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Abstract

Many computer vision problems have an asymmetric dis-
tribution of information between training and test time. In
this work, we study the case where we are given additional
information about the training data, which however will
not be available at test time. This situation is called learn-

ing using privileged information (LUPI). We introduce two
maximum-margin techniques that are able to make use of
this additional source of information, and we show that the
framework is applicable to several scenarios that have been
studied in computer vision before. Experiments with at-

tributes, bounding boxes, image tags and rationales as ad-
ditional information in object classification show promising
results.

1. Introduction
In this work we study the problem of learning using priv-

ileged information (LUPI), as it was formally introduced by

Vapnik in [25]. To learn with privileged information means

that for a learning task, e.g. object categorization, one has

access not only to input/output training pairs of the task we

want to learn, but also to additional information about the

training examples. Typically this additional data is more in-

formative about the task at hand than the training data alone,

so one would like to use it for better prediction. However,

it is not clear how to do so, since at test time there will be

no such data source. A possible analogy is human learning

with a teacher: when a student learn a concept in school,

for example algebra, the teacher can provide additional ex-

planations at any time. Hopefully this will make the student

learn faster than if the teacher would only pose questions

and give their answers. However, when later in life the stu-

dent faces an algebra problem, he or she will not be able to

rely on the teacher’s expertise anymore.

In this work we demonstrate the relevancy of this ob-

servation in a variety of computer vision scenarios: we ex-

plore four different types of privileged information in the

context of object classification: attributes that describe se-
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Figure 1: Four different forms of privileged information that can

help learning better object recognition systems: attributes, anno-
tator rationales, object bounding boxes, and textual descriptions.

mantic properties of an object instead of just visual ones,

bounding boxes that specify the exact localization of the tar-

get object in an image, image tags that describe the context

of an image in textual form, and annotator rationales that

provide additional information why a training example was

annotated the way it was.

Figure 1 illustrates these four modalities. All of them

have been studied previously in the computer vision litera-

ture, see our discussion in Section 2. However, in each case

a separate method was designed to handle the specific ad-

ditional source of information. One of our contributions in

this work is to show that it is possible to handle all these

situations in a unified framework: LUPI.

Approach and contribution. At first sight, it is not clear

how a data modality that is not available at test time would

be useful for classification at all: for example, training a

classifier on the privileged data is useless, since there is

no way to evaluate the resulting classifier on the test data.

LUPI therefore requires an additional step of information
transfer from the privileged to the original data modality.
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At the core of our work in this paper lies the insight

that privileged information allows us to distinguish between
easy and hard examples in the training set1. Assuming that

the privileged data is similarly informative about the prob-

lem at hand as the original data, one can presume that exam-

ples that are easy or hard with respect to the privileged infor-

mation will also be easy or hard with respect to the original

data. Thereby we have gained additional knowledge about

the learning problem, and this can guide the training of an

image-based predictor to a better solution.

We formalize the above observation in Section 3, where

we also introduce two maximum-margin learning tech-

niques for LUPI. The first, SVM+, works in a classification

setting and was originally described by Vapnik [25]. The

second, Rank Transfer, is a new contribution, which targets

a ranking setup. In Section 4, we report on experiments in

the four privileged information scenarios introduced earlier,

and we end with conclusions in Section 5.

2. Related work

In computer vision problems it is common to have ac-

cess to multiple sources of information. Sometimes all of

them are visual, such as when images are represented by

color features as well as by texture features. Sometimes,

the modalities are mixed, such as for images with text cap-

tions. If all modalities are present both at training and at test

time, it is rather straight-forward to combine them for better

prediction performance. This is studied, e.g., in the fields

of multi-modal or multi-view learning. Methods suggested

here range from stacking, where one simply concatenates

the feature vectors of all data modalities, to complex adap-

tive methods for early or late data fusions [23], including

multiple kernel learning [26] and LP-β [10].

Situations with an asymmetric distribution of informa-

tion have also been explored. In weakly supervised learn-

ing, the annotation available at training time is less detailed

than the output one wants to predict. This situation occurs,

e.g., when trying to learn an image segmentation system us-

ing only per-image or bounding box annotation [13]. In

multiple instance learning, training labels are given not for

individual examples, but collectively for groups of exam-

ples [16]. The inverse situation also occurs: for example in

the PASCAL object recognition challenge, it has become a

standard technique to incorporate strong annotation in the

form of bounding boxes or per-pixel segmentations, even

when the goal is just per-image object categorization [8].

The situation we are interested in occurs when at training

time we have an additional data representation compared to

test time. Different settings of this kind have appeared in

the computer vision literature, but each was studied in a

separate way. For clustering with multiple image modal-

1One might also call them typical and atypical, or inliers and outliers.

ities, it has been proposed to use CCA to learn a shared

representation that can be computed from either of repre-

sentations [3]. Similarly the shared representation is also

used for cross-modal retrieval [20]. Alternatively, one can

use the training data to learn a mapping from the image

to the privileged modality and use this predictor to fill in

the values missing at test time [5]. Feature vectors made

out of semantic attributes have been used to improve ob-

ject categorization when very few or no training examples

are available [14, 27]. Recently annotator rationales [28]

have been introduced to the computer vision community.

