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Abstract

The problem of human activity recognition is a cen-
tral problem in many real-world applications. In this pa-
per we propose a fast and effective segmental alignment-
based method that is able to classify activities and interac-
tions in complex environments. We empirically show that
such model is able to recover the alignment that leads to
improved similarity measures within sequence classes and
hence, raises the classification performance. We also apply
a bounding technique on the histogram distances to reduce
the computation of the otherwise exhaustive search.

1. Introduction
Human activity recognition is an important yet difficult

problem that has attracted the attention of many researchers

in the field of computer vision (see [17] for a recent review).

Human activity recognition is the central part of many ap-

plications such as video surveillance, human computer in-

terfaces based on activity, robotics and so forth. There have

been many instances of successful works in this area par-

ticularly when recognizing simple tasks such as walking

and running [13, 4]. As the field matures, researchers have

turned their attention on activities within more complex en-

vironments [20, 10]

Local spatio-temporal features have been widely and

successfully used for activity recognition tasks [4, 13, 10,

9]. Invariance to affine transformation and robustness

against noise and slight changes in environmental factors

such as lighting are among the reasons that have made

these features effective and popular. Different approaches

have been built upon such features to classify and recog-

nize simple and complex activities. Dollar et al [4] intro-

duced a feature descriptor called ’Cuboid’ which encom-

passes spatial and temporal features within small patches

and then represents an activity using bag-of-words repre-

sentation [16]. They used support vector machines (SVM)

to classify videos containing each activity based on this rep-

resentation. Niebles et al [7] have proposed a probabilis-
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Figure 1. Similar activities can be recognized by matching the

warped versions of their sub-sequences

tic latent semantic analysis coupled with cuboids to classify

and recognize activities.

Similar activities can be reasonably accurately charac-

terized as different warped instances of basic activity pat-

terns, provided that the feature extraction is robust to noise

and slight changes in environmental factors (Figure 1).

Alignment-based methods have been used in activity recog-

nition especially for MoCap datasets, where the amount of

noise is in general low and there is little to no ambigu-

ity introduced by visual projections or visual clutter. The

most common alignment algorithm, Dynamic Time Warp-

ing (DTW), has been successfully used in many applica-

tions [3]. In [21] authors propose and extension of DTW by

introducing an spatial embedding through canonical corre-

lation analysis (CTW) so that sequences of different modal-

ities can be aligned and thus a better performance compar-

ing to DTW in aligning MoCap sequences is achieved. The

authors extend CTW in [22] by introducing Generalized

Time Warping (GTW) to be able to align multiple sequences

of different modalities efficiently by solving the objective

function using Gauss-Newton algorithm.

In practice, alignment models are sensitive to noise

which limits their application in real-world computer vi-

sion problems. In [14] we formulate the alignment prob-

lem as a monotonic canonical correlation analysis and

introduce a segmental alignment model which is robust

against noise when applied to MoCap data. In the followup

work,[15], we propose a probabilist segmental alignment

model (SPHMM) which exhibited good performance in the
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presence of significant artificially added noise. Both works

are based on the idea that aligning segments of sequences

instead of sample-by-sample alignment can be more robust.

These proposed models however, suffers from high compu-

tational requirements. Chu et al. in [2] propose a branch

an bounding method to find common subsequences of two

time-series and thus they extract matching segments by

applying the algorithm repeatedly without respecting time

monotonicity. Ryoo in [9] proposed a method for matching

short intervals of sequences for classifying various visual

activities. Due to computational cost the author proposed

to approximate this matching by fixed segmentation of the

sequences. Since the segmentation is fixed in [9], it is cru-

cial to have a very good estimate of the boundaries of such

segments but the paper does not provide such insight. Such

approach may potentially reduce the computational cost in

expense of loosing classification accuracy.

The contributions of this paper are two-fold:

• We propose a simplified segmental alignment model

which consist of a single match operation and empiri-

cally show that it is able to approximate the true align-

ment of a pair of sequences.

• Using a bounding technique for histogram distances

we reduce the computation time by a factor of two.

