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Abstract

We propose a novel parametrization of the data asso-
ciation problem for multi-target tracking. In our formula-
tion, the number of targets is implicitly inferred together
with the data association, effectively solving data associ-
ation and model selection as a single inference problem.
The novel formulation allows us to interpret data associa-
tion and tracking as a single Switching Linear Dynamical
System (SLDS). We compute an approximate posterior solu-
tion to this problem using a dynamic programming/message
passing technique. This inference-based approach allows
us to incorporate richer probabilistic models into the track-
ing system. In particular, we incorporate inference over in-
liers/outliers and track termination times into the system.
We evaluate our approach on publicly available datasets
and demonstrate results competitive with, and in some cases
exceeding the state of the art.

1. Introduction

Multi-target tracking is an important, but stubborn prob-

lem in Computer Vision as well as many related fields (no-

tably robotics). The applications range from surveillance,

through autonomous navigation, to active scene modeling

and understanding. Despite the numerous motivations for

solving this problem, it has remained a challenging topic af-

ter decades of active research. Historically, it has been diffi-

cult for two reasons. The first is the combinatorial space of

possible associations between the observations and objects

being tracked, and the second is model selection over the

number of existing tracks.

In this paper we propose Latent Data Association as an

alternative parametrization of the data association problem

where the number of underlying target tracks is implicit

in the data association. We treat the new parametrization

as a special case of a Switching Linear Dynamical System
(SLDS) [19], and perform approximate inference using a

(a) Assignment #1

(b) Assignment #2

(c) Assignment #3

Figure 1. Illustration of three possible Latent Data Association as-

signments at t = 4. The binary indicator matrix (L
(4)
ij ) controls

the matching of nodes between t = 4 and t = 3. Nodes are

numbered within each time slice and colored based on their global

track membership. Each node represents a single latent track state

together with any observations (if they exist).

message passing technique.

By treating multi-target tracking as an approximate hy-

brid inference problem, more complex reasoning about ob-

ject classification can be incorporated into the same algo-

rithm used for data association and tracking. In this spirit,

we take advantage of advances in in the state of the art of

object detection and classification [10, 11, 17, 21] by incor-

porating object/target classification directly into our system.

This is accomplished by adding discrete object category
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variables into the tracking model. The outputs of a standard

object detector can then be used as observations of the tar-

get’s category. Using this model allows the classification

and tracking problem to be naturally combined into a single

system where statistical relationships between target motion

(tracking) and target identity (detection and classification)

can be exploited.

2. Previous Work
Classical approaches to multi-target tracking were pi-

oneered decades ago assuming point-like targets such as

radar returns. Most of these were progressive variations and

generalizations of single target tracking in a cluttered envi-

ronment. The Probabilistic Data Association Filter (PDAF)

[5] only deals with a single target at a time, but introduced

the notion of soft data association based on a weighted mix-

ture of measurements. The Joint Probabilistic Data Associ-
ation Filter (JPDAF) [13] generalizes the PDAF to take into

account multiple targets. The Multiple Hypothesis Tracker
(MHT) [22] keeps a list of all possible data association hy-

potheses and the resulting filter outputs for each target.

More recently, Tracking by Detection (TBD) [1] has be-

come popular. This technique re-frames multi-target track-

ing as the fusion of an object detector [10, 11, 21] with data

association. In contrast to classical methods focusing on

radar data with point measurements, TBD literature has fo-

cused on tracking objects in video sequences. Out of the

recent work, two directions can be identified.

Probabilistic Occupancy Map (POM) based approaches

accumulate detections on a discretized grid. The tracking

question is formulated as linking compatible detections on

the grid into consistent trajectories. Berclaz et al [7] form

a sparse graph over every hypothetical discrete object loca-

tions. Finding tracks is formulated as a network optimiza-

tion problem with a global solution. Andriyenko et al [2]

use a relaxed Integer Linear Program to achieve an alterna-

tive global solution to the problem.