In [7] it was shown that these can act as additional sources

of information during training, as long as the rationales can

be expressed in the same data representation as the original

data (e.g. characteristic regions within the training images).

Our work follows a different route than the above ap-

proaches. We are not looking for task-specific solutions ap-

plicable to a specific form of privileged information. In-

stead, we aim for a generic method that is applicable to any

form of privilege information that is given as additional rep-

resentations of the training data. We show in the following

sections that such frameworks do indeed exist, and in Sec-

tion 4 we illustrate that the individual situations described

above can naturally be expressed in these frameworks.

3. Learning using Privileged Information
We assume a situation of supervised binary classifica-

tion: given a set of N training examples, represented by

feature vectors X = {x1, . . . , xN} ⊂ X ⊂ R
d, and their

label annotation, Y = {y1, . . . , yN} ∈ Y = {+1,−1}, the

task is to learn a prediction function f : X → R from a

space F of possible functions, e.g. all linear classifiers. In

the following, we will think of the examples as images and

of their representation as computed from the image content,

for example bag-of-visual-words histograms [6].

Adopting the LUPI setting, we are given additional infor-

mation about the training set, which we assume also to be in

the form of feature vectors, X∗ = {x∗
1, . . . , x

∗
N} ⊂ X∗ ⊂

R
d∗

, where any x∗
i encodes the additional information we

have about xi. Note that we do not make further assump-

tion about this privileged data. In particular, x∗
i might not be

computable from the original image, but rather reflect a very

different kind of information, such as explanation provided

by a human teacher. Also, in general X∗ will be different

from X, so is it not possible, e.g., to apply functions defined

on X to X∗ or vice versa.

The goal of LUPI is to use the privileged data, X∗, to

learn a better classifier than one would learn without it.

However, it is clear that f : X→ R itself cannot rely on the

X∗ domain, since this is not available at test time. There-

fore, it has to be our choice of f ∈ F that is influenced by

the privileged data.

In this manuscript we rely on the intuition that the priv-
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ileged data helps us to distinguish between easy and hard
examples in the training set. This knowledge allows us to

identify the relevant aspects of the training data and con-

centrate the learning step towards these, thereby finding a

function of higher prediction quality.

In the following, we explain two maximum-margin

methods for learning with privileged information that fit to

this interpretation. For simplicity of notation we write all

problems in their primal form. Kernelizing and dualizing

them is possible using standard techniques [21].

3.1. SVM+

A first model for learning with privileged information,

SVM+, was proposed by Vapnik et al. [17, 25]. It is based

on the insight that training a support vector machine (SVM)

would be easier if one had access to a slack oracle. Ordi-

nary SVM training is based on the following constrained

objective function:

1

2
‖w‖2 + C

N∑
i=1

ξi (1)

subject to, for all i = 1, . . . , N ,

yi[〈w, xi〉+ b] ≥ 1− ξi and ξi ≥ 0. (2)

By minimizing over the classifier parameters w, b and the

slack variables ξ1, . . . , ξN , we obtain the SVM solution.

When the number of training examples increases, this is

known to converge with a rate of 1√
N

to the optimal clas-

sifier [24]. However, if we knew the optimal slack values

ξi in advance, for example from an oracle, and perform the

optimization with respect to w and b, then the convergence

rate improves to 1
N [25]. Consequently, such an OracleSVM

would require fewer training examples to reach a certain

prediction accuracy than an ordinary SVM.

An intuitive interpretation of this is that the slack vari-

ables tell us which training examples are easy and which

are hard. In the OracleSVM, the training process does not

have to infer this from the data and can use all statistical

information contained in the training examples to find the

actual object of interest: the classifying hyperplane.

The idea of the SVM+ classifier is to use the privileged

information as a proxy to the oracle. For this we parameter-

ize ξi = 〈w∗, x∗
i 〉+ b∗ with unknown w∗ and b∗, obtaining

the SVM+ training problem:

min
w∈R

d,b∈R

w∗∈R
d∗ ,b∗∈R

1

2

(
‖w‖2 +γ‖w∗‖2

)
+ C

N∑
i=1

〈w∗, x∗
i 〉+ b∗

(3)
subject to, for all i = 1, . . . , N ,

yi[〈w, xi〉+ b] ≥ 1− [〈w∗, x∗
i 〉+ b∗] (4)

and 〈w∗, x∗
i 〉+ b∗ ≥ 0. (5)

Numerical optimization. The SVM+ optimization prob-

lem (3)/(4) is convex, but it cannot be solved by off-the-

shelf SVM packages, because of the way the weight vectors

interact. In [18], suitable sequential minimal optimization

(SMO) algorithms were derived, one of which we use for

our experiments (Section 4). As it is the case for the origi-

nal SMO algorithm for SVM training [11], the numeric op-

timization works with the dual representation and is only

applicable to problems with a small to medium size.