We build upon the idea in [15] for probabilistic adaptive

segmental alignment and simplify it by introducing a gap-

less alignment model. The adaptive segmental alignment

model is able to realize the boundaries of segments of

the contrasting sequences and efficiently match them. We

show in the experimental results that such model is able to

achieve accurate alignment performance while significantly

reducing the computational cost. The gap-less model en-

ables us to further reduce the computation time by employ-

ing a bounding technique on histogram distances to prune

many segmentations that may yield inferior alignments and

thereby eliminate unnecessary computation. Essentially, we

propose a bad-of-words model where the bags are inferred

so as to maximize the sequence similarity.

The rest of the paper is as follows. We first explain our

methodology in Section 2 where we detail our signal rep-

resentation in Subsection 2.1 and our matching model in

Subsection 2.2. Then the histogram distance bounding is

described in Subsection 2.3 and its application in our seg-

mental match model is explained in Subsection 2.4. Exper-

imental results are discussed in Section 3 and the paper is

finally concluded by Section 4.

2. Methodology
In this section we describe our approach towards seg-

mental matching for activity recognition. We first detail

our representation scheme and then describe the segmental

matching and the bounding technique to reduce the compu-

tation time.

2.1. Representation

In this paper we adopt a common Bag of Temporal

Words (BOTW) [16] representation for videos. BOTW is

a popular representation that has been successfully used

by researchers [8, 2]. In this representation extracted fea-

tures are clustered into several codewords using a cluster-

ing method such as k-means. Similar features described by

the same codeword are then counted together and form a

histogram for a single or a collection of frames. There-

fore, given a histogram map φH
bi:ei

(.) and F , correspond-

ing codewords of features extracted from contiguous seg-

ment of frames bi : ei = (bi, bi+1, . . . , ei−1, ei), we de-

note an H-bin histogram of such contiguous segment as

Xbi:ei = φH
bi:ei

(F ). Throughout the paper we may refer

to segments by their starting point, Xbi , ending point Xei

or their index Xi to simplify the notation.

2.2. Segmental Matching (SM)

Assume that given a video containing an action, proper

features are extracted and the associated BOTW is repre-

sented by X as described in Sec. 2.1. Furthermore, D =
{(Xn, zn)Nn=1} is a given training set of sequences, such

that Xn contains the BOTW representation of videos con-

taining activity label zn. The objective is then to label X
with the appropriate activity. More specifically, the most

probable activity label, z∗ is

z∗|X = argmax
(z∈Z)

max
(Xn,zn)∈D

P (X,Xn)I(z, zn) (1)

where Z is the label set and I(·, ·) is the indicator function.

In the rest of the paper we refer to an instance of the training

sequence as Y to discern it from the query sequence X .

In [15] we proposed an effective way to maximize the

joint likelihood of two contrasting sequences using an ex-

tension of a pair-HMM to construct an adaptive probabilis-

tic segmental alignment model. The proposed model allows

for aligning segments of sequences which perfectly maps

to the problem of activity recognition where one seeks to

find a collection or consecutive frames in the query video to

match with a similar set of frames in the training set. The

model however, is computationally demanding. Therefore,

in this paper, we propose to remove the gap states (insertion

and deletion) and thus obtain a single state HMM consist-

ing of only a match state. In fact, we claim that a single

match operation coupled with adaptive segmentation is able

to approximate a full operation alignment model. This re-

duction not only removes the computation needed for gap

states, but also enables us to bound the likelihood of align-

ment (c.f Sec. 2.3) and thus improve the performance even

further.
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Segmentation in this paper is defined as a tight parti-

tioning of the sequence. Assume a fixed partitioning of a

given sequence X into L intervals is provided. In the con-

text of human activity recognition, we consider X to be

the sequence of H-bin unnormalized histograms resulted

from the mapping of the extracted features of each frame

using φH from Sec. 2.1. This partitioning then defines

X = (X1, X2, ..., XL). That is, Xi =
∑ei

f=bi
xf where

xf is the unnormalized histogram associated with the BOW

representation of frame f . Throughout the paper, we denote

the histogram of individual frames with lower case letters

indexed by the frame number. Also note that we assume

tight and non-overlapping segmentation. That is, assum-

ing the input video has T frames, then for X ∈ R
H×T ,

we require b1 = 1, eL = T and bi+1 = ei + 1, ∀i =
[1 . . . L − 1]. Thus, given two sequences of histograms

X and Y , we define segmentation S = (S(X),S(Y )) =
((X1, X2, . . . XL), (Y1, Y2, . . . YL)). For a clarification on

notation look at Figure 2. Note that even thought we as-

sume fixed segmentation and one-to-one matching, we do

not need the boundaries to be the same and they will be de-

termined through the estimation.

