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Abstract

Symmetric positive-definite (SPD) matrices are ubiqui-
tous in Computer Vision, Machine Learning and Medical
Image Analysis. Finding the center/average of a population
of such matrices is a common theme in many algorithms
such as clustering, segmentation, principal geodesic analy-
sis, etc. The center of a population of such matrices can be
defined using a variety of distance/divergence measures as
the minimizer of the sum of squared distances/divergences
from the unknown center to the members of the popula-
tion. It is well known that the computation of the Karcher
mean for the space of SPD matrices which is a negatively-
curved Riemannian manifold is computationally expensive.
Recently, the LogDet divergence-based center was shown
to be a computationally attractive alternative. However,
the LogDet-based mean of more than two matrices can not
be computed in closed form, which makes it computation-
ally less attractive for large populations. In this paper we
present a novel recursive estimator for center based on the
Stein distance – which is the square root of the LogDet di-
vergence – that is significantly faster than the batch mode
computation of this center. The key theoretical contribution
is a closed-form solution for the weighted Stein center of
two SPD matrices, which is used in the recursive computa-
tion of the Stein center for a population of SPD matrices.
Additionally, we show experimental evidence of the conver-
gence of our recursive Stein center estimator to the batch
mode Stein center. We present applications of our recur-
sive estimator to K-means clustering and image indexing
depicting significant time gains over corresponding algo-
rithms that use the batch mode computations. For the lat-
ter application, we develop novel hashing functions using
the Stein distance and apply it to publicly available data
sets, and experimental results have shown favorable com-
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parisons to other competing methods.

1. Introduction

Symmetric Positive-Definite (SPD) matrices are com-
monly encountered in many fields of Science and Engineer-
ing. For instance, as covariance descriptors in Computer Vi-
sion, diffusion tensors in Medical Imaging, Cauchy-Green
tensors in Mechanics, metric tensors in numerous fields of
Science and Technology. Finding the mean of a population
of such matrices as a representative of the population is also
a commonly addressed problem in numerous fields. Over
the past several years, there has been a flurry of activity in
finding the means of a population of such matrices due to
the abundant availability of matrix-valued data in various
domains e.g., diffusion tensor imaging [1] and Elastogra-
phy [16] in medical image analysis, covariance descriptors
in computer vision [14, 4], dictionary learning on Rieman-
nian manifolds [17, 7, 22] in machine learning, etc.

It is well known that the space of n × n SPD matrices
equipped with the GL(n)-invariant metric is a Riemannian
symmetric space [8] with negative sectional curvature [19],
which we will henceforth denote by Pn. Finding the mean
of data lying on Pn can be achieved through a minimiza-
tion process. More formally, the mean of a set of N data
xi ∈ Pn is defined by x

∗ = argminx

∑N
i=1 d

2(xi,x),
where d is the chosen distance/divergence. Depending on
the choice of d, different types of means are obtained.
Many techniques have been published on computing the
mean SPD matrix based on different kinds of similarity dis-
tances/divergences. In [20], symmetrized Kullback-Liebler
divergence was used to measure the similarities between
SPD matrices, and the mean was computed in closed-form
and applied to texture and diffusion tensor image (DTI)
segmentation. Karcher mean was obtained by using the
GL-invariant (GL denotes the general linear group i.e., the
group of (n, n) invertible matrices) Riemannian metric on
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Pn and used for DTI segmentation in [11] and for interpola-
tion in [13]. Another popular distance is the so called Log-
Euclidean distance introduced in [6] and used for comput-
ing the mean. More recently, in [5] the LogDet divergence
was introduced and applied for tensor clustering and covari-
ance tracking. Each one of these distances and divergences
possesses their own properties with regards to invariance to
group transformations/operations. For instance, the natu-
ral geodesic distance derived from the GL-invariant metric
is GL-invariant. The LogEuclidean distance is invariant to
the group of rigid motions and so on. Among these dis-
tances/divergences, the LogDet divergence was shown to
posses interesting bounding properties with regards to the
natural Riemannian distance in [5] and much more compu-
tationally attractive for computing the mean. However, no
closed-form expression exists for computing the mean using
the LogDet divergence, for more than two matrices. When
the number of samples in the population is large and the
size of SPD matrices is larger, it would be desirable to have
a computationally more attractive algorithm for computing
the mean using this divergence.