Discretizing the tracking space limits applications (e.g. it

is not easy to combine with a moving sensor platform) and

forces a compromise between accuracy and the size of the

tracking area. Unlike these approaches, we do not make any

discretization of the search space. All continuous variables

are treated as such and smoothing of the output trajectories

is done implicitly via the motion model without any post-

processing.

As an alternative to discretization, the second approach

can be described as Detection Partitioning. In this case, the

set of discrete detections is partitioned into tracks without

explicitly enumerating what happens to the target in be-

tween successive detections. Jiang et al [14] formulates

data association as a Linear Program (LP) over the sparse

graph of detections. Zhang et al [27] use a network flow ap-

proach over an analogous sparse graph. These approaches,

and others like them, tend to ignore the traditional observa-

tion model by assuming target locations are fully observed,

thus requiring a separate post processing step to smooth the

resulting trajectories.

Monte Carlo based approaches represent the distribution

over the state space as a set of discrete samples. They are

both principled and simple to implement, even for com-

plicated non-linear models. In the case of Particle Filters
(PF), these samples are manipulated so that their distribu-

tion tracks the posterior of the filter. The JPDAF can be

implemented as a PF [24, 25] in order to track people from

a mobile platform using 2D laser range data. Khan et al [15]

use a Markov Chain Monte Carlo (MCMC) based parti-

cle filter to incorporate motion priors over target interac-

tions. Breitenstein et al [9] introduce the Detector Confi-
dence Particle Filter (DCPF) to directly incorporate detec-

tor scores as a measure of confidence. PF approaches are

particularly prone to the ’curse of dimensionality’ and do

not scale well as the state space dimension increases.

MCMC can also be used as an independent tracking al-

gorithm by sampling over the joint posterior of the whole

problem. Oh et al [20] use MCMC in this way to directly

sample over partitions of the detections and their posteri-

ors. Recently, Benfold et al [6] proposed a real-time global

MCMC strategy which simply ignores the continuous state

variables of the targets and samples directly over groupings

of observations. This has the disadvantage of losing the la-

tent/hidden state space of the targets and so requires post-

processing to recover smooth trajectories.

Andriyenko et al [3, 4] formulate tracking as a direct

optimization problems over splines, and in the latter case

discrete track labels. This approach is similar in spirit to

ours, but is not amenable to an obvious probabilistic in-

terpretation. Leibe et al [16] propose a different batch

method where an over-complete set of trajectory hypothe-

ses is pruned down to the most likely non-contradictory set

using a Quadratic Boolean Program.

Random Finite Sets [18, 26] are a proposed alternative

probabilistic calculus designed specifically for dealing with

finite sets of targets. Here, a specialized theory is devel-

oped for treating a dynamically sized set of target states as

a single random variable to be tracked. This is perhaps the

most principled approach to multi-target tracking, but un-

fortunately requires a specialized set of mathematical tools.

Our method offers some of the same advantages, but stays

within the ’standard’ probabilistic framework.

3. Traditional Data Association
Before introducing Latent Data Association, we review

the classical formulation as a motivation for the subsequent

section. We assume a fixed number of tracks and attempt

to simultaneously find the target trajectories and the data

association of observations to targets.
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Consider a set of observations Z = {Z(1), . . . , Z(T )}
with Z(t) = {z(t)1 , . . . , z

(t)
Nt
} and t denoting time. De-

pending on the problem, each observation zti could include

2D/3D target locations as well as dimensions and other

properties. These observations are assumed to be gener-

ated by M distinct targets. Each target, m ∈ {1, . . . ,M}
follows the trajectory Xm = (x

(1)
m , . . . , x

(T )
m ). The data

association problem is classically formulated as finding a

correspondence between the targets and observations at

each point in time. This is done by introducing a set of

discrete decision variables, D = {D(1), . . . , D(T )}, with

D(t) = {d(t)i }, which control the associations. In this nota-

tion, d
(t)
i = j ∈ {1, · · · ,M} indicates that the observation

z
(t)
i is associated with the jth target, with the constraint that

no two observations can be assigned to the same target. The

value d
(t)
i = 0 indicates an outlier observation not associ-

ated with any particular target. The graphical model for this

problem is shown in Figure 2a for reference.