For a fixed segmentation the likelihood of matching two

sequences is defined as

P (X,Y |S) =
L∏

i=1

exp

(
− 1

σ
D(Xi, Yi)

)
Ψ(Xi, Yi). (2)

where D(·, ·) is a suitable distance metric such as l1 or χ2

and σ is a scaling parameter which in our experiments is

set to 1. Ψ(·, ·) is a prior on segments. A non-uniform prior

on segment matching can result into different alignments by

,for instance, favouring longer or shorter segments and their

matching.

Our objective is thus to maximize the joint likelihood by

iterating over all possible segmentations. That is,

P ∗(X,Y ) = max
S

P (X,Y |S)P (S). (3)

Consequently one may obtain the optimal segmentation as

S∗ = argmax
S

P (X,Y |S)P (S) (4)

where we assume uniform prior on segmentation. Using

P (S) one can define various types of bands usually used in

alignment such as the Sakao-Chiba band [12] by relating the

prior to the segment length and the position in the sequence.

To find such optimal segmentation one may search over

all permissible segment lengths. This exhaustive search

however, is very expensive and thus we propose a pruning

technique inspired by [6, 2]. Such pruning is not possible

on the full alignment model since the gap operations remove

parts of either of the sequences and can affect any estimated

or determined bounds on the matching.

2.3. Bounding Histogram Distances

Given the maximum segment length lmax, the minimum

segment length lmin, and two segments of sequence X and

Y , ending at ei and ej , respectively, we denote the maxi-

mum length segments by Xei = Xei−lmax:ei and Y ej =
Yej−lmax:ej . Likewise, the minimum length segments are

denoted by Xei
= Xei−lmin:ei and Y = Yej−lmin:ej . We

are aiming to bound the distance of the histogram features

of any possible segment starting from Xbi−lmax extending

to Xeiand Yej−lmax extending maximally to Yei . Note that

even though we use the same lmin and lmax for both se-

quences, it is not a requirement of our method and is used

only to simplify the notation. The bin counts of Xei and Yej

are bounded as

Xh
ei ≤ Xh

ei−k:ei ≤ X
h

ei , (lmin ≤ k ≤ lmax) (5)

Y h
ej ≤ Y h

ej−z:ej ≤ Y
h

ej , (lmin ≤ z ≤ lmax) (6)

where Xh
. and Y h

. denote the histogram bin h.

One can easily extend (5, 6) to normalized histogram

noting that |Xei | ≤ Xei−k:ei ≤ |Xei |. That is,

Xh
ei

|Xei |
≤ X̂h

ei−k:ei ≤
X

h

ei

|Xei |
, (lmin ≤ k ≤ lmax) (7)

Y h
ej

|Y ej |
≤ Ŷ h

ej−z:ej ≤
Y

h

ej

|Y ei |
, (lmin ≤ z ≤ lmax) (8)

It is straightforward to observe

min(Xh
ei , Y

h
ej ) ≤ min(Xh

ei−k:ei , Y
h
ej−z:ej )

≤ min(X
h

ei , Y
h

ej ) (9)

max(Xh
ei , Y

h
ej ) ≤ max(Xh

ei−k:ei , Y
h
ej−z:ej )

≤ max(X
h

ei , Y
h

ej ) (10)

for lmin ≤ k, z ≤ lmax. Following [2] one may construct

the bounds on popular histogram distances. For complete-

ness of presentation these bounds are included below.