3.2. Rank Transfer

To overcome the limitations of the SVM+ setup we intro-

duce a second method for making use of privileged informa-

tion in this work. Again, the underlying idea is to identify

easy and hard cases. However, instead of using the privi-

leged data to identify easy-to-classify and hard-to-classify

examples, we adopt a ranking setup and identify easy-to-

separate and hard-to-separate example pairs.

Our formulation is based on the learning to rank frame-

work [12], which requires solving the following optimiza-

tion problem

min
w∈Rd, ξij∈R

1

2
‖w‖2 + C

N∑
i,j=1

ξij (6)

subject to, for all i, j = 1, . . . , N , with yi > yj ,

〈w, xij〉 ≥ 1− ξij and ξij ≥ 0, (7)

where xij = xi−xj . From the solution vector w we obtain

ranking scores f(x) = 〈w, x〉 for new examples x.

The above formulation enforces a difference of at least

1 in ranking score between any pair of examples of differ-

ent class label. However, it is intuitively clear that some

example pairs will be easier to separate than others. Some

example pairs might even be impossible to rank correctly

in the given data representation. Following the same intu-

ition as above, we hypothesize that knowing a priori which

example pairs are easy and which are hard to separate and

taking this into account during learning should improve the

prediction performance.

This consideration leads us to the Rank Transfer method,

summarized in Algorithm 1. We first train an ordinary rank-

ing SVM on X∗. The resulting ranking function f∗ we use

to compute the margins achieved between any two train-

ing images2, ρij := f∗(x∗
i ) − f∗(x∗

j ). Example pairs with

a large values of ρij can be considered easy to separate,

whereas small or even negative values of ρij indicate hard

or even impossible to separate pairs. We then train a rank-

ing SVM on X , aiming for a data-dependent margin ρij

2Note that we deliberately evaluate the ranking function on the same

data it was trained on. The reason is that the quantity we are interested

in is how easy it is to separate two examples during training, not by how

much one could expect two samples would be separated at test time.
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Algorithm 1 Rank Transfer from X∗ to X

Input original data X , privileged data X∗, labels Y
f∗ ← ranking SVM (6)/(7) trained on (X∗, Y )
ρij = f∗(x∗

i )− f∗(x∗
j ) (between-sample margins)

f ← ranking SVM (8)/(9) trained on (X,Y ) using ρij
Return f : X→ R

between any two examples xi and xj rather than enforcing

a constant margin of 1 between all pairs. The corresponding

optimization problem is

min
w∈Rd, ξij∈R

1

2
‖w‖2 + C

N∑
i,j=1

ξij (8)

subject to, for all i, j = 1, . . . , N , with yi ≥ yj and ρij > 0,

〈w, xij〉 ≥ ρij − ξij and ξij ≥ 0. (9)

One can see that example pairs with small values of ρij have

more limited influence on w than in the ordinary ranking

SVM. Incorrectly ranked pairs are even completely ignored.

Our interpretation is that if it was not possible to correctly

rank a pair in the privileged space, it will also be not pos-

sible to do so in the, presumably weaker, original space.

Forcing the optimization to solve a hopeless tasks would

only lead to overfitting and reduced ranking accuracy.

Numeric Optimization. Both learning steps in the Rank
Transfer method, ranking on X∗ and on X , are convex opti-

mization problems. Furthermore, in contrast to SVM+, we

can use standard SVM packages to solve them, including

efficient methods working in primal representation [4], and

solvers based on stochastic gradient descent [22].

For the ranking SVM on X∗ this is clear, since the opti-

mization problem (6)/(7) is identical to a binary SVM with-

out bias term, trained on training examples xij that all have

positive labels. For the ranking with data-dependent mar-

gin, we achieve the same by a reparameterization: we di-

vide each constraint (9) by the corresponding ρij , which is

possible since only pairs with ρij > 0 occur. Changing

variables from xij to x̂ij =
xij

ρij
and from ξij to ξ̂ij =

ξij
ρij

we obtain the equivalent optimization problem

min
w∈Rd, ξ̂ij∈R

1

2
‖w‖2 + C

N∑
i,j=1

ρij ξ̂ij (10)

subject to, for all i, j = 1, . . . , N with yi ≥ yj and ρij > 0,

〈w, x̂ij〉 ≥ 1− ξ̂ij and ξ̂ij ≥ 0. (11)

This corresponds to an ordinary SVM optimization with

training examples x̂ij =
xi−xj

ρij
, where each slack variable

has an individual weight Cρij in the objective. Many exist-

ing SVM packages support such per-sample weights, in our

experiments we use LIBLINEAR [9]. Furthermore, in prac-

tice we only include example pairs with ρij > 0.1, thereby

preventing numeric instabilities and increasing computa-

tional efficiency.