A recursive form can effectively address this problem.
Recursive formulation leads to considerable efficiency in
mean computation, because for each new sample, all one
needs to do is to update the old. Consequently, the algo-
rithm only needs to keep track of the most recently com-
puted mean, while computing the mean in a batch mode
requires one to store all previously given samples. This
can prove to be quite memory intensive for large prob-
lems. Thus, by using a recursive formula we can signifi-
cantly reduce the time and space complexity. Recently, in
[3] recursive algorithms to estimate the mean SPD matrix
based on the natural GL-invariant Riemannian metric and
symmetrized KL-divergence were proposed and applied to
DTI segmentation. Also in [21] a recursive form of Log-
Euclidean based mean was introduced. In this paper we
present a novel recursive algorithm for computing the mean
of a set of SPD matrices, using the Stein metric.

The Jensen-Bregman LogDet (JBLD) divergence was re-
cently introduced in [5] for n×n SPD matrices. Compared
to the standard approaches, the JBLD has a much lower
computational cost since the formula does not require any
eigen decompositions of the SPDmatrices. Moreover, it has
been shown that it is useful for use in nearest neighbor re-
trieval [5]. However, JBLD is not a metric on Pn, since it
does not satisfy the triangle inequality. In [17] the authors
proved that the square root of JBLD is a metric, which is
called Stein metric. Unfortunately, the mean of SPD ma-
trices based on the Stein metric can not be computed in a
closed form, for more than two matrices [2, 5]. Therefore,
iterative optimization schemes are applied to find the mean
for a given set of SPD matrices. The computational effi-
ciency of these iterative schemes is effected considerably

especially when the number of samples and size of matrices
is large. This makes the Stein-based mean inefficient for
computer vision applications that deal with huge amounts
of data. In this paper, we introduce an efficient recursive
formula to compute the Stein mean. To illustrate the ef-
fectiveness of the proposed algorithm, we first show that
applying the recursive Stein mean estimator to the problem
of K-means clustering leads to a significant gain in running
time when compared to using the batch mode Stein center,
as well as other recursive mean estimators based on afore-
mentioned distances/divergences. Furthermore, we develop
a novel hashing technique which is a generalization of the
work in [9] to SPD matrices.

The key contributions of this paper are: (i) derivation of
a closed form solution to the weighted Stein center of two
matrices which is then used in the formulation of the recur-
sive form for the Stein center estimation of more than two
SPDmatrices. (ii) Empirical evidence of convergence of the
recursive estimator of Stein mean to the batch mode Stein
mean is shown. (iii) A new hashing technique for image in-
dexing and retrieval using covariance descriptors. (iv) Syn-
thetic and real data experiments depicting significant gains
in computation time for SPD matrix clustering and image
retrieval (using covariance descriptor features), using our
recursive Stein center estimator.

The rest of paper is organized as follows: in Section 2 we
present the recursive algorithm to find the Stein distance-
based mean of a set of SPD matrices. Section 3 presents the
empirical evidences of the convergence of recursive Stein
mean estimator to the Stein expectation. Furthermore, we
present a set of synthetic and real data experiments showing
the improvements in running time of SPD matrix clustering
and hashing. Finally, we present the conclusions in Sec-
tion 4.

