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Abstract

In this paper, we investigate the problem of recogniz-
ing occupations of multiple people with arbitrary poses in
a photo. Previous work utilizing single person’s nearly
frontal clothing information and fore/background contex-
t preliminarily proves that occupation recognition is com-
putationally feasible in computer vision. However, in prac-
tice, multiple people with arbitrary poses are common in
a photo, and recognizing their occupations is even more
challenging. We argue that with appropriately built visual
attributes, co-occurrence, and spatial configuration mod-
el that is learned through structure SVM, we can recog-
nize multiple people’s occupations in a photo simultane-
ously. To evaluate our method’s performance, we conduc-
t extensive experiments on a new well-labeled occupation
database with 14 representative occupations and over 7K
images. Results on this database validate our method’s ef-
fectiveness and show that occupation recognition is solv-
able in a more general case.

1. Introduction

Social characteristics of human, e.g., social status, con-

nections, and roles in a particular situation draw great at-

tention since they are the essence of social life. In the era

of social media, more and more social characteristics can

be conveyed via digital carriers, e.g., images, videos, and

parsed by demographical profiles, e.g., identity [41], gen-

der [3] and age [12]. Recently, an increasing number of

works focus on social characteristics under social contex-

t: identifying people by shot time of images, fix pattern of

co-occurrence, and re-occurrence [22]; recognizing a group

of people via social norm and conventional positioning [14];
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Figure 1. Framework of the proposed method.

jointly solving social relation and people identification [31];

recognizing people by linked text in videos or images [2];

exploring kinship via transfer learning and semantics [34].

Nonetheless, computational tools above are now strug-

gling to keep pace [28], in particular with the emergence

of many social network websites, e.g., Facebook, Twitter,

Google+, and photo sharing websites, e.g., Flickr, Google

Picasa, Instagram. Registered users can upload their per-

sonal photos, containing themselves or people associated.

These photos, as well as any other personal profiles, have

already been sufficient to infer users’ interests and tastes.

Websites could provide better services and useful recom-

mendations if their inferences on users’ preferences are pre-

cise. Generally, people would like to chat to those with sim-

ilar occupations or backgrounds. Therefore, understanding

people’s occupations in customers’ photos can significantly
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improve the experience of social connection recommenda-

tions and professional services aimed at a particular group.

In this paper, we propose a novel framework towards

multiple people’s occupations recognition in a photo. The

entire framework is shown in Figure 1. Unlike [27] that

considers images of single person with “nearly frontal”

pose, ours can tackle multiple people with arbitrary poses

in an image through spatial constraint and occupations co-

occurrence. To this end, (1) dense local clothing patches are

extracted to formulate pose invariant low-level feature; (2) a

novel visual attribute learning method that adopts discrim-

inative filters learned through training and standard images

is proposed; (3) max-margin training is utilized to learn the

steady structure model over multiple people in the photo,

and a simple greedy forward search is employed to infer on

the learned model; (4) to validate our model in practice, we

build the largest occupation image database so far, which

includes 14 representative occupation categories, and over

7K images. Experimental results on this database demon-

strate that the proposed method can deal with occupation

recognition problem in a more general case, regardless of

pose variation, human interaction, and messy background.

1.1. Related Work

Occupation prediction has been preliminarily discussed

and reasonably solved in [27] where a clothing descriptor

based framework is proposed. The clothing feature is de-

scribed via part-based modeling on patches of human body

parts, and is semantically represented by informative and

noise-tolerant sparse coding [40]. In addition, they use Bag-

of-Words model [9] to capture low-level features in both

foreground and background, so that the prediction accuracy

can be further enhanced. However, there are still problem-

s unsolved that we will address in this paper. First, near-

ly frontal upper-body cannot be always strictly satisfied in

real-world applications. Second, other than low-level fea-

tures, mid-level features like visual attributes are also help-

ful. Third, a person’s occupation is tightly coupled with

others’ in the image, by which we can improve overall ac-

curacies of all the people in one photo.

Clothing parsing draws increasing attention recently due

to its close relation with people’s social identity and com-

mercial value. First, people are inclined to wearing the same

cloth in a short time period, which is tightly connected with

identities [13, 33]. Second, clothing preference and style are

carriers of many social characteristics and demographical

information, e.g., gender [3]. Third, content based image

retrieval for clothing offers a more flexible way to choose

and compare products with high efficiency [21, 36]. Final-

ly, clothing recognition has been extended to video surveil-

lance as a real-world practice [38].