4. Experiments
In our experimental setting we study four different types

of privileged information, showing that all of these can

be handled in a unified framework, where previously hand

crafted methods were used. We consider attribute annota-

tion, bounding box annotation, textual description and ra-

tionales as sources of privileged information if these are

present at training time but not at test time. As we will see,

some modalities are more suitable for transferring the rank

than others. We will discuss this in the following subsec-

tions. Note that we also include results where the privileged

information does not help. Besides scientific honesty, the

reason for this is to show that no negative transfer occurs.

Methods. We analyze two methods of learning using

privileged information: our proposed Rank Transfer method

for transferring the rank, and the SVM+ method [18] kindly

provided by the authors. We compare the results with rank-

ing SVM and ordinary SVM when learning on the original

space X directly (SVM rank and SVM baselines). We also

provide as a reference the performance of SVM rank in the

privileged space X∗, as if we had the access to the privileged

information during testing.

Evaluation metric. To evaluate the performance of the

methods we use average precision (AP), which corresponds

to the area under the precision-recall curve. In fact, we re-

port percentage accuracy of AP score (0% to 100%).

Model selection. For the LUPI methods, we perform a

joint cross validation model selection approach for choosing

the regularization parameters in the original and privileged

spaces. In the SVM+ method these are C and γ (3), and

in the Rank Transfer these are C’s in the two-stage proce-

dure (6), (8). For the methods that do not use privileged

information there is only a regularization parameter C to

be cross validated. In the privileged space we select over 7
parameters {10−3, . . . , 103}. We use the same range in the

original space if the data is L2 normalized, and the range

{100, . . . , 105} for L1 normalized data. In all our experi-

ments we use 5 fold cross-validation scheme, the best pa-

rameter (or pair of parameters) found is used to retrain the

complete training set.

4.1. Attributes as privileged information

Attribute annotation incorporates high-level description

of the semantic properties of different objects like shape,

color, habitation forms etc. We use the Animals with At-
tributes (AwA) dataset [14]. We focus on the default 10 test
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Figure 2: AwA dataset (attributes as privileged information). Pairwise comparison of the methods that utilize privileged information and

their baseline counterparts is shown via difference of the AP performance (Rank Transfer versus SVM rank, SVM+ versus SVM). The

length of the 45 bars corresponds to relative improvement of the average precision over 45 cases.

SVM rank Rank Transfer SVM SVM+ Reference
image image+attributes image image+attributes (SVM rank attributes)