2. Recursive Stein Mean Computation

The action of the general linear group of n × n invert-
ible matrices (denoted byGL(n)) on Pn defines the natural
group action and is defined as follows: ∀g ∈ GL(n), ∀X ∈
Pn, X[g] = gXgT , where T denotes the matrix transpose
operation. Let A and B be any two points in Pn. The
geodesic distance on this manifold is defined by the follow-
ing GL(n)-invariant Riemannian metric:

dR(A,B)2 = trace(Log(A−1B)2), (1)

where Log is the matrix logarithm. The mean of a set of
N SPD matrices based on the above Riemannian metric is
called the Karcher mean, and is defined as

X∗ = argminX

N∑
i=1

d2R(X,Xi), (2)

17941794



whereX∗ is the Karcher mean, andXi are the given matrix-
valued data. However, computation of the distance us-
ing (1), requires eigen decomposition of the matrix, which
for large matrices slows down the computation consider-
ably. Furthermore, the minimization problem (2) does not
have a closed form solution in general (for more than two
matrices) and iterative schemes such as the gradient descent
technique are employed to find the solution.

Recently in [5], the Jensen-Bregman LogDet (JBLD) di-
vergence was introduced to measure similarity/dissimilarity
between SPD matrices. It is defined as

DLD(A,B) = logdet(
A+B

2
)−

1

2
logdet(AB), (3)

where A and B are two given SPD matrices. It can be seen
that JBLD is much more computationally efficient than the
Riemannian metric, as no eigen decomposition is required.
JBLD is however not a metric, because it does not satisfy
the triangle inequality. However, in [17], it was shown that
the square root of JBLD divergence is a metric, i.e., it is
non-negative definite, symmetric and satisfies the triangle
inequality. This new metric is called Stein metric and is
defined by,

dS(A,B) =
√
DLD(A,B), (4)

where DLD is defined in (3). Clearly, Stein metric can also
be computed efficiently. Accordingly, the mean of a set of
SPD tensors, based on Stein metric is defined by

X∗ = argminX

N∑
i=1

d2S(X,Xi). (5)

For a probability distribution P(x) on Pn, we can define its
Stein expectation as

μ∗S = arg min
μ∈Pn

ES(μ),

where

ES(μ) =

∫
Pn

dS
2(x, μ)P(x)dx.

Before turning to the recursive algorithm for computing
Stein expectation, we briefly remark on the metric geome-
try of Pn equipped with the Stein metric. Both the Stein
metric dS and the GL(n)-invariant Riemannian metric dR
are GL(n)-invariant. However, their similarity does not go
beyond this GL(n)-invariance. In particular, the Stein met-
ric is not a Riemannian metric, and more precisely, we have
the following two important features of the Stein metric:

• Pn equipped with the Stein metric is not a length
space, i.e., the distance dS(A,B) between two points
is not given by the length of a shortest curve (path)
joining A and B. Let M to the Stein mean of A and

B, defined in Eq 5. Assuming there is a shortest curve
γ on Pn connecting A and B that corresponds to the
Stein distance. Then, based on the triangle inequality,
since d2S(A,P )+d2S(B,P ) ≤ 2(dS(A,B)

2 )2, ∀P ∈ Pn,
M should be the mid-point of γ or dS(A,M) =
1
2dS(A,B). However, the last equality is not satis-
fied for Stein distance in general. This implies Stein
metric-based distance cannot be represented as the
length of shortest curve on Pn.

• Pn equipped with the Stein metric satisfies the Reshet-
nyak inequality presented in [18]. The proof of this
claim however is beyond the scope of this paper.

The two features together paint an interesting picture of the
geometry of Pn endowed with the Stein metric: The first
feature means that this new geometry defies easy character-
ization since it is not even a length space, arguably the most
general type of spaces studied by geometers. However,
the second feature shows that the Stein geometry has some
characteristics of a negatively-curved metric space since
Reshetnyak inequality is one of a few important properties
satisfied by all metric (length) spaces with non-positive cur-
vature (e.g., [18]). We remark that for metric spaces with
non-positive curvature, there are existence and uniqueness
results on the geometrically-defined expectations (similar to
the Stein expectation above) [18]. Unfortunately, none of
these known results are applicable to Pn endowed with the
Stein metric because it is not a length space. Nevertheless,
we are able to establish the following,

Theorem 1 For any distributionP(x) on Pn with finiteL2-
Stein moment, its Stein expectation exists and is unique.

