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Abstract

The quality of any tracking-by-assignment hinges on the
accuracy of the foregoing target detection / segmentation
step. In many kinds of images, errors in this first stage are
unavoidable. These errors then propagate to, and corrupt,
the tracking result.

Our main contribution is the first probabilistic graphical
model that can explicitly account for over- and underseg-
mentation errors even when the number of tracking targets
is unknown and when they may divide, as in cell cultures.
The tracking model we present implements global consis-
tency constraints for the number of targets comprised by
each detection and is solved to global optimality on reason-
ably large 2D+t and 3D+t datasets. In addition, we em-
pirically demonstrate the effectiveness of a postprocessing
that allows to establish target identity even across occlusion
/ undersegmentation. The usefulness and efficiency of this
new tracking method is demonstrated on three different and
challenging 2D+t and 3D+t datasets from developmental
biology.

1. Introduction

The tracking of multiple dividing targets is a challeng-

ing computer vision problem and has useful application e.g.

in life science [10] or in the car industry [13]. Due to the

occurrence of object divisions at any time, the number of

targets for each time step is unknown even if user-specified

for a subset of frames.

Multi-object tracking in general may be implemented as

a two-step pipeline consisting of a detection/segmentation

step and a data association or assignment/tracking step [18].

Such approaches, however, are obviously susceptible to er-

rors in the detection step which are propagated to the track-

ing model and typically cannot be corrected downstream.

Therefore, the ultimate goal of data association tracking is
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Figure 1: The proposed tracking-by-assignment model ac-

counts for all of these events. Left column: Objects (rep-

resented as balls) are associated (edges) with each other

over three time steps. Right: Excerpt of the proposed fac-

tor graph showing the three detection variables for the con-

nected component at time t: Red variables are indicators

for a division event. The other variables, taken together,

represent the number of targets covered by a detection but

they can also represent the other depicted scenarios such as

disappearance or “demerging”. See Fig. 3 for more details.

to address detection and data association jointly such that

both steps can maximally benefit from each other and infor-

mation can be propagated from more to less obvious parts of
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Figure 2: Tiny excerpt of dataset B with its almost indistinguishable objects. A short sequence of the raw data is depicted

as 2D slices (top row) from 3D+time data and displays cells in a developing Drosophila embryo. Due to low contrast,

multiple cells are segmented as only one connected component (undersegmentation) as pointed out in the middle row. Our

tracking model (bottom row) can handle such errors and preserves the target identities as indicated by colors (see the three

previously merged cells in t = 52) by fitting the correct number of Gaussians (ellipses) to detections containing multiple

objects. Furthermore, the proposed factor graph can handle false detections (oversegmentation) as indicated by the black

detection in frame 42 (bottom row).

the data. There are first approaches addressing joint detec-

tion and tracking [16, 17], but none of them has been ex-

tended to deal with dividing objects. Given that the track-

ing of multiple dividing objects already is an NP-hard prob-

lem [14] in itself, joint detection and assignment is harder

still.

As a first step into this direction, we propose a model that

handles detection errors explicitly in the tracking step and

can even correct most of them. Typical segmentation errors

are depicted in the lower rows in Fig. 1 and can be cate-

gorized into over- and undersegmentation errors occurring

due to low contrast or noise in the images. Furthermore,

a real data example is given in Fig. 2. Oversegmentation

may result in false detections whereas undersegmentation

could lead to the appearance and vanishing of tracks or to

accidental track merging. In this context, the divisibility of

the objects is particularly challenging since demerging due

to previous merging must be distinguished from object divi-

sion. Note that we will differentiate between object division
and object demerging throughout the paper.