1 Chimpanzee versus Giant panda 91.76± 0.35 91.83± 0.37 91.53± 0.36 92.12± 0.40 93 .34 ± 0 .34
2 Chimpanzee versus Leopard 94.33± 0.35 94.80± 0.29 94.16± 0.35 94.23± 0.39 98 .58 ± 0 .07
3 Chimpanzee versus Persian cat 91.39± 0.43 91.86± 0.38 91.09± 0.44 91.73± 0.38 96 .94 ± 0 .24
4 Chimpanzee versus Pig 87.75± 0.36 88.59± 0.25 87.45± 0.33 88.06± 0.43 94 .02 ± 0 .20
5 Chimpanzee versus Hippopotamus 87.49± 0.37 87.57± 0.42 87.58± 0.36 87.53± 0.36 95 .67 ± 0 .17
6 Chimpanzee versus Humpback whale 98.52± 0.18 98.52± 0.15 98.12± 0.18 98.57± 0.16 99 .94 ± 0 .00
7 Chimpanzee versus Raccoon 89.41± 0.35 89.54± 0.29 89.00± 0.38 89.67± 0.35 94 .11 ± 0 .24
8 Chimpanzee versus Rat 87.31± 0.51 88.47± 0.45 86.84± 0.62 87.96± 0.53 96 .54 ± 0 .23
9 Chimpanzee versus Seal 92.68± 0.34 92.58± 0.36 92.53± 0.38 92.59± 0.35 97 .04 ± 0 .16
10 Giant panda versus Leopard 95.26± 0.24 95.11± 0.21 95.13± 0.24 94.95± 0.27 98 .35 ± 0 .08
11 Giant panda versus Persian cat 94.66± 0.28 94.38± 0.23 94.66± 0.28 94.68± 0.26 95 .55 ± 0 .21
12 Giant panda versus Pig 88.82± 0.40 88.69± 0.45 88.67± 0.46 88.95± 0.42 92 .78 ± 0 .23
13 Giant panda versus Hippopotamus 92.62± 0.44 92.78± 0.43 92.35± 0.43 92.85± 0.42 96 .98 ± 0 .16
14 Giant panda versus Humpback whale 98.83± 0.18 98.88± 0.14 98.77± 0.20 98.76± 0.22 99 .84 ± 0 .02
15 Giant panda versus Raccoon 91.52± 0.35 91.33± 0.37 91.76± 0.34 91.90± 0.40 93 .18 ± 0 .15
16 Giant panda versus Rat 91.13± 0.36 90.33± 0.41 90.50± 0.42 90.61± 0.47 95 .26 ± 0 .20
17 Giant panda versus Seal 93.63± 0.31 93.58± 0.26 93.33± 0.29 93.40± 0.24 96 .34 ± 0 .21
18 Leopard versus Persian cat 95.72± 0.21 95.92± 0.18 95.50± 0.25 95.65± 0.26 98 .65 ± 0 .09
19 Leopard versus Pig 90.65± 0.20 90.88± 0.25 90.40± 0.20 90.40± 0.18 97 .82 ± 0 .10
20 Leopard versus Hippopotamus 93.78± 0.27 93.81± 0.28 93.60± 0.28 93.83± 0.27 97 .68 ± 0 .12
21 Leopard versus Humpback whale 99.08± 0.08 99.17± 0.08 99.06± 0.09 99.20± 0.07 99 .95 ± 0 .00
22 Leopard versus Raccoon 83.66± 0.57 83.15± 0.57 83.23± 0.60 83.18± 0.64 91 .50 ± 0 .19
23 Leopard versus Rat 90.43± 0.19 90.98± 0.26 90.28± 0.24 90.65± 0.26 97 .19 ± 0 .12
24 Leopard versus Seal 95.10± 0.22 95.49± 0.19 94.98± 0.23 95.14± 0.22 98 .31 ± 0 .09
25 Persian cat versus Pig 83.71± 0.49 83.39± 0.58 83.23± 0.44 83.38± 0.51 84 .19 ± 0 .46
26 Persian cat versus Hippopotamus 93.11± 0.39 93.41± 0.34 92.66± 0.38 93.14± 0.35 97 .50 ± 0 .13
27 Persian cat versus Humpback whale 96.94± 0.33 97.26± 0.29 96.19± 0.39 96.69± 0.39 99 .82 ± 0 .02
28 Persian cat versus Raccoon 90.79± 0.41 91.20± 0.35 90.46± 0.45 90.94± 0.47 93 .50 ± 0 .21
29 Persian cat versus Rat 69.94± 0.52 70.40± 0.48 69.38± 0.46 69.43± 0.43 73 .13 ± 0 .67
30 Persian cat versus Seal 86.75± 0.64 86.91± 0.58 86.06± 0.66 86.97± 0.71 94 .56 ± 0 .22
31 Pig versus Hippopotamus 77.21± 0.58 79.02± 0.63 76.45± 0.53 77.42± 0.54 88 .03 ± 0 .45
32 Pig versus Humpback whale 97.02± 0.22 97.32± 0.18 96.78± 0.31 97.04± 0.19 99 .63 ± 0 .03
33 Pig versus Raccoon 80.60± 0.56 81.79± 0.57 80.08± 0.53 81.50± 0.53 91 .55 ± 0 .27
34 Pig versus Rat 72.98± 0.60 73.68± 0.53 72.25± 0.58 72.63± 0.50 84 .16 ± 0 .35
35 Pig versus Seal 80.67± 0.72 81.76± 0.65 79.76± 0.74 80.33± 0.68 88 .91 ± 0 .46
36 Hippopotamus versus Humpback whale 93.86± 0.33 93.75± 0.33 93.83± 0.28 93.63± 0.30 98 .88 ± 0 .12
37 Hippopotamus versus Raccoon 86.77± 0.64 87.37± 0.61 86.49± 0.57 86.83± 0.68 94 .59 ± 0 .21
38 Hippopotamus versus Rat 85.68± 0.44 87.37± 0.38 85.12± 0.44 85.99± 0.39 94 .82 ± 0 .27
39 Hippopotamus versus Seal 73.78± 0.67 75.85± 0.67 72.82± 0.69 73.41± 0.60 80 .90 ± 0 .55
40 Humpback whale versus Raccoon 97.01± 0.24 97.15± 0.22 96.92± 0.25 97.11± 0.22 99 .76 ± 0 .03
41 Humpback whale versus Rat 95.43± 0.21 95.53± 0.18 95.21± 0.21 95.45± 0.21 99 .66 ± 0 .02
42 Humpback whale versus Seal 86.28± 0.56 86.93± 0.47 86.44± 0.52 86.89± 0.52 96 .69 ± 0 .14
43 Raccoon versus Rat 79.97± 0.46 80.31± 0.56 79.59± 0.47 79.67± 0.44 86 .76 ± 0 .30
44 Raccoon versus Seal 92.52± 0.28 92.80± 0.24 92.22± 0.28 92.55± 0.23 94 .26 ± 0 .21
45 Rat versus Seal 81.11± 0.62 82.34± 0.62 80.44± 0.64 80.68± 0.73 92 .46 ± 0 .35

Table 1: AwA dataset (attributes as privileged information). The numbers are mean and standard error of the AP performance over 20 runs.