The L2-Stein moment is defined as (for any μ ∈ Pn)∫
Pn

dS
2(x, μ)P(x)dx,

and it is easy to show that the finiteness condition on the
distribution P(x) is independent of the chosen point μ. For
the simplest case of P1, the proof is straightforward and we
present it here and defer the case for Pn to a later paper.
Since P1 = R+ and dS

2(x, y) = log(x+y
2 )− 1

2 log(xy) for
x, y ∈ R+, the first-order optimality condition for μ∗S yields

∫
R+

1

μ∗S + x
P(x)dx =

1

2μ∗S
.

Therefore, μ∗S must be a zero of the function F(μ):

F(μ) =

∫
R+

μ− x

μ+ x
P(x)dx.

We show that F must have exactly one zero, and hence the
existence and uniqueness of the Stein expectation on R+:
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This follows from

dF(μ)

dμ
=

∫
R+

2x

(μ+ x)2
P(x)dx > 0

for all μ ∈ R+, and clearly, we have limμ→0 F(μ) = −1
and limμ→∞ F(μ) = 1.

2.1. Recursive Algorithm for Stein Expectation

Having established the existence and uniqueness of the
Stein expectation, we now present a recursive algorithm for
computing the same. Let Xi ∈ Pn be i.i.d samples of a
distribution P. The recursive Stein mean can be defined as

M1 = X1 (6)

Mk+1(wk+1) = argminM (1− wk+1)d
2
S(Mk,M)

+wk+1d
2
S(Xk+1,M) (7)

wherewk+1 = 1
k+1 ,Mk is the old mean of k SPDmatrices,

Xk+1 is the new incoming sample andMk+1 is the updated
mean for k + 1 matrices. Note that (7) can be thought of as
a weighted Stein mean between the old mean and the new
sample point, with the weight being set to be the same as in
Euclidean mean update.

Now, we show that (7) has a closed form solution for
SPD matrices. Let A and B be two matrices in Pn. The
weighted mean ofA andB, denoted by C, with the weights
being wa and wb such that wa + wb = 1, should mini-
mize (7). Therefore, one can compute the gradient of this
objective function and set it to zero to find the minimizer C

wa[(
C +A

2
)−1 − C−1] + wb[(

C +B

2
)−1 − C−1] = 0 (8)

Multiplying both sides of (8) by matrices C, C + A and
C +B in a right order yields:

CA−1C + (wb − wa)C(I −A−1B)−B = 0 (9)

It can be verified that for any matrices A, B and C in Pn,
satisfying (9), the matrices A−

1
2CA−

1
2 and A−

1
2BA−

1
2

commute. In other words

A−1CA−1B = A−1BA−1C (10)

Left multiplication of (9) by A−1 yields

A−1CA−1C + (wb − wa)A
−1C(I −A−1B) = A−1B

(11)
The equation above can be rewritten in a matrix quadratic
form as the following, by using the equality in (10)

(A−1C +
(wb − wa)

2
(I −A−1B))

2

=

A−1B +
(wb − wa)

2

4
(I −A−1B)2 (12)

Taking the square root of both sides and rearranging yields

A−1C =

√
A−1B +

(wb − wa)2

4
(I −A−1B)2

−
(wb − wa)

2
(I −A−1B) (13)

Therefore, the solution of (9) for C can be written in the
following closed form

C = A[

√
A−1B +

(wb − wa)2

4
(I −A−1B)2

−
wb − wa

2
(I −A−1B)] (14)

It can be verified that the solution in (14) satisfies Eq. (10).
Therefore, Eq. (7) for recursive Stein mean estimation can
be rewritten as