We present the first method which explicitly models all
of the potential segmentation errors outlined above in one

probabilistic graphical model. The proposed factor graph

models conservation laws for the number of objects con-

tained in each detection to ensure global consistency of

the solution. In other words, the model not only assures

consistency between pairs of frames but can also resolve

segmentation errors which only become evident from con-

sidering a complete time series at once (cf. Fig. 2). In

this way, temporarily merged targets can be resolved un-
der identity preservation even for objects which are merged

during longer sequences. For this purpose, a spatial Gaus-

sian mixture model with the appropriate number of compo-

nents is fitted to the undersegmented regions. Object prop-

erties such as velocity are easy to represent in state space

models, but notoriously difficult to model in a tracking-by-

assignment approaches. To avoid bias towards slow mo-

tions and false assignments during group movement, we es-
timate group motion in a preprocessing step, using patch-

wise cross correlation.

The remainder of this paper is structured as follows. We

commence with the review of prior art and propose the

tracking framework – and particularly the construction of

the factor graph – in Sec. 3. Before we conclude in Sec. 5,

we present and discuss experiments on 2D+t and 3D+t data

in Sec. 4 which showcase the effectiveness of the proposed

approach.
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2. Related Work
Existing tracking approaches can broadly be categorized

into three: (i) space-time segmentation, (ii) state space mod-

els, and (iii) tracking-by-assignment. The first is only appli-

cable at frame rates that make for small, ideally sub-pixel,

displacements of objects between subsequent images.

State space models or Bayesian sequential filtering are not

easily applicable to an unknown or variable number of ob-

jects, calling for costly strategies such as reversible jump

MCMC or Gibbs sampling on Dirichlet process mixture

models [4]. In such a setup, dealing with divisible objects

is harder still.

Tracking-by-assignment gracefully handles multiple, and

even dividing objects; on the downside, object properties

such as object velocity need to be implemented using fac-

tors that are higher order in time.

We draw inspiration from, and build on, a series of ex-

cellent papers. The tracking of undersegmented objects was

first described in [11] and soon extended to deal with frag-

mentation (false positive detections) [2]. Shitrit et al. [1]

additionally address object identity preserving for possible

occlusions of objects by exploiting global appearance con-

straints. Furthermore, the authors in [8] account for both

dividing objects and undersegmentation, and exploit local

evidence in pairs of frames to find undersegmented objects.

Their model, however, does not guarantee consistency over

all time steps and detections.

The structure of our graphical model also builds on the

network flow formulation in [19]. Note, however, that al-

lowing for object division no longer permits to do inference

via an ordinary network flow computation as in [19]. In-

stead, admitting divisions necessarily turns the problem into

an integer flow problem with homologous arcs (i.e. flow

along separate edges is required to be identical) and a con-

straint matrix which is not totally unimodular. Hence, there

is no guarantee to obtain integer solutions in a network flow,

and rounding [12] gives only approximate solutions to a

problem that is proven to be NP-hard [14].

Moreover, the only model which handles the tracking of

dividing objects in a global probabilistic framework is the

graphical model presented in [5]. While oversegmentation

is addressed in terms of false detections, it cannot deal with

undersegmentation such as merged objects.

3. Tracking Divisible Objects in spite of Over-
and Undersegmentation

The purpose of this work is to track dividing objects

based on an error-prone segmentation. We therefore model

data association in a probabilistic graphical model [6] where

we explicitly handle over- and undersegmentation errors

(cf. Fig. 1). Here, the key idea is that all detections over all

time steps are handled simultaneously in a holistic graphi-

detection and divisionincoming
transition

outgoing
transitionfor connected comp.

Figure 3: Factor graph for one detection Xt
i with two in-

coming and two outgoing transition candidates: One de-

tection Xt
i is represented by two multi-state variables, V t

i

and At
i, to allow for vanishing and appearance, respectively.