Visual attributes are descriptive words designed by hu-

man to capture visually perceptible properties of object-

s. For example, we use “fluffy” to describe animal’s fur

and “round” an object’s shape. As semantical mid-level

features, visual attributes re-organize the complex relation-

s between low-level features and high-level labels, due to

its generality over all objects, i.e., color, texture, pattern,

shape. They have been widely used to describe objects’

properties [8], recognize objects [32], verify faces [17], and

parse clothing [21]. Recently, researchers exploit ranking

function [24] and augmented parts [26] to better represent

attributes.

2. Low-Level Feature Representation

In [27], people use four learned key points on human

body to locate clothing patches, i.e., hat, torso, left, and

right shoulder. Although their method works effectively

under the assumption of nearly frontal upper-body, when

heads or bodies are tilt, rotated, their key points learn-

ing method may fail. Notably, recent studies on clothing

parsing have attempted to tackle the alignment of clothing

parts through either auxiliary database [21] or superpixel-

s with Conditional Random Field (CRF) [36]. However,

their problems are different from ours in that they either

consider single person with simple posing [36] or external

database [21].

Differently, we propose to use dense local patches to

yield invariant discriminative features. In this paper, local

features are generated by the following scheme: (1) obtain

local patches through the detector from [39]; (2) bin the

features in each patch; (3) concatenate bins into a longer

discriminative feature. In-reality, however, clothing parts

misalignment is common and mainly due to pose variation-

s [21]. In most cases, the key part of clothing is slightly

shifted from the ideal model. This enlightens us to employ

the overlapped patches with different shifts to compensate

the misalignment. The generated patches, or an image set,

reasonably simulate most possible variations due to human

poses, therefore potentially become good candidates of lo-

cal clothing parts. The generation of local dense patches

is illustrated in Figure 2. Similar to [3, 27, 21], we use

HOG [6], LBP [1], color histogram, and skin fraction to

represent local clothing patches, and these local descriptors

are implemented in dense-grid fashion.

So far, we only discuss low-level features drawn from

human clothing. In fact, background information also

proves to be informative in determining occupations [27].

Understandably, some occupations work in specific envi-

ronments. For example, sports players play games in either

venue or stadium, while chef and doctor always work in-

side a building. According to benchmark test in [35], we

employ four representative features, HOG, dense SIFT [19],

LBP, and GIST [23] to describe the attached background1 of

1We use the entire image as the input of background feature.
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Figure 2. Illustration of dense local patches and assembling of dis-

criminative filters. First, clothing patches of the policeman are

detected through the model in [39]. Second, for each clothing

patch, we shift its bounding box up, down, right, left by 1/3 of

the original size, and yield dense local patches XI as figure illus-

trated. Third, we use the dense local patches as positive samples

and patches XS
1 from standard images (e.g., firefighter) that do not

have this attribute, i.e., blue, as negative samples to train a SVM

model whose hyperplane as well as bias will be used as discrimi-

native filter f1 for visual attributes. Finally, we assemble discrim-

inative filters f1, . . . , fn to form a new visual attribute descriptor

fp.

each image, and their combinations serve as the descriptors

for background attributes.

3. Discriminative Filter for Visual Attribute

3.1. Motivation

Traditionally, visual attributes are learned directly

through low-level feature [17] or ranks from a wide-margin

ranking function [24]. Different from them, we believe the

difference between relevant visual attributes is a good de-

scriptor for visual attributes. Intuitively, for some attributes,

their uniqueness can be highlighted by conceptually rele-

vant attributes. For example, in our clothing description,

pattern “plain” is conceptually defined through “striped” or

“spotted”, and vice versa. Therefore, the “difference” be-

tween “plain”, and “striped” or “spotted” can be a poten-

tially ideal descriptor for attribute “plain”. Mathematically,

this “difference” can be highlighted by decision boundary

or discriminative filter in SVM if we consider different vi-

sual attributes as data with different labels.