Mk+1 =

Mk[

√
M−1

k Xk+1 +
(2wk+1 − 1)2

4
(I −M−1

k Xk+1)2

−
2wk+1 − 1

2
(I −M−1

k Xk+1)] (15)

with wk+1, Mk,Mk+1 and Xk+1 being the same as in (7).
If Pn equipped with the Stein metric were a global Non-

Positive Curvature (NPC) space [18], Sturm shows that
Mk converges to the unique Stein expectation as k → ∞
[18]. Unfortunately, as shown earlier, it is not even a length
space, let alone being a global NPC space. Therefore, a
proof of convergence for the recursive estimator for Stein
metric-based center would be considerably more delicate
and involved. However, we present empirical evidence for
100 SPD matrices randomly drawn from a log-Normal dis-
tribution to indicate that the recursive estimates of the Stein
mean converge to the batch mode Stein mean (see Fig. 1).

3. Experiments

In this section, we present several synthetic and real data
experiments. All running times reported in this section
are for experiments performed on a machine with a single
2.67GHz Intel-7 CPU with 8GB RAM.

3.1. Performance of the Recursive Stein Center

To illustrate the performance of the proposed recursive
algorithm, we generate 100 i.i.d samples form a Log-normal
distribution [15] on P3 with the variance and expectation set
to 0.25 and the identity matrix, respectively. Then, we in-
put these random samples to the recursive Stein mean esti-
mator (RSM ) and its non-recursive counterpart (SM ). To
compare the accuracy of RSM and SM we compute the
Stein distance between the ground truth and the computed
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Figure 1. Error comparison for the recursive (red) versus non-
recursive (blue) Stein mean computation for data on P3. (Image
best viewed in color)

Figure 2. Running time comparison for the recursive (red) versus
non-recursive (blue) Stein mean computation for data on P3. (Im-
age best viewed in color)

estimate. Further, the computation time for each newly ac-
quired sample is recorded. We repeat this experiment 20
times and plot the average error and the average compu-
tation time at each step. Fig. 1 shows the accuracies of
RSM and SM in the same plot. It can be seen that for
the given 100 samples, as desired, the accuracy of the re-
cursive and non-recursive algorithms are almost the same.
Further, Fig. 2 shows that RSM takes the same compu-
tation time for all given samples, while the time taken by
SM increases almost linearly with respect to the number of
matrices. It should be noted that RSM computes the new
mean by a simple matrix operations, e.g., summations and
multiplications, which makes it very fast for any number of
samples. This means that the recursive Stein-based mean
is computationally far more efficient, especially when the
number of samples is very large and the samples are input
incrementally, for example as in clustering and some seg-
mentation algorithms.

3.2. Application to K-means Clustering

In this section we evaluate the performance of the pro-
posed recursive algorithm applied to K-means clustering.
The two fundamental components of the K-means algo-
rithm at each step are: (i) distance computation and (ii)
the mean update. Due to the computational efficiency in-
volved in evaluating the Stein metric, the distances can be
efficiently computed. However, due to the lack of a closed
form formula for computing the Stein mean, the cluster cen-

ter update is more time consuming, and to tackle this prob-
lem, we employ our recursive Stein mean estimator.

More specifically, at the end of each K-means iteration,
only the matrices that change their cluster memberships in
previous iteration are considered. Then, each cluster center
is updated only by applying the changes incurred by the ma-
trices that most recently changed cluster memberships. For
instance, let Ci

1 and Ci
2 be the centers of the first and sec-

ond clusters, at the end of the i-th iteration. Also, letX be a
matrix which has moved from the first cluster to the second
one. Therefore, we can directly update Ci

1 by removing X

from it to get Ci+1
1 , and addingX to Ci

2 in its update, to get
Ci+1

2 . This will significantly decrease the computation time
of the K-means algorithm, especially for huge datasets.