Furthermore, the binary variable Dt
i indicates whether ob-

ject Xt
i is about to divide. See Fig. 1 for different config-

urations of these variables. Moreover, transition variables

T ∈ {0, ...,m} indicate how many objects are associated

between two respective detections. Here, the black squares

implement conservation laws, i.e. the sum of the left-hand

side must equal the sum of the right-hand side, whereas col-

ored squares represent unary factors of the variables.

cal model on which inference is performed globally. In this

way, each segmented region is assigned the number of ob-

jects it contains while conservation laws across subsequent

detections guarantee global consistency. Finally, each de-

tection is partitioned into its inferred number of objects by

fitting a Gaussian mixture model such that post-hoc link-

ing yields identity preservation for temporarily merged tar-

gets. It should be noted that we distinguish between the

terms object and detection which denote one target and

one connected component, respectively, where a detection

may comprise multiple objects. In the following, we de-

scribe our tracking workflow in detail for which a schematic

overview is depicted in Fig. 4.

3.1. Graphical Model Implementing Global Con-
servation Laws

We design a factor graph [7], illustrated in Fig. 3, which

contains three categories of variables: Detection variables

(comprising appearance and vanishing variables) for each

connected component Xt
i from the segmented image, divi-

sion variables which indicate whether an object is about to

divide, and transition variables that associate detections in

two adjacent time frames with each other.

In particular, each detection Xt
i is represented by an ap-

pearance variable At
i ∈ {0, ...,m} and a vanishing vari-

able V t
i ∈ {0, ...,m}, where m is the maximal number

of objects contained in one detection. The number of ob-
jects comprised by detection Xt

i is given by their maximum
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Figure 4: Objects are first detected from raw data by segmentation. Subsequently, on pairs of frames, patch-wise cross corre-

lation on the binary images yields rough estimates about the displacement of groups of objects. Following this, probabilistic

classifiers determine the unary potentials of each detection, i.e. they estimate the division probability and a probability mass

function of the number of objects contained in each detection. These potentials are then used in the proposed factor graph

(cf. Fig. 3) to find a globally consistent tracking solution (here, tracks are indicated by colors). In the last step, detections

which were found to contain more than one object (yellow/green in this example) are partitioned by fitting a spatial Gaussian

mixture model with the respective number of kernels and the demerged objects are being tracked again in order to preserve

their original identities.

Xt
i = max(V t

i , A
t
i).

1. The appearance and vanishing vari-
ables of one detection are connected by ψdet(A

t
i, V

t
i , f

t
i ) =

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ln
(
P̂ (Xt

i = k | f t
i )
)
, V t

i = At
i = k

−ln
(
P̂ (Xt

i = k | f t
i )
)
+ kwapp, V t

i = 0, At
i = k > 0

−ln
(
P̂ (Xt

i = k | f t
i )
)
+ kwvan, V t

i = k > 0, At
i = 0

∞, otherwise

,

(1)

where k ∈ {0, ...,m}.
In other words, only three different kinds of configura-

tions are allowed (cf. Fig. 1): V t
i = At

i = k indicates

that Xt
i comprises k objects (and Xt

i is a false detection if

k = 0); V t
i = 0, At

i > 0 means that the object(s) in Xt
i

is/are appearing in this time step (i.e. starting a new track);

whereas V t
i > 0, At

i = 0 stands for their disappearance at

time t.
Here, the design parameters wapp and wvan penalize

spontaneous appearance and vanishing. P (Xt
i = k | f t

i )
is determined by a probabilistic discriminative classifier

where f t
i stands for local evidence. In our experiments,

we train a random forest [3] on local features such as the

size of the connected component, its mean and variance of

intensity, or the standard deviation along the principal com-

ponents of the detected segment.

Now, we introduce a binary variable Dt
i which indicates

whether an object in detection Xt
i is about to divide or not.

Again, its unary potential is determined by a probabilistic

1Note that Xt
i is given by a deterministic function of At

i , V t
i and is

hence omitted from the model in Fig. 3.

classifier based on local evidence. In our experiments, we

deal with cell tracking and therefore utilize domain specific

features for cell division. These include the angle the two

nearest neighbors Xt+1
j , Xt+1

l at t + 1 enclose with Xt
i ,

the mean and variance intensity of Xt
i , and the ratios of the

squared distances to Xt
i , the mean intensities, and the sizes

of Xt+1
j and Xt+1

l . For all features where appropriate the

region centers corrected by their cross correlation offset (cf.