The best result is highlighted in boldface, which in total is 7 for SVM rank, 27 for Rank Transfer, 1 for SVM, and 10 for SVM+.

Highlighted blue indicates significant improvement of the methods that utilize privileged information (Rank Transfer and/or SVM+) over

the methods that do not (SVM rank and SVM). We used a paired Wilcoxon test with 95% confidence level as a reference. Additionally,

we also provide the SVM rank performance on X∗ (last column).

classes, for which the attribute annotation is provided to-

gether with the dataset. The 10 classes are chimpanzee, gi-
ant panda, leopard, persian cat, pig, hippopotamus, hump-
back whale, raccoon, rat, seal, and contain 6180 images in

total. The attributes capture 85 properties of the animals,

color, texture, shape, body parts, behavior among others.

We use L1 normalized 2000 dimensional SURF descrip-

tors [1] as original features, and 85 dimensional predicted

attributes as the privileged information. The values of the

predicted attributes are obtained from DAP model [14] and

correspond to probability estimates of the binary attributes

in the images. We train 45 binary classifiers for each pair
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of the 10 classes with varying size of training data: 50, 100
images per class. We use 200 samples per class for testing.

To get better statistics of the performance we repeat the pro-

cedure of train/test split 20 times. Due to space constraints,

we only include the results with N = 100 training samples

per class here. Please, refer to the supplementary material

for the case N = 50.

Results. As we can see from the Figure 2, utilizing at-

tributes as privileged information for object classification

task is useful. Rank Transfer outperforms SVM rank in 34
out of 45 cases, and SVM+ outperforms SVM in 39 out of

45 cases. Noticeably, the Rank Transfer model is able to

utilize privileged information better than the SVM+. We

observe partial overlap of cases where Rank Transfer and

SVM+ are not able to utilize privileged information (loca-

tion of the red bars). Full comparison of the AP perfor-

mance of all methods is shown in the Table 1. In general,

we observe that ranking-based models are superior to the

non-ranking ones, and in particular, we can see clear advan-

tage of the Rank Transfer model over all other baselines.

We also notice, that the gain of the Rank Transfer method

is higher in the regime when the problem is hard, i.e. when

AP performance is below 90%. We obtain very similar re-

sults with N = 50 training samples per class. As a fur-

ther analysis, we also check the hypothetical performance

of SVM rank in the privileged space X∗. The privileged

information has consistently higher AP performance than

SVM rank in X. In most cases, higher AP performance in

the privileged space than in the original translates to posi-

tive effect in rank transfer. We also analyze the data ranking

in the original space, privileged space, and in the original

space with transferred rank. Typically the data ranking in

the privileged space of attributes is well spread out compar-

ing to the original space. In this case the distinction between

easy-to-separate and hard-to-separate pairs is feasible in the

privileged space and we can potentially benefit from it by

transferring the rank.

4.2. Bounding box as privileged information

Bounding box annotation is designed to capture the exact

location of an object in the image. When performing image-

level object recognition, knowing the exact location of the

object in the training data is privileged information. We use

a subset of the categories from the ImageNet 2012 challenge

(ILSVRC2012) for which bounding box annotation is avail-

able3. We define two groups of interest: group with variety

of snakes, and group with balls in different sport activities.

The group of snakes has 17 classes: thunder snake, ring-
neck snake, hognose snake, green snake, king snake, garter
snake, water snake, vine snake, night snake, boa constrictor,
rock python, indian cobra, green mamba, sea snake, horned
viper, diamondback, sidewinder, and has 8254 images in to-

3http://www.image-net.org/challenges/LSVRC/2012/index

tal, on average 500 samples per class. We ignore few images

with too small bounding box region, and use 8227 images

for further analysis. The group balls has 6 classes: soccer
ball, croquet ball, golf ball, ping-pong ball, rugby ball, ten-
nis ball, and has 3259 images in total, on average 500 sam-

ples per class. Here, we also ignore images with uninforma-

tive bounding box annotation and use 3165 images instead.

We consider one-versus-rest scenario for each group sepa-

rately. We use L2 normalized 4096-dimensional Fisher vec-

tors [19] extracted from the whole images as well as from

only the bounding box regions, and we use the former as

the original data representation and the latter as privileged

information. We train one binary classifier for each class,

17 in the first group and 6 in the second group. For training

we use 100 images from the desired class and 100 samples

randomly drawn from the remaining classes. For testing we

use the rest of the images in the desired class and the same

amount from the other categories. To get better statistics

of the performance we repeat the train/test split 10 times.

