of information. It is also com-

petitive with weakly-supervised and supervised models for

scene understanding. We quantify this by using standard

measures that can be derived from the confusion matrices

reported in the literature. Finally we show the MCM is read-

ily scalable to larger datasets of the kind we would expect

from a robot.

2. The Multiple-source Clustering Model
In this section we present the multiple-source clustering

model (MCM). A graphical model of the MCM is presented
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Figure 2. The Multiple-source clustering model. The shaded nodes

are observable descriptors, plates denote replication, and points

are model hyper-parameters. There are T image clusters and K
segment clusters. The number of clusters is inferred from the data.

in Figure 2, and it assumes there are J albums, or groups of

images, indexed by j. Each of these albums has Ij images,

indexed by i, which in turn contain Nji non-overlapping

segments or superpixels, indexed by n.

Each segment in an image has an associated descriptor,

xjin ∈ R
Dx . These are distributed according to a mixture

of K Gaussian clusters, which represent object-types,

xjin ∼
K∑

k=1

βtkN
(
xjin|μk,Λ

-1
k

)
. (1)

Here βtk ∈ [0, 1] are the mixture weights,
∑

k βtk = 1. The

set of these k mixture weights, βt, is specific to each scene

cluster or type, t. As is typical in Gaussian mixture models,

we have an indicator variable zjin|(yji = t) ∼ Categ(βt),
which assigns segment observations to object-types (seg-

ment clusters) by taking a value in {1, . . . ,K}. Similarly,

yji ∈ {1, . . . , T} is an indicator that assigns all segment

indicators in an image, {zjin}Nji

n=1, a distribution of objects,

βt, to be drawn from. This allows each scene-type, t, to be

composed of its own unique distribution of objects. We also

put priors on the parameters so the number of clusters, K,

can be inferred; βt ∼ Dir(θ), μk ∼ N
(
m, (γΛk)

-1 )
, and

Λk∼W(Ω, ρ).
Each image also has an associated descriptor, wji ∈

R
Dw , which is distributed according to an album-specific

mixture of Gaussians;

wji ∼
T∑

t=1

πjtN
(
wji|ηt,Ψ

-1
t

)
. (2)

Again πjt ∈ [0, 1] are mixture weights,
∑

t πjt = 1. We
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re-use the indicators yji to assign each image descriptor

to an associated image cluster, or scene-type, t. These in-

dicators are drawn from a Categorical distribution, yji ∼
Categ(πj), where πj is the set of all t mixture weights in

album j. These weights are in turn drawn from a gener-

alised Dirichlet distribution [6], πj ∼ GDir(a, b), which

has a truncated stick-breaking representation [9],

πjt = vjt

t−1∏
s=1

(1− vjs), vjt ∼
{
Beta(a, b) if t < T

1 if t = T.

(3)

Here vjt ∈ [0, 1] are “stick-lengths” for each album. We

have found empirically that using a generalised Dirichlet

prior, as opposed to a Dirichlet prior, can help to limit

the number of scene-types found, T , particularly for large

datasets. Essentially, the generalised Dirichlet prior is be-

ing used as a simple, conjugate, parametric alternative to the

HDP [22]. Like before, we also place priors on the Gaus-

sian mixture parameters to help infer the number of scene

types T ; ηt ∼ N
(
h, (δΨ)

-1 )
and Ψt∼W(Φ, ξ).

A feature of the MCM is that scene-types are represented

by a distribution of objects (βt) as well as a Gaussian scene-

descriptor component. This allows the scene-descriptors to

influence the type and co-occurrence of objects within a par-

ticular scene-type, potentially improving the object models.

In this way the learned scene-type cluster is serving a sim-

ilar role to a scene label as used by supervised algorithms.

Also, the distributions of objects help to define the scene-

type, potentially improving the scene-type clusters. All of

this information is transferred through the shared yji indi-

cator. The generative process for the MCM is;

1. Draw T image cluster parameters βt, ηt and Ψt from

GDir(a, b), N(
h, (δΨ)

-1 )
andW(Φ, ξ) respectively.

2. Draw K segment cluster parameters μk and Λk from

N(
m, (γΛk)

-1 )
andW(Ω, ρ) respectively.