In addition, our formulation of descriptor for visual at-

tributes avoids the vagueness of ranks. For example, if we

assign high scores to attribute “plain”, then we should as-

sign low scores to both “striped” and “spotted”. But relative

ranks between “stripped” and “spotted” are difficult to de-

fine. In our case, we simply use them together to formulate

the discriminative filter.

3.2. Descriptor Formulation

In this paper, image sets with relevant yet different at-

tributes are defined as “standard images”. For exam-

ple, clothing patches in other colors are standard images for

clothing patches in red. Suppose we have a group of dense

local clothing patches XI = [x1, x2, . . . , xm] as input for

the visual attribute, where xi is a feature vector for a local

patch, and a standard image set XS = [XS
1 , X

S
2 , . . . , X

S
n ],

where each XS is a group of m local patches from different

clothing with relevant yet different visual attributes to the

input image. Then we can obtain a group of discriminative

filters through:

w, b = argmin
w,b

1

2
‖w‖2 + C

∑

i

ξi,

s.t. ∀xi ∈ XI , wTxi + b ≥ 1− ξi,

∀xi ∈ XS , wTxi + b ≤ −1 + ξi,

(1)

where ξi, C are slack variable and penalty term used in

conventional soft margin SVM, respectively. In geometry,

linear filter w and corresponding bias b set up a decision

boundary for image set XI and XS , highlighting the differ-

ence between XI and XS which could be a better descriptor

for visual attribute represented by XI . To make it concrete,

suppose we have two relevant shape visual attributes, i.e.,

square and round. Low-level feature HOG is able to cap-

ture the difference and the learned w and b weight more on

HOG feature to differentiate square from round. In practice,

we append 1 to the end of each vector x to yield a discrimi-

native filter f = [w; b] without bias term.

3.3. Assembling

In last example, if more comparisons are made (e.g., we

compare square with triangle as well.), we may obtain bet-

ter descriptors for visual attributes. We therefore propose to

use several standard images to yield several comparison re-

sults. Namely, f1, f2, . . . , fn are filters generated by train-

ing samples pairs [XI , XS
1 ], [X

I , XS
2 ], . . . , [X

I , XS
n ]. To

enhance the performance, we resort to the following assem-

bling approach:

fp
(i) =

1

n
|F(i,:)|α, (2)

where F = [f1, f2, . . . , fn], | · |α is the vector α norm, and

F(i,:) denotes the i-th row of filter matrix F . In this paper,

we consider using max-pooling (by setting α to ∞), which

has been extensively discussed and employed in image clas-

sification [25, 37] due to its local translation invariance and

biological plausibility. In addition, for filters differentiat-

ing input from all standard images, max-pooling along one

dimension will return the most significant response, and

hence can appropriately describe the traits of the input. The

assembling process is shown in Figure 2.

3633



For each attribute ai(ai ∈ A), we will generate a corre-

sponding descriptor fp
ai

. To ease the following joint occupa-

tion recognition scheme, we predict the probability of each

attribute through SVM [4] and its probabilistic output [5],

and these visual attributes are now scaled to [0, 1]. Finally,

we can represent each person with a probabilistic attribute

vector [P (ai), P (a2), . . . , P (a|A|)]T of length |A|.

4. Joint Occupation Recognition
4.1. Prior Knowledge

We state our learning model dealing with multiple peo-

ple’s occupations recognition in a photo, with arbitrary

poses and interactions. Joint recognition of multiple peo-

ple [22, 14, 31] or objects [18, 15, 7] in an image has

been broadly discussed, and the most important inter-class

prior are co-occurrence, and spatial context. Specifically,

as to occupation recognition problem, the co-occurrence is

known as: people with the same or relevant occupation-

s seem to appear in the same photo with high probabili-

ty. For example, people with relevant occupations could be

“teacher—student” and “waiter—customer”. Spatial con-

text indicates the structure of images under some social as-

sumption. For example, waiter is standing beside a sitting

customer, and a group of people are standing in a line. We

integrate both of them into the following model.

4.2. Model Description

We propose a score maximum model to find out the most

possible occupations for the people in it. Suppose there

are K people in a single photo denoted by Z = {zi|i =
1, 2, . . . ,K}, where zi is an attribute vector with each ele-

ment indicating the probability of existence of an attribute.