Due to space constraints, we only include the results with

the group of snakes here. Please, refer to the supplementary

material for the group of balls.

Results. As we can see from Table 2, utilizing bounding

box annotation as privileged information for fine-grained

classification is useful. We show the pairwise difference

in performance of the methods that utilize privileged infor-

mation and that do not in the bar plot on the right of Ta-

ble 2. Rank Transfer clearly outperforms SVM rank (im-

age) in 10 cases, and SVM+ outperforms SVM in 12 cases

out of 17. In this experiment, the SVM+ method is able

to exploit the privileged information better than the Rank

Transfer method (in 13 out of 17 cases). And overall we

observe that non-ranking models are superior to the ranking

ones. In the group of balls, both LUPI methods outperform

non-LUPI baselines in 4 out of 6 cases (refer to the sup-

plementary). Noticeably, SVM rank performs worse than

all other methods, where as standard SVM is a competitive

baseline. Interestingly, the performance in the privileged

space is not superior to the original data space, sometimes

it is even worse, especially in the group of balls. However

the LUPI methods are able to exploit easy and hard sam-

ples in both spaces. We credit this to the fact that in this

experiment, both spaces are of the same modality, i.e. the

privileged information is obtained from a subset of the same

image features that are used for the original data represen-

tation. Thus, our underlying assumption that the same ex-

amples are easy and hard in both modalities is fulfilled.

4.3. Textual description as privileged information

A textual description provides complementary view to

a visual representation of an object. This can be used as

privileged information in object classification task. We use

IsraelImages dataset introduced in [2]. The dataset has 11
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SVM rank Rank Transfer SVM SVM+ Reference
image image+bbox image image+bbox (SVM rank bbox)

Thunder snake 66.48± 0.72 66.23± 0.73 66.51± 0.72 67.52± 0.37 68 .06 ± 0 .64
Ringneck snake 73.33± 0.63 73.32± 0.68 73.71± 0.82 73.51± 0.59 74 .12 ± 0 .66
Hognose snake 72.33± 0.60 72.67± 0.61 72.54± 0.42 72.89± 0.61 75 .12 ± 0 .40
Green snake 76.91± 0.66 77.22± 0.66 77.01± 0.70 76.25± 0.97 77 .30 ± 0 .56
King snake 85.99± 0.27 86.22± 0.36 85.44± 0.34 86.67± 0.26 87 .87 ± 0 .23
Garter snake 83.74± 0.61 83.51± 0.60 81.57± 0.68 83.41± 0.89 86 .86 ± 0 .53
Water snake 72.07± 0.57 71.92± 0.50 73.03± 0.57 72.01± 0.86 68 .49 ± 0 .58
Vine snake 85.24± 0.51 85.21± 0.51 85.81± 0.51 85.06± 0.56 85 .99 ± 0 .50
Night snake 57.69± 1.37 57.64± 1.25 58.17± 1.39 58.39± 1.06 58 .27 ± 0 .92
Boa constrictor 81.44± 0.71 81.59± 0.69 79.88± 0.80 82.15± 0.72 82 .25 ± 0 .58
Rock python 65.56± 1.14 65.92± 1.18 64.16± 1.35 66.94± 0.83 67 .17 ± 1 .22
Indian cobra 65.90± 0.95 65.89± 1.02 66.20± 0.96 66.38± 0.44 65 .96 ± 0 .57
Green mamba 75.30± 0.25 75.62± 0.32 76.18± 0.46 76.07± 0.42 76 .75 ± 0 .43
Sea snake 87.70± 0.45 87.91± 0.48 87.86± 0.38 88.26± 0.37 84 .00 ± 0 .50
Horned viper 77.00± 0.47 77.36± 0.45 77.09± 0.51 77.84± 0.59 81 .56 ± 0 .40
Diamondback 83.69± 0.70 84.19± 0.60 82.00± 0.50 84.29± 0.52 85 .66 ± 0 .17
Sidewinder 75.03± 0.68 75.90± 0.67 74.56± 1.10 75.47± 0.94 77 .94 ± 0 .82

Table 2: ImageNet dataset, group of snakes (bounding box annotation as privileged information). The numbers are mean and standard

error of the AP performance over 10 runs. The best result is highlighted in boldface. Highlighted blue indicates significant improvement

of the methods that utilize privileged information (Rank Transfer and/or SVM+) over the methods that do not (SVM rank and SVM). We

used a paired Wilcoxon test with 95% confidence level as a reference. Additionally, we also provide the SVM rank performance on X∗

(last column). The bar plots on the right show advantage of the LUPI methods over non-LUPI (Rank Transfer versus SVM rank, SVM+

versus SVM). The length of the 17 bars corresponds to relative improvement of the average precision over 17 snake classes.

classes, 1823 images in total, with a textual description (up

to 18 words) attached to each of the image. The number of

samples per class is relatively small, around 150 samples,

and varies from 96 to 191 samples. We merge the classes

into three groups: nature (birds, trees, flowers, desert),

religion (christianity, islam, judaism, symbols) and urban

(food, housing, personalities), and perform binary classifi-

cation on the pairs of groups. We use L2 normalized 4096-

dimensional Fisher vectors [19] extracted from the images

as the original data representation and bag-of-words repre-

sentation of the text data as privileged information. We use

100 images per group for training and all the rest for testing.