Sec. 3.3) are appended in addition. Division nodes are only

added if the respective detection has at least two potential

successors in the next time frame and the score from the

division detection classifier is above some small threshold.

The third category of random variables in the proposed

graphical model, the transition variables T t
ij ∈ {0, ...,m},

are added for pairs of detections Xt
i , Xt+1

j in two subse-

quent frames. Their value indicates the number of objects

of Xt
i which are assigned to Xt+1

j (this can be some or all).

Local evidence for pairs of detections Xt
i , Xt+1

j is injected

by

P̂ (T t
ij = k | dtij) =

⎧⎨
⎩
1− exp

(
−dt

ij

α

)
, k = 0

exp
(
−dt

ij

α

)
, k �= 0

, (2)

where dtij =
(
xt+1
j − (xt

i + ut
i)
)2

is the squared distance

of the region centers x corrected by the estimated cross cor-

relation offset u (cf. Sec. 3.3), and α is a design parameter.

It should be noted that by taking into account the estimated
rather than the detected region centers, acceleration of an

object is penalized instead of its velocity.
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So far, only probabilistic local evidence has been imple-

mented into the model. To ensure global consistency of the

inferred solution, we augment the factor graph with con-

servation laws: In particular, the number of objects in de-

tection Xt
i in t must equal to the sum of objects associated

with Xt
i in time t−1 and t+1 (while taking object divisions

into consideration). The conservation laws which guarantee

these equivalences are implemented in the black squares in

Fig. 3, where, broadly speaking, the sum of objects on the

left-hand side must equal the sum of the right-hand side.

For instance, the conservation law for the outgoing transi-

tions of Xt
i is ψout(A

t
i, T

t
ij0

, ..., T t
ijn′ ) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞,
∑

l∈{j0,...,jn′}
T t
il �= At

i +Dt
i

∞, ∃l ∈ {j0, ..., jn′} : T t
il > At

i

∞,
∑

l∈{j0,...,jn′}
T t
il �= 2 if Dt

i = 1

∞, At
i �= 1 if Dt

i = 1

0, otherwise

. (3)

Furthermore, since sparse objects may lead to isolated

(sub-)paths in the graphical model, i.e. paths where only

one transition between two detections is possible, we sub-

sume variables in such paths in tracklets and set their unary

potential to the sum of the single detections’ unaries plus

their transition potentials for each possible configuration.

In this way, whole tracklets may be treated just like single

detections, which leads to major speed-ups in optimization.
Finally, the approximate maximum a-posteriori (MAP)

solution of the proposed factor graph can be found us-
ing standard message passing algorithms. Alternatively, by
minimizing the energy

argmin
A,V,D,T

E(A, V,D, T ) =

argmin
A,V,D,T

∑
t

∑
i

(
Edet(A

t
i, V

t
i ) + Ediv(D

t
i) +

∑
j

Etr(T
t
ij)

)
,

(4)

subject to an integrality constraint and the linear hard con-

straints implicitly given in the potentials ψdet, ψout, and

ψin, a solution can be obtained using integer linear program-

ming (ILP) solvers. We opt for the latter since the problem

can be solved exactly to global optimality for reasonably

sized problems.

The energy terms in Eq. (4) are obtained by reformu-

lating probabilities in the energy domain utilizing the well-

known Gibbs distribution P (X) = 1
Z e−E(X), where Z is a

normalizing factor.

3.2. Resolving Merged Objects

The inferred result of the described factor graph yields

the number of objects covered by one detection Xt
i and the

number of objects T t
ij transferred between two detections

Xt
i , Xt+1

j in adjacent time steps. Identities of individual

objects are amalgamated into a cluster whenever underseg-

mentation leads to seeming mergers. To recover individual

identities, we introduce the following model based on the

inferred configuration of the factor graph.