If D is known, it is possible to infer the posterior trajec-

tories, P (x
(1:T )
m |D,Z), using a Kalman smoother. With D

unknown, however, we are forced to consider all possible

data associations. This can be formulated as a posterior

P (Xm|Z) =
∑
D

P (Xm|D,Z)P (D) (1)

or as a MAP problem

X∗
m = argmax

Xm,D
P (Xm|D,Z)P (D) (2)

In either case, an approximation must be made to deal with

the combinatorial number of possible values for D. Various

search strategies exist for finding a ’good’ D, but these are

often prone to local minima.

Even if we were to avoid enumerating all values of D in

the above, ’proper’ Bayesian model selection over the num-

ber of tracks, M , still requires this enumeration because the

posterior likelihood is given by

P (M |Z) =
P (Z|M)P (M)

P (Z)
∝ (3)

∝ P (M)
∑
D

∫ (
P (Z|X,D)P (X|M)

)
dX (4)

Whereas for a fixed M we can avoid the enumeration by

restricting ourselves to a MAP estimate and local optimiza-

tion, the same approach cannot be used for model selection.

To calculate the probability of a given value of M , we must

consider the likelihood of all possible data associations con-

ditioned on the existence of exactly M targets.

4. Latent Data Association
Our Latent Data Association parametrization avoids the

difficulties of the previous section. While the classical ap-

proach attempts to assign observations to previously exist-

ing tracks, Latent Data Association starts by assuming that

each detection is its own track (of length 1) with a perma-

nently associated hidden state variable. The problem of

tracking then becomes a question of linking these single-

ton tracks into longer trajectories. We do this by assigning

each track at time t as the continuation of some track at

t−1. This amounts to a set of discrete variables controlling

how to join the tracks after time t with those existing up to

time t − 1. We refer to this form of data association as la-
tent because the discrete variables now control associations

between adjacent latent state variables. Figure 1 illustrates

this parametrization with the tracks being spliced between

t = 3 and t = 4.

To define this model formally, we define a node as the

set of hidden state variables associated with some track at

a specific time instance, as well as any observations of this

state. Each node is denoted by the pair n = (t, i), where

t is the time index, and i an index within that time slice

(illustrated in Fig. 1). For n = (t, i), we define xti as

the unobserved state variables of the node and zti as the

observations (if present).

The binary indication matrix L
(t)
ij is used to control the

latent data associations at time t; setting L
(t)
ij = 1 corre-

sponds to linking node (t, i) with node (t − 1, j). If ∀j,

Lt
ij = 0, we know that node (t, i) is not linked with any-

thing in the past and hence represents the start of a new

track. In order to ensure track continuations are always one-

to-one, we must enforce the mutual exclusion constraints∑
i L

(t)
ij ≤ 1 and

∑
j L

(t)
ij ≤ 1.

Given these definitions, the set of nodes combined with

a value for each L(t) matrix forms a graph structure, seen in

Fig. 1 , where each connected component represents an in-

dependent track. This parametrization of the problem sub-

sumes standard data association as well as model selection

over the number of tracks; any number of tracks and any

data association can be represented with a suitable value for

L = {L(t)}.
By fixing the set of latent data association indicators, we

partition the nodes into independent tracks. Within each

such track, we have the standard motion and observation

models. Each observation zti is generated from the asso-

ciated target state xti according to an observation model,

P (zti|xti). The motion model between any two nodes is

specified conditional on these nodes being connected:

P (xti|xt−1,j , L
(t)
ij = 1) (5)

The associated graphical model is shown in Fig. 2b .