We also assume that we have C of classes occupations, and

yi ∈ {1, 2, . . . , C} denotes the occupation label of the i-th
people. Therefore, occupation recognition in an image is

equivalent to maximizing the following score function:

J(Z, Y ) =
∑

i,j

wT
yi,yj

lij +
∑

i

wT
yi
zi, (3)

where Y = {yi|i = 1, 2, . . . ,K} is a label vector, and

lij indicates the spatial context feature that quantifies rel-

ative location of the i and j-th people into several bins, i.e.,

above, below, overlapping, next-to, near, and far. Similar

definition has been used in [7] to define the relative location

of different objects. For each individual, we use a class tem-

plate wyi
to weight the attribute vector zi, while for pairwise

relation of people i and j, we encode their spatial configura-

tion in wyi,yj . Note wyi,yi is valid in the situation of people

with the same occupation, and is always set to relatively

large value in practice.

The score function in Eq. (3) is similar to the model

proposed in [11] where it considers matching a pictorial

Input: wyi
, wyi,yj

, zi, i, j = 1, 2, . . . ,K
Output: Occupation labels Y for each individual

1 Initialization: Y = ∅, J = 0,	yi = wT
yi
zi

2 while there are unlabeled people in the photo do
3 	yi = J(Z, Y ∪ yi)− J(Z, Y );
4 (i∗, y∗i ) = argmaxi,yi

	yi;
5 Y = Y ∪ y∗i ;

6 end
Algorithm 1: Inference through greedy search.

structure to an image through energy minimization. How-

ever, both of them prove to be NP-Hard if the underlying

structure is arbitrary. Different from the pictorial structure

scheme in [10] solved by dynamical programming (DP) un-

der the assumption of underlying tree structure, our model is

in discriminative fashion, and people’s relations embedded

in the photo are not necessarily in tree structure. We instead

resort to a non-max suppression (NMS) like greedy search

algorithm for inference. In practice, this algorithm works

comparably to the exact inference, but in a more efficient

manner [7].

4.3. Inference

The proposed greedy search in Algorithm 1 is analogous

to the non-max suppression (NMS) proposed in [20], how-

ever, each local part of the object in original model is re-

placed by different people in the occupation problem. Our

algorithm can be briefly stated as: first, in candidate pool,

find an individual satisfying i∗, y∗i = argmaxi,yi
wT

yi
zi,

and set J(Y, Z) = wT
y∗
i
zi∗ ; second, find the most “com-

patible” occupation for another individual j, which most

enhances the J(Y, Z) by considering both wT
y∗
j
zj∗ and

wT
y∗
i ,y

∗
j
lij at the same time; repeat this process until all the

individuals are added and assigned appropriated occupation

labels. We summarize these steps in Algorithm 1. Com-

pared with heuristic algorithms, the greedy search strategy

is potentially exponential, especially when the number of

total subjects are large. Fortunately, two factors prevent us

from exhaustive search. First, the locations of people are

fixed, and features are in low-dimension. Second, the num-

ber of occupations and people in a photo are not large.

4.4. Learning

We consider optimizing wyi
and wyi,yj

in a max-margin

learning procedure. The output space in our problem incor-

porates multiple labels and their structure, rather than a sin-

gle binary label. Therefore, we re-formulate wyi and wyi,yj

by wb and wa, favoring the multiple labels and output struc-

ture, respectively:

J(Z, Y ) =
∑

i,j

wT
a ψ(yi, yj , lij) +

∑

i

wT
b φ(zi, yi). (4)
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Input: (Z1, Y1), . . . , (ZN , YN ), C, ε
Output: w, ξ

1 Initialization: H = ∅
2 repeat
3 (w, ξ) ← solve problem (8) based on current H;

4 for n = 1 to N do
5 Y ∗

n ← argmaxY ∗
n ∈Y{	(Yn, Y

∗)+
6 wTΨ(Zn, Y

∗)};
7 end
8 H ← H ∪ {(Y ∗

1 , . . . , Y
∗
N )};

9 until 1
N

∑N
n 	(Yn, Y

∗
n )− 1

NwT
∑N

n [Ψ(Zn, Yn)−
Ψ(Zn, Y

∗
n )] ≤ ξ + ε;

Algorithm 2: 1-slack formulation for structure SVM.