3. For each group or album, j ∈ {1, . . . , J}:
(a) Draw mixture weights πj ∼ GDir(a, b).

(b) For each image, i ∈ {1, . . . , Ij}:
i. Choose an image cluster yji ∼ Categ(πj).

ii. Draw an image observation from the chosen image

cluster wji| (yji = t) ∼ N (ηt,Ψt).
iii. For each image segment n ∈ {1, . . . , Nji}:

A. Choose a segment cluster zjin| (yji = t) ∼
Categ(βt).

B. Draw a segment observation from the segment

cluster xjin| (zjin = k) ∼ N (μk,Λk).

Some readers may question the need for the whole-

image descriptor, wji, component of this model. We could

just model scenes as “bags-of-segments” in a similar fash-

ion to models presented in [7, 12]. We found such a model

to consistently under-perform the MCM. This is because the

image descriptors used by the MCM capture image spatial

layout, which is typically absent in bag-of-segment/features

approaches. We chose to model spatial layout at the descrip-

tor level since it requires less computation complexity than

modelling segment spatial layout directly in the MCM. This

allows the MCM to scale to larger datasets, but does not al-

low spatial information to directly influence segment clus-

tering. More details of the image and segment descriptors

are given in section 4.

3. Variational Inference and Model Selection
To use Bayesian inference for learning the MCM’s

hyper-parameters, Ξ = {a, b, θ,h, δ,Φ, ξ,m, γ,Ω, ρ}, we

need to maximize the log-marginal-likelihood with respect

to Ξ,

log p(W,X|Ξ) = log

∫
p(W,X,Y,Z,Θ|Ξ) dYdZdΘ,

(4)

where Θ = {π,β,μ,Λ,η,Ψ} and the bold upper case let-

ters represent the set of all of the respective lower case ran-

dom variables. This integral is intractable, but a tractable

lower bound can be found for the log-marginal-likelihood

using variational Bayes. It is called free energy, F , and the

derivation of this lower bound is straight-forwardly com-

puted using the method presented in [1]. Maximising F
leads to the following approximating variational posterior

distributions, q(·), over the image labels yji,

q(yji = t) =
1

Zyji

exp
{
Eqπ [log πjt]

+

K∑
k=1

Eqβ [log βtk]

Nji∑
n=1

q(zjin = k)

+ Eqη,Ψ

[
logN (

wji|ηt,Ψ
-1
t

)] }
. (5)

Here Zyji
is a normalisation constant and Eq[·] are ex-

pectations with respect to the variational posterior distribu-

tions, all of which are given in the supplementary material.

We can see in (5) that the image labels, yji are calculated

as an exponential sum of Gaussian and Multinomial log-

likelihoods, weighted by the jth album’s mixture weights.

The multinomial here (second term) is based on the number

of segments belonging to object-type k in the jith image.

Similarly, the variational posterior over the segment labels,

zjin, is,

q(zjin = k) =
1

Zzjin

exp
{ T∑

t=1

q(yij = t)Eqβ [log βtk]

+ Eqμ,Λ

[
logN (

xjin|μk,Λ
-1
k

)] }
. (6)

Here the sum over the weighted image label probabilities,

q(yjin = t), assigns more or less likelihood to the current
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segment cluster, k, based on the probability of the image

belonging to a scene-type, t. Through the interaction of the

labels in (5) and (6), the MCM transfers contextual infor-

mation between “scene” and “object” co-occurrence.

Maximising F also leads to the following posterior

hyper-parameters for the mixture weights;

ãjt = a+

Ij∑
i=1

q(yji = t) , (7)

b̃jt = b+

Ij∑
i=1

T∑
s=t+1

q(yji = s) , (8)

θ̃tk = θ +
J∑

j=1

Ij∑
i=1

q(yji = t)

Nji∑
n=1

q(zjin = k) . (9)

These updates are essentially just the prior with added ob-

servation counts, or sufficient statistics. The sum in (8) must

be performed in descending cluster size order, as per [10].

The MCM has similar updates for the Gaussian-Wishart

hyper-parameters (in the supp. material). These indicator

and hyper-parameter updates are iterated untilF converges.

We use the following prior values for the hyper-

parameters; θ, a, b, γ, δ = 1, ρ = Dx, ξ = Dw, m =
mean(X), h = mean(W), Ω = (ρCwidth,s)

-1IDx , and

Φ = (ξλmax
cov(W)Cwidth,i)

-1IDw . Here λmax
cov(W) is the largest

Eigenvalue of the covariance of the image descriptors. This

value is not used for the segment descriptors since they are

whitened, see section 4. Cwidth,i and Cwidth,s (i for im-

age, s for segment) are tunable parameters that encode the

a-priori “width” of the mixtures (diagonal magnitude of the

prior cluster covariances), and influence the number of clus-

ters found. The rest of the hyperparameter values have been

chosen for simplicity, and do not impact performance of the

MCM greatly compared to the Cwidth parameters.