If we assume linear motion and observation models, the

model forms an SLDS [19] where the discrete L(t) vari-

ables control the relationships between continuous variables

in the Markov Chain. This SLDS can be used to implicitly
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(a) Classical data association (b) Latent Data Association

Figure 2. Graphical models contrasting Latent Data Association with the classical approach. Dashed lines represent dependencies con-

trolled by the data association variables D(t) or latent data association variables L(t) respectively.

solve the data association problem together with model se-

lection over the number of targets.

5. Approximate Inference
We propose an iterative approximate inference tech-

nique to solve the SLDS introduced in the previous

section. The goal in this section is to pick L∗ =
argmaxL P (Z|L) and compute the smooth trajectories

X∗ = argmaxX P (X|Z,L∗). Our technique is based on

re-using the computation already required for smoothing to

also optimize over L.

If the value of L were known, the problem could be re-

duced to smoothing trajectories based on the partitioned ob-

servations. Although many equivalent formulations are pos-

sible, we use the notation of a message passing algorithm to

describe the smoothing process with L fixed. For a node

(t, i), we define prti as the index of the previous node (at

t−1) in the same track and nxti as the index of the next node

(at t + 1). As a shorthand, we also define x
pr
ti ≡ xt−1,prti

.

The forward and backward messages respectively can then

be defined recursively as

−→μ ti(xti) =

∫
x
pr

ti

−→μ t−1,prti
· P (zti|xti) · P (xti|xprti ) (6)

←−μ ti(x
pr
ti ) =

∫
xti

←−μ t+1,nxti · P (zti|xti) · P (xti|xprti ) (7)

After computing both sets of messages, all information

about each node will be contained in

Bti(xti, x
pr
ti ) =

−→μ t−1,prti
·P (zti|xti)·P (xti|xprti )·←−μ t+1,nxti

(8)

Note that Bti is proportional to the marginal posterior over

(xti, x
pr
ti ), but does not necessarily integrate to one.

At this point, we have computed the posterior over X
by assuming a fixed value of L. To optimize over L we

consider the marginal likelihood of a given track, computed

by integrating out all relevant X variables. This quantity

can be efficiently retrieved from any node along the track as

mti =

∫
xti,x

pr

ti

Bti (9)

Eq. 9 allows us to maximize the marginal likelihood of

all tracks present at t over Lt while holding L(t′) fixed for

t′ 	= t:

L∗(t) = argmax
L(t)

P (Z|L) = argmax
L(t)

∏
i

mti (10)

This optimization can be solved as a Linear Assignment

Problem (LAP) between nodes at t and t−1 formulated via

the (constrained) binary indicator matrix L(t):

max
L(t)

∑
ij

L
(t)
ij · logmtij (11)

mtij ≡
∫
X

−→μ t−1,j · P (zti|xti) · P (xti|xt−1,j) · ←−μ t+1,nxti

(12)

Note that mtij is the hypothetical value of mti if we had

torn the node (t, i) from its current assignment and attached

it to node (t− 1, j) instead.

Picking a new value of L(t) according to Eq. 11 does

not affect any of the forward messages before time t or

any of the backward messages after time t – these only de-

pend on values of L(t′) for t′ < t and t′ > t respectively.

This allows us to interleave optimization over L(t) into the

standard message passing procedure. We use the messages

{−→μ t−1} and {←−μ t+1} to update L(t), and subsequently use

the new value of L(t) to compute the forward messages

{−→μ t}. Virtual nodes with no observations are added at time

t for any nodes from t− 1 which were left unassigned. The

process is repeated going forward; at each point increasing

P (Z|L). The backward pass of the algorithm remains un-

changed from a standard smoother. This modified forward-

backward procedure is repeated until convergence. An out-

line of the inference procedure is listed in Fig. 3.
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1: procedure FORWARDMESSAGEPASS

2: for t = 1 . . . T do
3: remove all virtual nodes at t
4: for all n = (t, i), n′ = (t− 1, j) do
5: compute ctij using Eq. 12

6: end for
7: re-estimate L(t) using Eq. 11

8: add virtual nodes at t
9: for all n = (t, i) do

10: update forward message −→μti using Eq. 6

11: end for
12: end for
13: end procedure
Figure 3. Approximate message passing procedure used for infer-

ence in the forward direction.