To illustrate the gained efficiency resulting from us-
ing our proposed recursive Stein mean (RSM) update, we
compared its performance to the non-recursive Stein mean
(SM), as well as the following three widely used mean
computation methods: Karcher mean (KM), symmetric
Kullback-Leibler mean (KLsM) and Log-Euclidean (LEM)
mean. Furthermore, to show the effectiveness of the Stein
metric in K-means distance computation, we included com-
parisons to the following recursive mean estimators re-
cently introduced in literature: Recursive Log-Euclidean
mean (RLEM) [21], Recursive Karcher Expectation Esti-
mator (RKEE) and Recursive KLs-mean (RKLsM) in [3].
We should emphasize that for each of these mean estima-
tors, we used its corresponding distance/divergence in the
K-means algorithm.

The efficiency of the proposed K-means algorithm is in-
vestigated in the following set of experiments. We tested
our algorithm in three different scenarios, with increasing
(i) number of samples, (ii) matrix size, and (iii) number of
clusters. For each scenario, we generated samples from a
mixture of Log-normal distributions, where the expectation
of each component is assumed to be the true cluster center.
To measure the error in clustering, we compute the geodesic
distance between each estimated cluster center and its true
value, and take the summation of error values over all clus-
ters.

Fig. 3 shows the time comparison between the afore-
mentioned K-means clustering techniques. It is clearly evi-
dent that the proposed method (RSM) is significantly faster
than other competing methods, in all the aforementioned
settings of the experiment. There are two reasons that sup-
port the time efficiency of RSM: (i) recursive update of the
Stein mean, which is achieved via the closed form expres-
sion in Eq. 15, (ii) fast distance computation, by exploit-
ing the Stein metric, as the Stein distance is computed us-
ing a simple matrix determinant followed by a scalar loga-
rithm, while the Log-Euclidean, GL-invariant Riemannian
distances and the KLs divergence, require more compli-
cated matrix operations, e.g., matrix logarithm, inverse and

17971797



square root. Consequently, it can be seen in Fig. 3 that
for large datasets, the recursive Log-Euclidean, Karcher and
KLs-mean methods are as slow as their non-recursive coun-
terparts, since a substantial portion of the running time is
consumed in the distance computation involved in the algo-
rithm.

Furthermore, Fig. 4 shows the errors defined earlier, for
each experiment. It can be seen that, in all the cases, the ac-
curacy of the RSM estimator is very close to the other com-
peting methods, and in particular to the non-recursive Stein
mean (SM) and Karcher mean (KM). Thus, in terms of ac-
curacy, the proposed RSM estimator is as good as the best
in the class but far more computationally efficient. These
experiments verify that the proposed recursive method is
a computationally attractive candidate for the task of K-
means clustering in the space of SPD matrices.

3.3. Application to Image Retrieval

In this section, we present results of applying our recur-
sive Stein mean estimator to the image hashing and retrieval
problem. To this end, we present a novel hashing function
which is a generalization of the spherical hashing applied to
SPD matrices. The spherical hashing was introduced in [9]
for binary encoding of large scale image databases. How-
ever, it can not be applied as is (without modifications) to
SPD matrices, since it has been developed for inputs in a
vector space. In this section we describe our extension of
the spherical hashing technique in order to deal with SPD
matrices (which are elements of a Riemannian manifold
with negative sectional curvature).

Given a population of SPD matrices, our hashing func-
tion is based on the distances to a set of fixed pivot points.
Let P1, P2, ..., Pk be the set of such pivot points for the
given population. We denote the hashing function by
H(X) = (h1(X), ..., hk(X)), withX being the given SPD
matrix, and each hi is defined by

hi(X) =

{
0 if dist(Pi, X) > ri
1 if dist(Pi, X) ≤ ri

(16)

where dist(., .) denotes any distance defined on the man-
ifold of SPD matrices. The value of hi(X) illustrates
whether the given matrix X is inside the geodesic ball
formed around Pi, with the radius ri. In our experiments
we used the Stein distance defined in Equation (4), because
it is more computationally appealing for large datasets.