Bounding l1 distance: Noting that |a−b| = max(a, b)−
min(a, b) and a simple reordering of (9, 10) one can observe

that

max(Xh
ei
, Y h

ej
)−min(X

h

ei , Y
h

ej )

≤ |Xh
ei−k:ei − Y h

ej−z:ej | ≤
max(X

h

ei , Y
h

ej )−min(Xh
ei , Y

h
ej ) (11)

for lmin ≤ k, z ≤ lmax. The bounds on l1 distance are then

the summation over all bins. That is,

ll1b (Xei , Yej ,m, l) =
H∑

h=1

max(Xh
ei , Y

h
ej )−min(X

h

ei , Y
h

ej ) (12)

ul1
b (Xei , Yej ,m, l) =

H∑
h=1

max(X
h

ei , Y
h

ej )−min(Xh
ei , Y

h
ej ) (13)

35783585



and for normalized histograms

l̂l1b (Xei , Yej , lmin, lmax) =
H∑

h=1

⎛
⎝max

⎛
⎝ Xh

ei

|Xh

ei |
,
Y h

ej

|Y h

ej |

⎞
⎠

− min

⎛
⎝ X

h

ei

|Xh
ei |

,
Y

h

ej

|Y h
ej |

⎞
⎠
⎞
⎠

(14)

ûl1
b (Xei , Yej , lmin, lmax) =

H∑
h=1

⎛
⎝max

⎛
⎝ X

h

ei

|Xh
ei |

,
Y

h

ej

|Y h
ej |

⎞
⎠

− min

⎛
⎝ X

h

ei

|Xh
ei
| ,

Y
h

ej

|Y h
ej |

⎞
⎠
⎞
⎠ .

(15)

Histogram intersection and χ2 distances can also be derived

in the same way.

Bounding histogram intersection distance: Histogram

intersection distance is defined as

d∩(φH
X , φH

Y ) = −
H∑

h=1

min(X̂h, Ŷ h) (16)

using (7), (8) the corresponding lower and upper bound is

l̂∩b (Xei , Yej , lmin, lmax) = −
H∑

h=1

min

⎛
⎝ X

h

ei

|Xh
ei
| ,

Y
h

ej

|Y h
ej
|

⎞
⎠ (17)

û∩b (Xei , Yej , lmin, lmax) = −
H∑

h=1

min

⎛
⎝ Xh

ei

|Xh

ei |
,
Y h

ej

|Y h

ej |

⎞
⎠ (18)

Bounding χ2 distance: χ2 distance is defined as

dχ2(φH
X , φH

Y ) =
H∑

h=1

(
X̂h − Ŷ h

)2

X̂h + Ŷ h
. (19)

Using the normalized bounds on l1 distance i.e. (14) and

(15) one can easily prove

l̂χ
2

b (Xei , Yej , lmin, lmax) =

H∑
h=1

(
max(0, l̂l1b )

)2

X
h
ei

|Xh
ei
| +

Y
h
ej

|Y h
ei
|

(20)

ûχ2

b (Xei , Yej , lmin, lmax) =
H∑

h=1

(ûl1
b )

2

Xh
ei

|Xh
ei
| +

Y h
ej

|Y h
ej
|

(21)

2.4. Fast Segmental Matching (Fast-SM)

We propose a recursive algorithm that starts matching

from the end of the contrasting sequences. Each segmental

matching is effectively finding the joint likelihood of xi and

yi. Within each matching we search over all possible seg-

mentation up to a maximum segment length. That is, given

lmax and lmin, for i = L, . . . 1, j = L, . . . 1 and consid-

ering uniform prior on segments the likelihood of matching

is

P (xei , yej ) = max
lmin≤k,z≤lmax

{
exp(−D(Xei−k:ei , Yej−z:ej ))

P (xei−k−1, yej−z−1)
}
.

(22)

In other words, (22) is the maximum likelihood of all pos-

sible segmentations limited by lmax and lmin. Thus, we

search for all segmenations ending in xei and yej multiplied

by the likelihood of the matching up to the starting point of

those segments.