Given the number of objects k contained in detection Xt
i ,

we fit a Gaussian mixture model with k normal distributions

N (μl,Σl) of unknown weight πl to the connected compo-

nent with pixels/voxels {x1, ..., xn}, i.e. we maximize

P (x1, ..., xn) =
N∏
j=1

k∑
l=1

πlP (xi | μl,Σl). (5)

The resulting clusters with means μl, l ∈ {1, ..., k} are then

treated as separate detections with centers μl. Next, another

factor graph as described in Sec. 3.1 is constructed compris-

ing all newly resolved and all attaching original detections.

We modify this merger resolving factor graph by setting

all At
i = V t

i = 1, i.e. in this post-processing step, we

disallow appearance, vanishing, and false detections. This

graphical model is again solved to global optimality and its

solution hence preserves identities of objects, even for long

sequences of merged objects.

3.3. Cross Correlation for Region Center Correc-
tion

Most tracking-by-assignment approaches penalize dis-

placements of objects in terms of squared distance between

objects of adjacent time frames. However, if a group of ob-

jects is moving rapidly in the same direction, this approach

may lead to false assignments due to temporal aliasing. On

this account, we adapt our model to penalize acceleration

rather than velocity.

Before constructing the factor graph described in

Sec. 3.1, we perform patch-wise cross correlation on the

binary images on pairs of adjacent frames. In other words,

for each patch gt(x) at time t of a user-specified size, we

search for the best match in its neighborhood ht+1(x) at

t+ 1 by maximizing

c(x) =
∑
x

gt(x)ht+1(x− ut) (6)

to estimate an offset ut for each pixel/voxel at t.
The transition prior φtr can then be computed based on

the detection centers corrected by those offsets to find the

displacement relative to the motion of the object’s neigh-

borhood.

3.4. Implementation

We have implemented the proposed algorithm in C++

and inference is performed using CPLEX. Optimization
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Overall: 12,289 Divisions: 380

Prec. Rec. F-meas. Prec. Rec. F-meas.

Kausler et al. [5] 0.96 0.96 0.96 0.92 0.91 0.92

Classifiers only* N/A N/A N/A 0.79 0.69 0.74

Ours (m = 1) 0.94 0.95 0.94 0.92 0.88 0.90

Table 1: Cell tracking results on dataset A: precision

(= TP
TP + FP

), recall (= TP
TP + FN

), and f-measure (= 2· prec.·rec.
prec.+rec.

)

for the overall pairwise events (move, appearance, disap-

pearance, divisions) and divisions in particular. For a de-

scription of Classifiers only, refer to Tab. 2.

Figure 5: An excerpt of one time step of dataset A. Green

color indicates detections including many false positives.

time is between one and 30 minutes on a current worksta-

tion, even for the experiments with large problem sizes pre-

sented in the following section. The source code together

with a GUI for the complete workflow will be freely avail-

able on the authors’ website.

4. Experiments and Results
Cell tracking is a natural application for the tracking of

dividing objects, particularly challenging due to their al-

most texture-less appearances, which makes them nearly

indistinguishable from each other. Furthermore, micro-

scope images often suffer from low contrast which typically

makes segmentation error-prone. Especially in dense cell

populations, undersegmentation is a common cause for er-

rors.

In order to show the efficiency and accuracy of the pro-

posed algorithm, we perform experiments on three chal-

lenging datasets, datasets A and B are 3D+t, dataset C is

2D+t. Note that, although both datasets A and B show de-

veloping embryos of fruit flies, they are of drastic difference

in appearance in terms of contrast. Furthermore, the density

of cell populations due to their diverging stages in the de-

velopmental process of the embryo are highly diverging.

In all experiments, we use random forests [3] each com-

prising 100 trees grown to purity as classifiers for cell num-

ber φdet and cell mitosis, φdiv. Small training sets (≤ 30
samples for positive classes) are taken from the data. For a

fair comparison, we used the same cell number classifier in

our method and the competitive model.