If the number of clusters, T and K, is known or set

to some large value, the indicator and posterior hyper-

parameter updates can be iterated until F converges to a

local maximum. Some of the clusters will not accrue any

observations because of the variational Bayes complexity

penalties that naturally arise in F . We have found that bet-

ter clustering results can be obtained if we guide the search

for the segment clusters. The segment-cluster search heuris-

tic we use is a much faster, greedy version of the exhaustive

heuristic presented in [10]. The MCM starts with K = 1
segment clusters, and iterates until convergence. Then the

segment cluster is split in a direction perpendicular to its

principal axis. These two clusters are then refined by run-

ning variational Bayes over them for a limited number of

iterations. F is estimated with this newly proposed split,

and if it has increased in value, the split is accepted and the

whole model is again iterated until convergence. Otherwise,

the algorithm terminates. The exhaustive heuristic proceeds

by trialling every possible cluster split between each model

convergence stage, and only accepts the split that maximises

F . When K becomes large, this search heuristic becomes

the dominant computational cost of the MCM.

In our “split-tally” heuristic, we greedily guess which

cluster to split first by ranking all clusters’ approximate con-

tribution to F (details in the supplementary material). Also,

a tally is kept of how many times a cluster has previously

failed a split trial. Clusters that have not yet failed splits

are prioritised for splitting. The first cluster split to increase

F is accepted, and the tally for the original cluster is re-

set. All clusters must eventually fail to be split for the algo-

rithm to terminate. We have found this split-tally heuristic

greatly reduces run-time, without much impact to perfor-

mance, mostly because of the tally. To our knowledge, this

is the first time a tally has been used in such a heuristic.

A similar heuristic was also trialled to search for T , how-

ever we found that it was better to randomly initialise it to

some large value, Ttrunc > T , since both heuristics would

interact.

4. Image Representation

Being an unsupervised algorithm, the MCM relies heav-

ily on highly discriminative visual descriptors. We have

chosen unsupervised feature learning algorithms for this

task. They keep with the unsupervised theme of this work,

and have lead to excellent performance in a number of clas-

sification tasks, e.g. [27].

4.1. Images wji

For the image descriptors, wji, we use a modified sparse

coding spatial pyramid matching (ScSPM) descriptor [27].

For all experiments we use the original 1024-base Caltech-

101 dictionary supplied by [27] to encode dense SIFT

patches (16×16 pixels, with a stride of 8). We have found

little to no reduction in classification and clustering perfor-

mance doing this. Also, we use orthogonal matching pursuit

(OMP) with 10 activations in place of the original sparse

coding for large datasets since it is much less computa-

tionally demanding, and does not affect the MCM’s perfor-

mance greatly. We use the original pyramid with a [1,2,4]

pooling region configuration, which leads to a 21,504 di-

mensional (sparse) code for each image. This is far too

large to use with a Gaussian model, but we have found these

codes are highly compressible with (randomised) PCA – to

the point that we can compress them to Dw = 20 while still

achieving excellent image clustering performance.

4.2. Segments xjin

Out of the many segment descriptors tried, it was found

that pooling dense independent component analysis (ICA)

codes within segments gave the best results.
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Firstly, we learn an under-complete ICA dictionary and

its pseudo-inverse, D and D+, from at least 50,000 random

image patches for each dataset. DC component removal and

contrast normalising these patches was not necessary for

well illuminated images. We then obtain ICA responses,

rl, by multiplying patches with D+, centred on every pixel,

l ∈ [1, L], in every image. L is the total number of pix-

els in an image. Then the fast mean shift algorithm [5]

is used to segment the original images into sets of pixels,

Sjin. Typically we obtain less than 20 segments per im-

age. The ICA responses are transformed and mean-pooled

within each segment in the following manner:

x′jin =
1

#Sjin

∑
l∈Sjin

log |rl| (10)

These transformations greatly improved segment clustering

performance. We conjecture that the absolute value makes

the descriptors invariant to 90 degree phase shifts in rl. Tak-

ing the logarithm transforms the range back to (−∞,∞).
The final segment descriptors, xjin, are obtained by PCA-

whitening all of the x′jin. We perform dimensionality re-

duction as part of this whitening stage, to Dx = 15, which

preserves more than 90% of the spectral power.