We assume that likelihood of correspondences in the

local neighborhood is approximately constant. There-

fore, before executing a recursion we examine its approx-

imated likelihood against the best one found so far. We

abuse the notation and redefine P ∗ as the maximal like-

lihood calculated for the immediate preceding segment to

(Xei−k:ei , Yej−z:ej ), we have

P ∗ = P (xei−k−1, yej−z−1) · exp(D(X∗
bi−1:ei−1

, Y ∗bj−1:ej−1
))

(23)

where X∗
bi−1:ei−1

and Y ∗bj−1:ej−1
denote the best i − 1 and

j − 1 segments that naturally extent to ei − k − 1 and

ej − z − 1, respectively. Therefore, P ∗ is the optimal

segmentation and matching from the beginning of the se-

quences up to segments i − 1 and j − 1 (excluding those

segments). Note that all elements required to compute P ∗

is already calculated and no extra effort is needed to deter-

mine it. The bounding is then defined as

P̃ (xei−k−1, yej−z−1)

≤ P ∗ exp(−lb(Yei−k−1, Yej−z−1, lmin, lmax)) (24)

where lb is the corresponding lower bound defined in sub-

section 2.3. The idea is illustrated in Figure 2. That is,

we propose to bound the likelihood of a segment by the

the production of the maximal likelihood in its neighbor-

hood and the upper bound on the likelihood of matching

any two segments extended within its boundaries. There-

fore, using (24) one can obtain an approximated upper

bound on P (xei−k−1, yej−z−1) and compare it against the

best likelihood obtained for the previous segment. We use

the term ”approximated upper bound” since we have made

the assumption of smoothness on the local likelihood. If

P̃ (yei−k−1, yej−z−1) is lower than the best likelihood for

the preceding segment obtained so far then we do not ex-

pand the recursion and set that correspondence likelihood
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Figure 2. Approximate bounding of the likelihood. Axes show the

index (time) of contrasting sequences. At segment (Xi, Yj) we are

verifying whether we should consider the new segment extending

from (xei − k − 1, yej − z − 1). So far in the process, the best

likelihood is achieved by connecting to segment (X∗, Y ∗). There-

fore, we can find P ∗ which is the likelihood of segmentation up

to the beginning of (X∗, Y ∗). Then we assume the smoothness

(almost constant likelihood) on the neighbourhood of (X∗, Y ∗)
and extend a hypothetical segment to (xei − k − 1, yej − z − 1).
The distance associated with that hypothetical segment can then

be bounded and contribute to our approximated bound on the like-

lihood of all possible segmentation up to (xei−k−1, yej−z−1).

to its minimum by

P (xei−k−1, yej−z−1)

= P ∗ exp(−ub(Xei−k−1, Yej−z−1, lmin, lmax)).
(25)

By setting P (xei−k−1, yej−z−1) to the minimum likelihood

we avoid further expansion of this path even if this point is

visited again during the segmentation. Using this bounding

technique approximately half of the required computations

could be pruned away in the experiments as evident by the

speedup gains demonstrated in the Section 3.

Another technique that contributes to improving the

computational performance of our approach stems from the

BOTW representation. This representation allows us to use

the idea of integral image [18] to calculate the cumulative

sum of the histograms and thus obtain the required segment

using a single subtraction operation. That is, if R is a se-

quence of such cumulative sums (Rf = Rf−1 + xf 1 ≤
f ≤ T for a video of T frames) one can obtain a segment

from bi to ei simply by Rbi:ei = Rei −Rbi−1.

3. Experiments
In this section we demonstrate conclusive empirical re-

sults on the utility of our approach. We show that a single

state alignment model coupled with segmentation is able

to approximate the true alignment of sequences. We also
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(a) Original
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(b) Warped

Figure 3. An instance of a generated sequence and its correspond-

ing warped sequence.

show that the proposed bounding technique is effective in

reducing the required computation while keeping the model

accurate. The first experiment is on synthetic data and

verifies our claim that a segmental matching is able to ef-

fectively approximate the true alignment of two sequences

while keeping the computational cost low. The second ex-

periment is on Motion Capture data by which we show that

our method is able to classify such data better than a rival

method. Finally, our results on UT-iteration dataset [11] are

presented and analyzed.