6. Pedestrian Tracking by Detection with La-
tent Data Association

Up to this point we have described the Latent Data Asso-

ciation parametrization and inference algorithm in general

terms. We now introduce the practical implementation and

extensions used for the presented evaluations. To this end

we describe the observation and state space models for both

2D and 3D tracking, as well as extensions to handle false

positive detections and track length priors. Fig. 4 illustrates

the graphical model for a single node with the modifications

described in this section.

Since every detection now corresponds to a track, out-

liers must correspond to outlier tracks, leading to an extra

discrete state variable, cti ∈ {pedestrian, outlier}, rep-

resenting the target class. To go with the class model, a prior

P (cti) and transition model P (cti|ct−1,j , L
(t)
ij = 1) must be

defined. In our evaluation, we use only two classes, but in

principle the formulation allows for more.

The pedestrian detectors we use are discriminative, so no

generative model exists to explain the observations based

on the target class. To compensate, we train the observa-

tion model for the detector. The score of each detector fir-

ing is treated as a real-valued observation, sti, conditioned

on the class. Kernel Density Estimation (Gaussian kernel

with a width of 0.05) is used to estimate the distributions

Figure 4. Graphical model of the variables in the extended model

for a single node n = (t, i).
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Figure 5. Learned model of the object detector firing score con-

ditioned on object class, P (sti|cti = {pedestrian, outlier}).

P (sti|cti). The distribution is trained by matching detector

firings with ground truth annotations over sequences out of

the PETS’09 dataset [12] (the S2.L1 sequence is excluded

since it is used for evaluation). Fig. 5 shows the conditional

distributions of the trained model.

In practice, a lot of information is contained in the miss-

ing detections – a track with very few detections is more

likely to be an outlier than one with many consistent detec-

tions. To incorporate this negative information, we include

detector failure into the observation model. The indicator

variable mti = 1 is used to denote a missing observation at

node n = (t, i). In this case n is a virtual node and the zti
and sti observation variables are ignored. We allow miss-

ing observations to occur with probability dependent on the

underlying class.

Finally, we include a track length prior. Because of

the detector failure model, we cannot assume a track con-

tinues on indefinitely after its last observation – doing so

would imply a very large number of missing observations

and make all tracks likely to be outliers. Instead, we give

each target track a fixed probability of terminating at ev-

ery time instance after its last observation. We introduce

the indicator variable eti to mark that the track has ended.

Once this variable transition from 0 to 1, a transition in the

other direction is not possible. If eti = 1, we require that

mti = 1; once a track ends, it cannot have any additional

observations. Otherwise the behavior of mti is as described

above.

7. Modified Inference Procedure
Incorporating the changes of Sec. 6 into the approximate

inference procedure described in Sec. 5 is not difficult since

all of the modifications can be represented as additional dis-

crete components in the Markov chain. Furthermore, Eq. 8

and Eq. 9 do not depend on the Markov chain being con-

tinuous; analogous equations hold for a discrete chain if the

marginalization integrals are replaced with sums.

We run discrete message passing over eti and cti and

compute the track log-likelihood of the data by adding the

log-likelihoods obtained from Eq. 9 applied to the discrete
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and continuous Markov chains independently. As before,

we update L(t) by solving the LAP in Eq. 11 with the

cost of each assignment based on the combined track log-

likelihood.