Recall that we have 6 spatial relations, |A| dimensional fea-

ture, and C categories of occupations. Then the dimension-

ality of wa and wb is 6C2 and C × |A|, respectively. Anal-

ogously, both ψ(·) and φ(·) are sparse vectors whose ele-

ments are allocated by (yi, yj) and yi, respectively. Since

we predict labels and their structure together, we integrate

weight vectors into one, having the following formulation:

J(Z, Y ) = wTΨ(Z, Y ), (5)

where w = [wa;wb], Ψ(Z, Y ) = [
∑

ij ψ(·);
∑

i φ(·)]. Nex-

t, we will show how to train a max-margin model that given

training data Zn, n = 1, 2, . . . , N , the predicted label Ȳ ∗
n

for Zn is approaching the true label Yn, i.e., Ȳ ∗
n ≈ Yn. This

essentially is a loss minimization problem plus a regularized

term:

arg min
w,ξn>0

1

2
wTw +

C

N

N∑

n

ξn,

s.t. ∀Ȳn wT	Ψ(Zn, Yn, Ȳn) ≥ 	(Yn, Ȳn)− ξn,

(6)

where Ȳn is the hypothesis of the true label Yn,

	Ψ(Zn, Yn, Ȳn) = Ψ(Zn, Yn) − Ψ(Zn, Ȳn), 	(Yn, Ȳn)
is the loss function that quantifies the loss associated with

the hypothesis Ȳn, ξn is the slack variable in the n-th con-

straint, and C is the penalty term. More specifically, the

loss function here sums over all the single label loss func-

tions indicated by 	(yi, ȳi), namely,

	(Y, Ȳ ) =
∑

i

	(yi, ȳi),where 	(yi, ȳi) = 1yi �=ȳi
, (7)

Problem (6) is essentially a structure SVM [29] favoring

the constraint term that involves structure output based loss

function. This is identified as margin-rescaling in [30].

The key step in solution of problem (6) is to find the most

significant violated constraint, namely, to find the most vio-

lated hypothesis Ȳn. Intuitively, if the most violated hypoth-

esis satisfies the constraints in problem (6), then all other

Soccer 
Player

Mara-
thoner

Chef

Lawyer

Doctor Firefighter

Policeman

WaiterSoldier Student

Clergy

Mailman

Construc-
tion Labor

Teacher

Figure 3. Illustrations of the collected occupation database. There

are 14 occupations and over 7K images in total.

hypothesis should be valid. However, the runtime for this

n-slack formulation in problem (6) is still polynomial with

cutting plane method. To accelerate, we refer to 1-slack for-

mulation in [16], which employs a single slack variable ξ,

rather than a group of ξi for each constraint. We then rewrite

the problem (6) in:

arg min
w,ξ>0

1

2
wTw + Cξ,

s.t. ∀Ȳn
1

N
wT

N∑

n

[Ψ(Zn, Yn)−Ψ(Zn, Ȳn)]

≥ 1

N

N∑

n

	(Yn, Ȳn)− ξ.

(8)

Differently, since 1-slack formulation shares one unique ξ
among all constraints, it adds only one the most violated hy-

pothesis in each iteration. This consequently makes linear

runtime possible. To solve this problem, a working set H is

constructed to store the hypothesis and violated constraints.

In each iteration, we compute w over the current H, find

the most violated constraint based on current w, and add it

to the working set. The iteration will not terminate until no

constraint can be found that is violated by more than the

desired precision ε. The solution of problem (8) is summa-

rized in Algorithm 2

5. Database
To the best of our knowledge, the occupation database2

collected in this paper is so far the largest image database

for occupation recognition research in computer vision

community. There are over 7K images of 14 different oc-

cupations, and each category contains at least 500 images.

These images are downloaded from the Internet using image

2The database will be public available soon.
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search engines, e.g., Google Image, Flickr, and social net-

work website, e.g., Facebook. We conduct the query pro-

cess by trying the names of occupations, their synonyms,

and relevant concepts.

We select 14 representative occupation categories

(shown in Figure 3) from over 200 well-defined occupa-

tions in Wikipedia based on following fundamental criteria.

First, we choose the occupation category that is visually in-

formative from human perspective. Hats and uniforms are

main characteristics of these categories. Second, we remove

some visually informative ones but hard to be recognized

by either face detector or human detector, e.g., astronaut.