We repeat the train/test split 20 times.

Results. As we can see from Table 3, utilizing tex-

tual privileged information as provided in the IsraelImages
dataset does not help. All four methods have near equal

performance, and there is no signal of privileged informa-

tion being utilized in both LUPI methods. This might seem

contradictory to the high performance of the reference base-

line in the text domain, X∗. However high accuracy in the

privileged space does not necessarily mean that the privi-

leged information is helpful. For example, assume we used

the labels themselves as privileged modality: classification

would be trivial, but it would provide no additional infor-

mation to transfer. In the IsraelImages, the textual descrip-

tions of the images are sparse and contain duplicates. For

samples with identical scores there is no information in their

relative ranking. Therefore, ranking the samples in the priv-

ileged space does not capture the relation between objects

and mainly preserves the class separation only. The perfor-

mance does not degrade nevertheless.

4.4. Rationales as privileged information

Rationale annotation was introduced in [7] as a way to

capture additional information why an annotator makes the

decision about the given image. This information is pro-

vided in the form of the most informative hand-annotated

region in the image, and is privileged in the LUPI frame-

work. We use the Hot or Not dataset4, which is designed

for binary classification, whether male and female people

in the images are hot. Following the setting of [7], we use

108 and 104 images for female and male classes accord-

ingly with +1(hot) and−1(not) label. The original data and

the privileged data are represented with L1 normalized 500
dimensional densely sampled SIFT features, extracted from

the whole image and from the rationales accordingly. We

train two binary classifiers for females and males separately

with varying size of training data 50 and 100 samples. We

use the remaining data for testing. We repeat the train/test

split 100 times.

Results. First we would like to mention that the Hot or
Not dataset is very challenging: the AP performance is rela-

tively low for all four methods and the standard deviation is

high. In case of N = 50, the data contains too little signal

for any method to work with, thus it is hard to draw a con-

clusion. In case of N = 100 (see Table 4), we can not make

statistical summary of the result due to small test sample

size (8 and 4 samples accordingly). Nevertheless we per-

form this experiment to position our result with respect to

the original work [7]. For male class the authors report clas-

sification accuracy 60.01%, and 57.07% for female class.

4http://vision.cs.utexas.edu/projects/rationales/
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SVM rank Rank Transfer SVM SVM+ Reference
image image+text image image+text (SVM rank text)

Nature vs Religion 89.06± 0.34 89.28± 0.24 89.51± 0.27 89.41± 0.26 96 .94 ± 0 .12
Religion vs Urban 71.82± 0.66 71.71± 0.59 72.04± 0.56 72.11± 0.40 96 .20 ± 0 .11
Nature vs Urban 88.56± 0.23 88.94± 0.22 88.85± 0.24 88.92± 0.23 94 .41 ± 0 .17

Table 3: Israeli dataset (textual description as privileged information). The numbers are mean and standard error of the AP performance

over 20 runs. As reference we also provide the SVM rank performance on the X∗ (last column).

SVM rank Rank Transfer SVM SVM+ Reference
image image+rationale image image+rationale (SVM rank rationale)

Female N=100 58.06± 1.40 56.58± 1.34 57.58± 1.39 57.06± 1.49 75 .65 ± 1 .52
Male N=100 72.33± 1.82 75.50± 1.97 72.25± 1.75 73.58± 1.81 79 .91 ± 1 .94

Table 4: HotOrNot dataset (rationale as privileged information). The numbers are mean and standard error of the AP performance over

100 runs. As reference we also provide the SVM rank performance on X∗ (last column).

Because of the different performance measures (AP versus

accuracy) we can not directly compare our results, but the

numbers are ‘in the same ballpark’.

5. Conclusion
We have studied the setting of learning using privileged

information (LUPI) in visual object classification tasks. We

showed how it can be applied to several situations that pre-

viously were handled by hand-crafted separate methods.

Our experiments show that prediction performance often

improves when utilizing the privileged information. When

it does not, at least no negative transfer occurs. We have

studied two approaches for solving the LUPI task: SVM+

and the proposed Rank Transfer method. Rank Transfer

shows comparable performance to the SVM+ algorithm and

can easily be applied using standard SVM solvers.

In future work, we plan to further analyze the poten-

tial of both approaches, also in light of recent results that

SVM+ classifiers can be reformulated as a special forms of

example-weighted binary SVMs [15].
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