3.1. Synthetic Data

To show that our adaptive segmental match model is able

to approximate a complete alignment model we have de-

signed the following synthetic experiment. 100 sequences

are generated from the model

Qj(t) =
3∑

i=1

(πi + νt) exp
(
(t− μ)2

)
+ ωt (26)

The time length of all sequences is 150. Peaks in the se-

quences occur at mean times μ = [30, 60, 90]. The weights

are set to π = [7, 1, 3] and are corrupted by white indepen-

dent noise. ωt, νt = N(0, 1). We use a monotonic function

for the alignment ground truth such that

f(t) =

{
1 + 0.01 · t2 t ≤ 50
60 + 100 · tanh( t

100 + .5) t > 50.
(27)

For every time-series the contrasting sequence is generated

by nearest neighbour interpolation at time points given by

(27). A sample of the sequence and its warped version are

shown is Figure 3 where the signal in Figure 3(b) is gener-

ated from the signal shown in Figure 3(a) using the warp-

ing function (27). Sequences samples are then clustered

and a codebook is generated and BOTW are constructed for

each sequence. We have compare Dynamic Time Warping

[12] (DTW), SPHMM [15] and Segmental Match (SM). We

have examined four different maximum segment lengths of

10, 20, 50, 100 and the minimum length of 1 to show how

our approximation of alignment improves as this parame-

ter increases. The histogram distance metric is l1 for all

35803587
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Figure 5. Quantitative comparison of DTW, SPHMM and SM in

terms of closeness to the ground truth and running time in seconds

methods. Similar results are achieved using histogram in-

tersection and χ2.

Figure 4 illustrates a qualitative comparison of compet-

ing methods where all method attempt to recover the true

warping path, i.e. the blue line. To be able to perform a

quantitative comparison of the sequence of segments pro-

duces by SPHMM and SM which has pairs of correspon-

dences that might be lmax away from each other with the

ground truth which is defined for every pair of samples, we

have used linear interpolation on the segment indexes. Then

the l1 distance between the all methods alignment paths and

the ground truth is measured. The average l1 distance over

all 100 pairs of sequences and the running time for all meth-

ods is depicted in Figure 5. Obviously, DTW is not affected

by changing maximum segment length and is basically un-

able to recover the true alignment. The reason relies on the

rapid change of the warped sequence which was not cap-

tured by DTW. SPHMM on the other hand can successfully

recover the alignment but its running time grows fast as the

segment length is increased. Segmental match however, is

able to recover the true alignment much better than DTW

(even when maximum segment length is 10) and its running

time is well below SPHMM.

3.2. Motion Capture

The unsupervised temporal commonality discovery pro-

posed in [2] (TCD) extracts common sub-sequences of two

contrasting time-series represented by BOTW without con-

sidering time monotonicity or other constraints. We show in

this experiment that time monotonicity implemented by our

method may be critical when such sub-sequence are used

for classification purposes.

We used a subset of CMU Motion Capture [1] dataset to

compare our method with [2]. We selected 62 sequences

containing more than 40000 frames of 8 different actions:

walking, running, boxing, jumping, marching, dancing, sit-
ting down and shaking hands. Each class contains 7, 10,

8, 6, 10, 10, 7 and 4 sequences, respectively. Classes were

selected with actions performed by different subjects. Se-

quence lengths range from 125 to 8000. We used a leave-

one-out setting and nearest neighbour (NN) classifier.

Figure 6. Sample frames from UT-interation dataset #1.

Each human motion was represented as the root position,

orientation, and 29 relative joint angles. 3-D Euler angles

were transformed to 3-D quaternion to provide a continuous

representation and then BOTW was constructed for each se-

quence where the codebook size is 50.

For each pair of sequences we applied TCD to retrieve

the most common sub-sequences. In each iteration after

discovering common sub-sequences we removed them from

the contrasting time-series and repeated this process five

times or until one of the sequences is consumed. The sum

of distances of all 5 common sub-sequences is then used as

a similarity measure between each pair. For Fast-SM, the

maximum segment length is set to 50 .