Third, we remove photos with dense crowd and severe over-

lap among people. Though our framework can deal with

multiple people, solving the aforementioned problem is al-

ready beyond the scope of this paper. As to the attributes

annotation, three specialists are involved to label each at-

tribute over all images. Their responsibility includes: (1)

select or remove images not qualified based on the previous

criteria; (2) assign attributes to images via majority voting

over three of them. Examples of our database for each oc-

cupation category is shown in Figure 3.

6. Experimental Results
In this section, we conduct two groups of experiments to

test the proposed framework. First, we demonstrate the ef-

fectiveness of the proposed descriptor for visual attributes.

Second, we compare our joint learning framework with the

state-of-the-art method in [27]. Note that we extract low-

level features for visual attributes only from corresponding

body parts, e.g., hat attributes from head area, upper body

attributes from torso and arms. Similar to Figure 2, we use

1/4, 1/3, and 1/2 as offsets in experiments to yield dense lo-

cal patches. For attributes experiment, we use 250 images

from each occupation category with one person in each pho-

to for training and test, while for the joint learning frame-

work, we use another 250 images with more than one person

in each photo from each category for training and test.

6.1. Evaluation on Visual Attributes

We illustrate the visual attributes discussed in this paper

in Figure 4. The negative samples of each attribute are se-

lected from mutually exclusive samples. For instance, the

negative samples for hat attribute “Rimless” are samples

from other four attributes, namely, “Uniform”, “Helmet”,

“Cap”, “No Hat”. Please be notified that for upper or lower

body clothing attributes, not all attributes are mutually ex-

clusive, but part of them. For instance, in Figure 4, upper

body, “Tight” and “Loose” cannot exist at the same time,

but they are compatible with “Long”, “Short”, and “Vest”.

We use one-to-rest binary classification strategy to test

each attribute, and 5-fold cross validation is implemented

to conduct the test. 25 images are randomly selected from

Rimless Uniform CapHelmet

Color

Ha
t

Shape

Patten

Plain Spotted Striped Decorative

Smooth ShinyRough

Texture

Lo
w

er
 B

od
y

Patten

Tight

Vest

Striped

Loose

Spotted

Long

Leisure

Short

Suit

Plain

Tight ShortLong ApronLoose

Patten

StripedPlain Spotted

U
pp

er
 B

od
y

Shape

Shape

No Hat

Figure 4. Illustration of the visual attributes used in our framework.

Note that attributes in one group are mutually exclusive, e.g., five

attributes in shape group of hat. However, for shape group in upper

body and lower body, only attributes with the same color border

are mutually exclusive.

each attribute as the standard images. The probabilistic out-

comes from SVM are used to compute precision and recall.

We finally obtain the average precisions for each attribute

shown in Figure 5, where “SVM-Visual Attributes” mean-

s we directly use low-level feature, while “DF-Visual At-

tributes” means we use the proposed discriminative filter

(DF) as the descriptor. In addition, we also illustrate the

impact of numbers of standard images in Figure 6.

In Figure 5, we observe that the proposed visual at-

tributes based on discriminative filters perform better than

the attributes based on low-level features plus SVM. While

for attributes like color that can be easily differentiated

through low-level feature, the improvement is acceptable,

the improvement on other attributes, e.g., “Spotted” in hat,

is significant. Indeed, we find that soldiers’ recognition ac-

curacy is impressive in the later section. Although most

attributes achieve acceptable performances, each single at-

tribute cannot directly determine the occupation category.

In next experiment, we demonstrate that their combinations

offer discriminative features to construct classifiers for both

single and multiple people occupation recognition. Final-
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Figure 5. Average precision of different groups of visual attributes. Color group is the average performance over hat, upper and lower body.

“SVM-Visual Attributes” means we directly use low-level feature and SVM to predict attributes.