First, we evaluate our model on the publicly available

dataset from [5] which shows a Drosophila embryo in syn-

cytial blastoderm (dataset A). Its segmentation (cf. Fig. 5)

consists of about 300 connected components on average

over 40 time steps of 2,362×994×47 volumes and shows

many false detections. We take the published segmentation

of this dataset and its gold standard to compare with the re-

cently published cell tracking model by Kausler et al. [5].

Their segmentation contains no merged objects and thus,

we set in our model the maximal number of objects per de-

tection to one, i.e. m = 1. In this experiment, we use

the cell detection classifier of [5] and set our parameters to

α = 25, wapp = 50, wvan = 50, wtr = 13, wdiv = 28,

where the latter two parameters weight the transition and

division priors versus the detection prior. The results of

this experiment are given in Tab. 1. Our model yields an

f-measure of 0.94 taking all pairwise events, i.e. moves,

appearances, disappearances, and divisions, together, com-

parable to [5] (0.96). The f-measure for divisions in [5]

is slightly better than ours, namely 0.92 compared to 0.90,

which is due to their model making assumptions about min-

imal durations between division events (cf. [5, Fig. 5]).

The second dataset (dataset B) again shows a Drosophila
fruit fly, but this time shortly after gastrulation. Due to the

embryonic development, the cell population is now much

denser than in dataset B, resulting in a high number of

undersegmented objects (cf. Fig. 2). Furthermore, dif-

ferent from dataset A, cells enter mitosis highly heteroge-

neously in time. In this dataset, on average ≈ 800 cells

are tracked over 100 time steps of 730 × 320 × 30 vol-

umes. A gold standard for this dataset has been manually

acquired. This dataset is segmented using the segmentation

toolkit ilastik [15], a pixel-wise random forest classifier for

segmentation. The design parameters in our factor graph –

for the case of allowing maximally 4 cells in one detection

(i.e. m = 4) – are set to α = 5, wapp = 100, wvan =
100, wtr = 24, wdiv = 36. A 3D rendering of the re-

sulting trajectories over all time steps is depicted in Fig. 6a.

The results (cf. Tab. 2) show that our method outperforms

the cell tracking model in [5]. As indicated by the division f-

measure of 0.71 compared to 0.06 of the competitive model,

the explicit modeling and distinction of demerging and di-

viding – together with the probabilistic division prior φdiv

– brings a boost in the detection of mitotic events. Besides,

due to the consideration of all detections of all frames in

one holistic model and due to the conservation laws posed,

our factor graph can accurately (precision of 0.78) detect

the true number of targets contained in each detection. For

this evaluation measure, only detections have been consid-

ered which contain more than one cell. Finally, with an

f-measure of 0.68, our framework can resolve the original
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Moves Divisions Mergers Resolved Mergers
Prec. Rec. F-measure Prec. Rec. F-measure Prec. Rec. F-measure Prec. Rec. F-measure

D
at

as
et

B

Kausler et al. [5] 0.92 0.92 0.92 0.05 0.12 0.06 N/A N/A N/A N/A N/A N/A
Classifiers only* N/A N/A N/A 0.83 0.64 0.72 0.63 0.31 0.41 N/A N/A N/A
Ours (m = 1) 0.97 0.95 0.96 0.62 0.63 0.63 N/A N/A N/A N/A N/A N/A
Ours (m = 2) 0.97 0.97 0.97 0.53 0.79 0.64 0.71 0.54 0.61 0.72 0.61 0.66

Ours (m = 3) 0.97 0.97 0.97 0.70 0.76 0.73 0.73 0.58 0.64 0.73 0.63 0.67

Ours (m = 4) 0.97 0.97 0.97 0.65 0.77 0.71 0.78 0.59 0.67 0.74 0.63 0.68

D
at

as
et

C

Kausler et al. [5] 0.99 0.97 0.98 0.65 0.68 0.66 N/A N/A N/A N/A N/A N/A
Classifiers only* N/A N/A N/A 0.92 0.56 0.70 0.41 0.62 0.49 N/A N/A N/A
Ours (m = 1) 0.99 0.97 0.98 0.68 0.71 0.70 N/A N/A N/A N/A N/A N/A
Ours (m = 2) 1.00 0.99 0.99 0.85 0.76 0.80 0.73 0.60 0.66 0.79 0.70 0.74