8. Evaluation
Experimental validation was performed using four pub-

licly available video sequences comprising over 1200
frames from two standard pedestrian tracking datasets

(TUD [1] and PETS’09 [12]). 2D tracking was used for the

TUD datasets and 3D tracking for the PETS sequence. We

ran 2D tracking on TUD-Stadtmitte despite the avail-

able camera calibration because the oblique viewing angle

makes accurate estimation of ground plane positions diffi-

cult. Raw detections, ground truth annotations, and tracking

area specifications provided by Andriyenko et al [4] were

used for all evaluations. Results are presented in terms of

the CLEAR MOT [8] metrics for tracking performance and

precision-recall curves for classification accuracy. We also

include the number of fragmentations (FM), mostly tracked

targets (MT), and identity switches (IDS). All evaluations

use a 50% intersection over union threshold for matching

2D bounding boxes.

A constant-velocity motion model with direct linear ob-

servations was used within each track:

x0 ∼ N (μ0,Σ0) (13)

xt+1 ∼ N (A · xt,Σmot) (14)

zt ∼ N (B · xt,Σobs) (15)

In the above, A implements the constant-velocity model and

the B selects the bounding box position and dimensions out

of the state space.

In the 2D case, the continuous state space is composed

of the bounding box center and the log of the dimensions.

Dimensions are tracked in log-space to help compensate

for perspective effects. Both the position, p, and log-

dimensions, d, have an associated velocity (ṗ and ḋ) result-

ing in an 8D state space: (px, py, dx, dy, ṗx, ṗy, ḋx, ḋy).
The position prior is centered in the image with mean log-

dimensions of log(320) by log(240). The standard devi-

ation (s.d.) is 400px for the position and 1.0 for the log-

dimensions. We incorporate a correlation coefficient of

0.99 between the prior log-dimensions. The velocity prior

is zero-mean with an s.d. of 5px for the center location

and 0.01 for the log-dimensions. The motion model adds

isotropic noise with an s.d. of 10−4px, 10−4, 0.5px/s, and

10−2, for the p, d, ṗ, and ḋ components respectively. The

observation model is unbiased with an s.d. of 10px for p
and 0.1 for d.

For 3D tracking, object position is tracked on the ground

plane together with the bounding box dimensions (width

and height are tracked; depth is assumed equal to width).

We again use a constant-velocity model for the ground

plane position, but assume the dimensions follow a ran-

dom walk with no velocity (unlike in the 2D tracking case,

we expect the 3D dimensions to stay relatively constant).

The 3D state space consists of (px, py, dx, dy, ṗx, ṗy). The

prior is zero mean for p and ṗ with an s.d. of 40m and

0.25m/s respectively. The prior for (dx, dy) has mean

(0.7m, 1.7m) with an s.d. of 0.2m. The constant velocity

motion model adds isotropic noise with an s.d. of 10−4m,

0.05m/s, and 0.01m for the three components of the state

space respectively. We assume observation noise with an

s.d. of 0.15m for the position and 0.20m for the dimen-

sions.

The discrete model parameters are the same for both 2D

and 3D tracking. We use a uniform prior over P (c0), and

a transition model such that P ({ct = ct−1}) = 1 − 10−6.

The missing detections probability, P (mt|et = 0, ct), is 0.6
for pedestrians and 0.7 for outliers. The track termination

probability, P (et = 1|et−1 = 0, ct), is set so there is a

0.0025(pedestrian) and 0.18(outlier) chance of terminating

after one second.

All parameters were determined empirically and are

scaled based on the time between frames, Δt, when appro-

priate. We note in particular the discrete Markov transition

matrix, T , is adjusted to become TΔt for frame rate invari-

ance.

Because our system keeps track of object sizes as well

as location, the size of the bounding boxes output by the

detector vs the size of the labeled ground truth plays an im-

portant role in the performance of the system. Since these

two differ substantially in the PETS and TUD datasets, we

scale the width of the bounding boxes output by our system

by 0.75 to better match the ground truth labeling.