Both of these descriptors take about 1 second each per

image to calculate. The ScSPM and ICA features are com-

plementary. ScSPM descriptors encode the spatial layout

and structural information of an image (the “gist”), whereas

the ICA features encode fine-grained colour and texture in-

formation. The structure of the MCM works well with these

complementary representations.

5. Experiments
In this section we compare the MCM to other algorithms

in the literature. We use three standard datasets (single al-

bum) and a large novel dataset consisting of twelve surveys

(albums) from an autonomous underwater vehicle (AUV).

Normalised mutual information (NMI) [20] is used to

compare the clustering results to the ground truth image

and segment labels. This is a fairly common measure in the

clustering literature as it permits performance to be com-

pared in situations where the number of ground truth classes

and clusters are different. All results cited have been trans-

formed into NMI scores from the confusion matrices given

in their corresponding papers. This conversion is straight

forward as long as the number of images used for testing

within each class is known.

We also estimate the mean accuracy for the clustering

results when benchmarking against supervised and weakly-

supervised algorithms. This is done using the contingency

table used to calculate NMI, which is just a table with the

number of rows equalling the number of truth classes, and

the number of columns equalling the number of clusters.

Each cell in the table is a count of the number of obser-

vations assigned to the corresponding class and cluster la-

bels. We turn this into a confusion matrix by merging

each cluster-column to class-columns indicated by their row

(class) which has the maximum count. Some classes will

have zero counts, and multiple clusters may be merged into

one class. We believe this is entirely unbiased, but may

heavily penalise the clustering results in situations where

no clusters map to a class. Also, trivial clustering solu-

tions may be rewarded, i.e., when many clusters are found

there is a greater chance they will be merged into the correct

classes. Hence this measure must be viewed with caution.

NMI does not suffer from these problems. We do not use

training or test sets since no labels are used by the algo-

rithm. Some of the algorithms we compare against use dif-

ferent splits of training and testing data. Unfortunately there

is no closed form solution for predicting labels on new data

with the MCM.

We also compare the MCM to the unsupervised varia-

tional Dirichlet process (VDP) of [10], latent Dirichlet allo-

cation [3] with Gaussian clusters (G-LDA), and self-tuning

spectral clustering (SC) [28]. The VDP, G-LDA, and SC

can only cluster one descriptor source (image or segment)

at once. We have modified the VDP and G-LDA to use the

same cluster splitting heuristic discussed in section 3, and

the same priors as the MCM. They are entirely deterministic

algorithms, since they do not require a random initialisation

like the MCM. We use SC for clustering the image ScSPM

descriptors only, and we run it with 10 random starts of K-

means given the true number of classes.

For all datasets, the MCM has a truncation level

Ttrunc = 30, and is run ten times with a random initiali-

sation of Y. The VDP, G-LDA and MCM code is all writ-

ten in multi-threaded C++, though we only use one thread

for most experiments to be strictly fair in our comparisons.

All experiments were performed on a Core 2 Duo 3 GHz

system with 6GB RAM unless otherwise stated.

5.1. Microsoft Research Classes

The first dataset considered is Microsoft’s MSRC v2

dataset, which has both scene and object labels and is used

by [7, 12]. We use the same 10 scene categories as these pa-

pers, with a total of 320 images (320 × 213 pixels). These

images contained 15 segmented object categories, the void

object category was not included. We found that 5×5 pixel

un-normalised patches worked best for the ICA descriptors

(with a dictionary of 50 bases).

The results for image clustering/classification are given

in Table 1, with the line separating the unsupervised from

the weakly- and supervised algorithms. The VDP+ScSPM

refers to running the VDP with the image ScSPM based de-

scriptors. The MCM performs substantially better than the

VDP and SC for this dataset (which struggle with so few im-
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Figure 3. Segment performance on the MSRC v2 dataset. The

MCM uses Cwidth,i = 0.08 for the image cluster prior. The VDP

and G-LDA can only cluster xjin here.

Table 1. Image performance for the MSRC dataset. The MCM

uses Cwidth,i = 0.08 and Cwidth,s = 0.4. The VDP uses

Cwidth,i = 0.02 and finds T = 14. More statistics for the MCM

are shown in Figure 3. #0 indicates the average number of unas-

signed classes, or zeros, on the diagonal of the confusion matrix.