Ours (m = 3) 1.00 0.99 0.99 0.85 0.77 0.80 0.84 0.69 0.76 0.85 0.75 0.79

Ours (m = 4) 1.00 0.99 0.99 0.85 0.76 0.80 0.84 0.69 0.76 0.85 0.75 0.80

Table 2: Cell tracking results on datasets B and C: Our model with a different number of objects in one detection allowed

(m = 1 to m = 4) can best handle the under-/oversegmentation errors occurring in these datasets. Here, merged objects are

only counted as true positives if the true number (≥ 2) of objects in the connected component is found. Finally, resolved
mergers indicates, how many of the merged objects have been resolved to their original identities after demerging. (*) Note

that in Classifiers only, it is only evaluated whether the particular cell is dividing whereas in the tracking models, we go

beyond that and additionally require the correct links to the daughter cells. The ground truth of dataset B (dataset C) contains

56,029 (34,985) moves, 216 (440) divisions, 1,878 (1,189) mergers, and 1,466 (533) resolved mergers events.

(a) 2D projection of the 3D trajectories of dataset B (Drosophila 3D+t)

(b) One frame of dataset C (Mitocheck 2D+t) (c) Space-time rendering of the trajectories of dataset C

Overall Mergers Divisions0.2
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1.0 F-Measure (m =4)

(d) Parameter sensitivity

Figure 6: (a) 2D projection of the 3D trajectories of dataset B (Drosophila, 3D+t) over all 100 time steps. (b) One frame of

dataset C (2D+t) and (c) the 3D space-time rendering of its trajectories. Note that daughter cells inherit the color of their

mother cell. (d) F-measures for dataset C for a search over 720 parameter configurations.
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identities of such merged objects. In particular, the associa-

tions between the distinct objects after demerging are eval-

uated as true positives only if they link to the true respective

objects before merging – possibly over long sequences of

being merged.

Dataset C is a publicly available 2D+t dataset taken from

the Mitocheck project2 (92 time steps, 1,344×1,024 pix-

els), segmented using the method in [9] and a gold stan-

dard is acquired manually. In our model, we again treat

each connected component as one detection and set the pa-

rameters (for m = 4) to α = 5, wapp = 100, wvan =
100, wtr = 10, wdiv = 16. Due to the global mass conser-

vation, our model (f-measure of 0.80 and 0.76 for divisions

and mergers) improves significantly over the results of the

rather weak local division and merger classifiers (0.70 and

0.49, respectively), cf. Tab. 2. In Fig. 6d the robustness

of the model parameters is addressed for this experiment in

the case of m = 4 for a search over a reasonable parameter

range (720 evaluations). The influence of the parameter set-

ting on the overall result is marginal due to the domination

of move events, which are robust to parameters. The re-

sults of mergers and divisions seem to depend more on the

parameter setting, however, the standard deviation is only

0.02 and 0.08, respectively.

The results of our model can be further improved by de-

signing even more features for object classification and di-

vision detection. This additional local evidence can then be

put into global context within the factor graph. It should

be noted that the object classification and division detection

modules can be fully adopted to the particular application

domain.

5. Conclusion
We have proposed a probabilistic graphical model

which – due to the explicit modeling of global conservation

laws – can robustly correct errors from a previous detection

step. We have shown that the proposed factor graph can

outperform a recently published cell tracking method on se-

quences of proliferating cells in a dense populations thanks

to the consideration of over- and undersegmentation errors.

In addition, our model can partition and track previously

merged objects while preserving their original identities. In

future work, we would like to extend our model to address

the only remaining segmentation error, viz. undetected ob-

jects. Furthermore, we plan to learn the parameters from

(sparse) user annotations.
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