Our tracking results are shown in Tab. 1 and are com-

petitive with the state of the art. We note that despite the

widespread use of the CLEAR MOT metrics, direct com-

parison of published algorithms is still difficult as many

authors differ in the precise evaluation methods used (2D

v.s. 3D metrics, different regions of interest, etc.). Despite

this, we have attempted to make an informative evaluation

against recently published results – we do not imply a head-

to-head comparison. Where 2D evaluations are available,

we list those published by the authors. To compare with

Andriyenko et al [4], we have run our own 2D evaluation

scripts on the their data where possible, as well as listing

their published results. Only 3D ground tracks were avail-

able for the TUD-Stadtmitte sequence. In this case we

assumed average 3D pedestrian dimensions and projected

these into 2D bounding boxes.

Fig. 6 shows the log-likelihood as a function of the num-

ber of forward-backward iterations performed. Note the

monotonic increase in log-likelihood and convergence in a

small number of iterations.
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Figure 6. Convergence of the approximate inference algorithm is

achieved in under 7 iterations for all evaluated sequences. The plot

has been zeroed to the initial log-likelihoods.

Precision Recall curves showing improvement over the

baseline detector are show in Fig. 7. These curves are

possible because of the probabilistic nature of our approach

where each output has an associated posterior pedestrian vs

outlier probability. While these figures convey the quanti-

tative measures of performance, we encourage the reader to

view the supplementary material to observe the qualitative

tracking behavior and performance.

9. Conclusions and Future Work
This paper has proposed a novel parametrization of the

data association problem for multi-target tracking that has

a number of very useful properties. The key idea behind

our formulation is the proposal to perform latent data asso-

ciation, in which we seek associations between latent state

variables over time. Associations between observations are

then implicit, rather than being explicitly sought as in more

traditional formulations. A key advantage of our formula-

tion is that it the number of tracks – which is in fact a model

selection problem – is determined automatically during in-

ference. We have shown how this new parametrization can

be solved using a factored approximate message passing al-

gorithm, that the solution admits a probabilistic interpre-

tation and that it permits easy extension to multi-category

tracking in which visual identities and motion models are

mutually beneficial. Finally we have compared our system

against various state-of-the-art methods and shown that it is

competitive in terms of performance as well as offering the

advantages described above.

An intriguing possibility for future work is to deal with

a moving camera. Indeed we believe that our framework

is sufficient to incorporate fixtures and a vehicle state to

yield a general SLAM environment containing both static

and moving objects.
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Algorithm MOTA MOTP IDS MT FM

proposed 0.82 0.74 0 5 3

Breitenstein20114 [9] 0.67 0.73 2 – –

(a) TUD-Campus

Algorithm MOTA MOTP IDS MT FM

proposed 0.74 0.76 2 7 12

Zamir20124 [23] 0.92 0.76 0 – –

Breitenstein20114 [9] 0.71 0.84 2 – –

(b) TUD-Crossing

Algorithm MOTA MOTP IDS MT FM

proposed 0.73 0.71 2 4 1

Zamir20124 [23] 0.78 0.63 0 – –

proposed2 0.63 0.73 4 4 1

Andriyenko20122,3 [4] 0.61 0.68 3 6 1

(c) TUD-Stadtmitte

Algorithm MOTA MOTP IDS MT FM

proposed 0.90 0.75 6 17 21

Zamir20124 [23] 0.90 0.69 8 – –

Andriyenko20123 [4] 0.79 0.66 29 17 56

Andriyenko20121,4 [4] 0.89 0.56 – – –

Breitenstein20111,4 [9] 0.56 0.80 – – –

proposed2 0.92 0.75 4 18 18

Andriyenko20122,3 [4] 0.83 0.65 24 18 43

(d) PETS’09 S2.L1 (View 1)

1 evaluated by PETS’09 workshop
2 cropped to tracking region of Andriyenko et al [3, 4]
3 our own 2D evaluations using authors’ provided output data
4 results as published by authors

Table 1. A comparison using various tracking metrics. We use a

threshold of P (cti = pedestrian) ≥ 0.50) for all evaluations of

our algorithm. Note that Zamir et al [23] makes use of appearance

information, so better performance is expected.
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