Algorithm NMI (std.) Acc. (% (std.), #0)

MCM 0.713 (0.023) 72.0 (3.3), 1.1
VDP+ScSPM [10] 0.636 56.69, 2

SC+ScSPM [28] 0.643 (0.002) 66.1 (1.6), 2.1
L2-LEM-χ2 [24] 0.554 (0.018) 62.0 (2.7), 1.1

Du et. al. [7] 0.745 82.9

Du et. al. [7] LSBP 0.801 86.8

Li et. al. [12] 0.820 89.06

ages), but does lag behind the weakly-supervised methods

of [7, 12]. However, the MCM still manages to achieve vi-

sually consistent image and segment clusters, see Figure 1.

Object clustering performance was quantified on a per-

segment basis, as opposed to per-pixel, which would have

been too costly to evaluate for all images in these experi-

ments. In order to assign a segment a ground-truth label,

the mode of the pixels in the segment had to be of the label

type. To quantify the MCM’s segment clustering perfor-

mance we ran it for an array of Cwidth,s values and com-

pared it against the unsupervised VDP and G-LDA algo-

rithms. The VDP clusters all segments without any notion

of context, and G-LDA can model each image as having its

own proportions of segment clusters (image context). The

results are summarised in Figure 3. We can see that the

MCM, which models scene-type context, consistently out-
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Figure 4. Segment performance for LabelMe, Cwidth,i = 0.08.

Table 2. Image performance for the LabelMe dataset for

Cwidth,i = 0.08 (both MCM and VDP), and Cwidth,s = 11.

The VDP finds T = 8.

Algorithm NMI (std.) Acc. (% (std.), #0)

MCM 0.670 (0.009) 80.0 (2.8), 0.1
VDP+ScSPM [10] 0.708 82.3, 0

SC+ScSPM [28] 0.679 (0.017) 74.1 (3.5), 1.1

Li et. al. [12] 0.600 76.25

sLDA [25] 0.606 76

sLDA [25] (annots.) 0.606 76

DiscLDA+GC [15] 0.646 81

SVM + ScSPM [27] 0.6958 84.38

CA-TM [15] 0.729 87

performs the VDP and G-LDA.

5.2. LabelMe

The next dataset we used was obtained from LabelMe

[18], and has been used by [12, 25, 15]. It is comprised

of 2688 images (256 × 256 pixels), with 8 classes. Here

we found 7 × 7 un-normalised image patches worked best

for the ICA descriptors (60 bases). The segment labels for

this dataset were unconstrained in their categories, and so

using the LabelMe Matlab toolbox, we combined all of the

labels with 5 or more instances into 22 classes (given in the

supplementary material). The appearance of these object

classes is far less constrained than the other datasets.

Again we compare the MCM to state-of-the-art methods

in Table 2. The MCM is quite competitive on this dataset.

Interestingly, it does not perform as well as the VDP using

the modified ScSPM descriptors, which even outperforms

an SVM using unmodified ScSPM descriptors [27]. The
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(a) Image clusters. (b) Segment clusters.

Figure 5. A random selection of images from 5 of the 10 image

clusters found by the MCM on the UIUC dataset (a), with some of

the (30) corresponding segment clusters in (b). The image clusters

have a NMI score of 0.652, and an estimated accuracy of 74.0%.

Table 3. Image performance for UIUC sport events, Cwidth,i =
0.16 and Cwidth,s = 1, with mean T = 11.3, K = 30.2, and

runtime 444.61s. The VDP uses Cwidth,i = 0.12 and finds T = 6.

Algorithm NMI (std.) Acc. (% (std.), #0)

MCM 0.641 (0.018) 74.1 (1.5), 1
VDP+ScSPM [10] 0.557 63.4, 2

SC+ScSPM [28] 0.429 (0.02) 58.9 (2.4), 1.1
Du et. al. [7] no LSBP 0.389 60.5

Du et. al. [7] LSBP 0.418 63.5

Li et. al. [13] 0.276 54

sLDA [25] (annots.) 0.438 66

sLDA [25] 0.446 65

Li et. al. [12] 0.466 69.11

DiscLDA+GC [15] 0.506 70

SVM+ScSPM [27] 0.549 72.9

CA-TM [15] 0.592 78

MCM also appears to perform slightly worse than SC, but

they are within one standard deviation. In this case it seems

the segment clusters may be confounding the MCM image

clustering somewhat.