Table 1. Experimental results of average precision (%). The av-
erage performance of these methods are: Background (15.4%),

Method in [27] (35.0%), Single (38.1%), Joint (41.1%).
construc-

chef clergy tion labor customer doctor

Background 10.3 10.8 11.4 7.4 9.6

Method in [27] 40.8 34.2 42.8 19.2 44.9
Single(Ours) 41.2 35.7 44.9 22.4 46.8

Joint (Ours) 43.8 36.9 47.8 24.8 49.7

fire- mara-

fighter lawyer mailman thoner police

Background 8.3 31.7 19.7 12.8 9.1
Method in [27] 31.3 59.1 21.8 48.2 18.4
Single(Ours) 32.7 58.9 24.7 53.2 18.7
Joint(Ours) 38.1 59.4 27.9 58.7 24.1

soccer

player soldier student teacher waiter

Background 28.8 31.5 14.8 7.8 17.6
Method in [27] 48.2 60.1 21.5 13.6 20.6
Single(Ours) 59.3 70.4 23.6 14.8 24.4
Joint(Ours) 60.5 75.1 25.1 15.7 28.9

ly, we discover that the numbers of standard images matter

in Figure 6. Results show that more standard images yield

better results when this number is not very large (5-25).

6.2. Evaluation of Joint Learning Framework

In our joint learning framework, we consider the scores

from an individual and its compatibility with others in the

same image. In Table 1, we compared four methods whose

results are generated by 5-fold cross validation. Note “S-

ingle” means single person’s occupation recognition which

is similar to the method in [27], but not identical, since we

use “dense local patches” + “DF-visual attributes” instead

of low-level clothing features to deal with pose variations.

For “Background”, we use features combination mentioned

in Section 3, i.e., HOG, SIFT, LBP, GIST. Then we train a

one-to-rest binary SVM for each occupation category and

use background features in test images as inputs. Note that

background is also a visual attribute element in the attribute

vector used in this paper. In addition, we add a hidden oc-

cupation “customer” in Table 1, indicating people who have

interactions with occupations such as “waiter”, or “doctor”.

From Table 1 We can see that the proposed framework

works better than the state-of-the-art method. It becomes

significant when people of this occupation tend to show ar-

5 10 15 20 25
0.45

0.5

0.55

0.6

0.65

0.7

Number of Standard Images

Av
er

ga
ge

 P
re

ci
si

on

Color
Hat
Upper
Lower

Figure 6. Impact of the numbers of standard images. We use d-

ifferent numbers of standard images to learn DF-visual attributes

descriptors, and the average performance over color, hat, upper

body, and lower-body is shown indexed by different curves.

bitrary poses, e.g., sports player, soldier. Under this situa-

tion, clothing patch based method is not stable and many ir-

relevant factors will be filled into the clothing feature. How-

ever, our “dense local patches” + “DF-visual attributes”

based method still works well. On the other hand, method in

[27] performs well when people of this occupation always

show the nearly frontal pose, e.g., lawyer. In addition, the

accuracy is enhanced by the interactive occupations, e.g.,

waiters and customers. We also find a significant improve-

ment in occupations tending to show a group of people,

e.g., soldier, marathoner. This proves that our social con-

text based joint learning framework is effective. Finally, we

find that the background feature is valuable for some occu-

pations, e.g., lawyer, soccer player, soldier.

In general, we can see that occupation recognition in

an image is still challenging, due to the lack of unique at-

tributes, e.g., students, teachers, or large variations of cloth-

ing style, e.g., mailman. Consequently, these categories are

easily misclassified into other ones. To show the multi-class

classification details over 14 categories, we also compute c

the confusion matrix by the recognition results from multi-

class SVM, and list it in Figure 7. The number in i-th row

and j-th column indicates the false alarm rate to i-th class

when recognizing j-th class. From this confusion matrix,

some typical mistakes made by the classifier are revealed.

For example, a construction labor is easily misclassified as

a firefighter while teachers are randomly classified as other
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Figure 7. Confusion matrix of occupation recognition results.

occupations since their dressing style is not unique.

7. Conclusions
We proposed a novel framework towards multiple peo-

ple’s occupations recognition in a photo. First, we apply

dense local patches scheme to detected human body parts,

therefore yielding robust low-level feature representation.

Second, visual attributes are learned through assembling

discriminative filters to bridge the semantic gap between

low-level features and high-level labels — occupation cat-

egories. In addition, social context is added to formulate

a score maximum model, which is trained through a struc-

ture SVM. Extensive experiments on the collected database

show that our method works better than the state-of-the-art,

especially when there are interactive occupations or a group

of people in a photo.
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