Using TCD we were able to achieve 40.32% classifica-

tion accuracy while Fast-SM was able to classify the se-

quences with 66.13% accuracy. The running time of both

methods were comparable even though Fast-SM did a full

matching of every pair in the dataset. The low recognition

rates might be the result of the chosen codebook size. Also

histograms might not be the best representation for such

multidimensional time-series. In fact, [15] reports much

higher recognition rate on this dataset, that is 90.32%. If we

also adopt the same joint angle representation and use SM

instead of Fast-SM, which is still much faster than SPHMM,

we attain 87.09% in accuracy. The result shows that our

method is able to discover and match common segments

and provide a better measure of similarity between pairs of

sequences.

3.3. UT-Interaction

To apply segmental matching we needed to pick a dataset

of reasonable length and complexity so we could try dif-

ferent segmentation lengths and observe how the recogni-

tion rate is affected. Therefore, popular action recogni-

tion datasets such as KTH [13] or Weizmann [5] datasets

were not suitable for our settings because they contain short

periodic actions and only a few frames are sufficient for

a reliable recognition. Instead, we use the first subset of

publicly available UT-interaction dataset containing 10 se-

quences (60 after segmentation of actions). Within each se-

quence, six actions, hand shaking, hugging, kicking, point-
ing, punching and pushing are performed by 10 different

actors. The videos involve camera jitter. Pedestrians are

present in the video which makes the recognition more dif-

ficult (Figure 6). We have used spatio-temporal interest

points (Cuboids) [4] as the descriptors. Then k-means is
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Figure 4. Qualitative comparison of DTW, SPHMM and SM. The thick blue line is the ground truth. SM approaches to the ground truth as

soon as lmax = 20.

applied on the resulting features to produce an 800 element

codebook.

We use a nearest neighbour classifier to compare with

[9]. Leave-one-sequence-out cross-validation by holding

one sequence for testing and using the remaining nine for

training. Each action in the test set is matched with all

training sequences. As a baseline we report the results

on SVM using the same feature set and also the results

reported in [9]. We have used l1 and χ2 histogram dis-

tances. The results on the l1 distance metric are reported

in Table 1. It is evident from the results that our approach

significantly outperforms other methods. Using either l1 or

χ2 distance metrics SM and Fast-SM were able to achieve

the best result when the maximum segment length was 30.

χ2 achieved the best result even with maximum segment

length of 20. We tried different maximum segment lengths,

namely, 10,15,20, 25 and 30. Figure 7 illustrates how the re-

sulting accuracy and speedup, gained by bounding the dis-

tance (Fast-SM), change as the maximum segment length

increases applying l1 and χ2 histogram distance metrics.

It is interesting to note that the recognition rates of Fast-

SM and SM are identical in all cases eliciting the fact that

the bounding technique and the smoothness assumption on

the local likelihoods are in fact effective. In addition, Fast-

SM achieves at least a 2-fold speedup compared to SM. As

shown in 7(a), χ2 achieves better results in smaller max-

imum segment lengths pointing to it as a more suitable

measure of distance on segment histograms. Unfortunately,

as the maximum segment length increases the bounds on

the histogram distances become looser, resulting in reduced

speedup. However, one should notice that the shortest se-

quence is 24 frames long and our final maximum segment

length (30) already exceeds this limit. This implies that

the model has the option to effectively considers a single

BOTW representation as an alternative.

We also applied SPHMM to observe whether a complete

alignment model is able to achieve better performance com-

pared to SM and Fast-SM. The result showed that SPHMM

cannot advance the recognition rate beyond 91.57% yet is at

least 3 times slower than SM and 6 time slower than Fast-

SM.
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Figure 7. Accuracy and speedup results for l1 and χ2 distances. l1
is depicted as green and χ2 as blue. Accuracy result of Fast-SM

for distance metric is identical to SM.

Table 1. Recognition rates on UT-interaction dataset #1

Method Accuracy

Segmental Match 91.57%
Dynamic BOW [9] 85.0%

SVM 85.0%

Voting [19] 88.0%

4. Conclusion
In this paper we proposed a simplified segmental align-

ment model that was able to classify human activities ac-
curately while remaining computationally efficient. We
showed that an alignment model which consists of a single
match operation when coupled with adaptive segmentation
is able to approximate the true alignment of two warped se-
quences. We also used bounds on histogram distances to
further accelerate our algorithm without compromising the
classification performance.
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