From Figure 4 we can see the MCM again far outper-

forms the other unsupervised algorithms for segment clus-

tering, demonstrating the importance of scene-type context

for object recognition.

5.3. UIUC Sport Events

The final standard dataset is the UIUC sports dataset

used by [7, 12, 13, 15, 25]. This dataset depicts 8 types

of sporting events and has 1579 images (maximum dimen-

sion of 320 pixels), unfortunately it has no segment labels.

We use the same segment descriptor settings as the MSRC

dataset. Results for image clustering/classification are pre-

sented in Table 3. Note that the algorithm from [7] is also

fully unsupervised for this dataset.

Image classification in this dataset is more difficult than
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Figure 6. Image performance AUV dataset, Cwidth,s = 350,

100,647 images. * Denotes 8 Xeon 2.2 GHz cores were used.

the others presented so far, as evident in the lower NMI and

classification scores. Somewhat surprisingly the MCM is

one of the best performing algorithms on this dataset. An

example MCM result is shown in Figure 5.

5.4. Robotic Dataset

The last dataset we use is a novel dataset containing im-

ages of various underwater habitats obtained by an AUV

from J = 12 deployments off of the east coast of Tasmania,

Australia [26]. This datasets has 100,647 downward look-

ing stereo pair images taken from an altitude of 2 m. The

monochrome image of the pair is used for the ScSPM de-

scriptors, and the colour for the ICA segment descriptors.

The images are reduced to 320× 235 pixels before descrip-

tor extraction. We used 5 × 5 pixels patches that had their

DC components removed and were contrast normalised for

both ICA dictionary learning (50 bases) and encoding. This

helped with the illumination variations in this dataset.

This dataset has nine image classes: fine sand, coarse
sand, screw shell rubble≥ 50%, screw shell rubble < 50%,

sand/reef interface, patch reef, low relief reef, high relief
reef, Ecklonia (kelp). 6011 of these images are labelled,

though many of these classes are quite visually similar so

the labels have a small amount of noise.

All 100,647 images were clustered with the MCM, VDP

and G-LDA (at the image level) while varying Cwidth,i, see

Figure 6. Both the MCM and G-LDA can model the 12 sep-

arate surveys as individual groups, j. We also clustered this

dataset using the MCM with the surveys concatenated into

one group (J = 1). In this way we can quantitatively deter-

mine the utility of modelling groups. This is also achieved

by comparing G-LDA and VDP, the latter does not model

groups. The MCM variants are run with 8 Xeon (E5-4260)

2.2 GHz cores, unlike the VDP and G-LDA. This is done to

demonstrate these algorithms are parallelisable, and to ex-

pedite the running of these experiments (the MCM variants

have to cluster 1.7 million segment descriptors).

In Figure 6 we can see that the MCM variants show

quite consistent NMI performance throughout the range of
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Cwidth,i values. NMI for G-LDA and the VDP drop off

quite quickly for increasing Cwidth,i. There is also not a

huge difference in NMI between the J = 1 and J = 12
models. However, G-LDA consistently has a faster runtime

than the VDP despite no parallelism. Similarly, the MCM

with groups has a much faster run time than the MCM with

J = 1. This can be partially attributed to the way the MCM

is parallelised, but not to the extent observed. We conjecture

that modelling groups helps to separate the latent clusters in

the data since clusters may not co-occur in all groups.

6. Conclusion

This paper has demonstrated that fully unsupervised,

annotation-less algorithms for scene understanding can be

competitive with supervised and weakly-supervised algo-

rithms. The proposed MCM can use contextual information

from scene-types to improve object discovery, and in three

of the four experiments, is able to use object co-occurrence

and proportion information to greatly improve scene dis-

covery. We have also demonstrated that the MCM is able

to run on large datasets gathered by autonomous robots,

enabling fully automated data gathering and interpretation

pipelines. Like many weakly- and supervised scene un-

derstanding models, the MCM is effective at discovering

scene-types, but not as effective at object discovery – which

is a much harder problem. Focusing on the unsupervised

object discovery and recognition aspects of such models

will be a useful area of future research. The MCM can form

useful representations of visual data without incorporating

any semantic knowledge, so it may form a good basis for

models that are robust to label noise at both the image and

objects levels. Such models would also be useful in active

learning scenarios for labelling, interpretation and analysis

of scientific datasets.
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