An appropriate choice of pivot points as well as radii is
crucial to guarantee the accuracy of the hashing. In order to
locate the pivot points we have employed the K-means clus-
tering based on the Stein mean as discussed in Section 3.2.
Furthermore, the radius ri is determined so that the hashing
function, hi satisfies Pr[hi(X) = 1] = 1

2 , which guaran-
tees that each geodesic ball contains half of the samples.
Based on this framework, each member of a set of (n × n)

SPD matrices is mapped to a binary code with length k. To
measure similarity/dissimilarity between binary codes, the
spherical Hamming distance described in [9] is used.

In order to evaluate the performance of the proposed re-
cursive Stein mean algorithm in this image hashing context,
we compare the performance for locating the pivot points
by four of the K-means clustering techniques discussed in
Section 3.2: RSM, SM, RKEE and RLEM. Using the found
pivot points, the retrieval precision for each method is ex-
perimentally evaluated and compared.

Experiments were performed on the COREL im-
age database [12], which contains 10K images cate-
gorized into 80 classes. For each image a set of
feature vectors were computed of the form f =
[Ir, Ig, Ib, IL, IA, IB , Ix, Iy, Ixx, Iyy, |G0,0(x, y)|, ...,
|G2,1(x, y)|], where the first three components represent the
RGB color channels, the second three encode the Lab color
dimensions, and the next four specify the first and sec-
ond order gradients at each pixel. Further, as in [7], the
Gu,v(x, y) is the response of a 2D Gabor wavelet, cen-
tered at (x, y) with scale v and orientation u. Finally,
for the set of N feature vectors extracted from each im-
age, f1, f2, ..., fN , a covariance matrix was computed us-
ing Cov = 1

N

∑N
1 (fi − f̄)(fi − f̄)T , where f̄ is the mean

vector. Therefore, from this dataset, ten thousand 16 × 16
covariance matrices were extracted.

To compare the time efficiency, we record the total time
taken to compute the pivots and find the radii, for each
aforementioned technique. Furthermore, a set of 1000 ran-
dom queries were selected from the dataset, and for each
query its 10 nearest neighbors were retrieved based on the
spherical Hamming distance. The retrieval precision for
each query was measured by the number of correct matches
to the total number of retrieved images, namely 10. Total
precision is then computed by averaging these (precision)
values.

Fig. 5 shows the time taken by each method. As ex-
pected, it can be observed that the recursive Stein mean es-
timator significantly outperforms other methods, especially
for longer binary codes. The recursive framework provides
an efficient way to update the mean covariance matrix. Fur-
ther, RKEE which is based on the GL-invariant Rieman-
nian metric is much more computationally expensive than
the recursive Stein method. Fig. 6 shows the accuracy for
each technique. It can be seen that the recursive Stein mean
estimator provides almost the same accuracy as the non-
recursive Stein as well as the RKEE. Therefore, the accu-
racy and computational efficiency of the proposed method
makes it an appealing choice for image indexing and re-
trieval on huge datasets. Fig. 7 shows the outputs of the
proposed system for four sample queries. Note that all of
the retrieved images shown in Fig. 7 belong to the same
class in the provided ground truth.
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Figure 3. Running time comparison for the K-means clustering using non-recursive Stein, Karcher, Log-Euclidean, KLs-mean denoted by
SM, KM, LEM and KLsM, respectively, as well as their recursive counterparts denoted by RSM, RKEE, RLEM and RKLsM . (a) Running
time comparison for different numbers of clusters with the number of samples and matrix dimension fixed at 1000 and 2, respectively. (b)
Running time comparison for different database sizes, from 400 to 2000, with 5 clusters, on P2. (c) Running time comparison for different
matrix dimensions In this experiment, 1000 samples and 3 clusters were used. The times taken by KM for (6 × 6) and (8 × 8) matrices
were much larger than other methods (211 and 332 seconds, respectively) and well beyond the range used in the plot.

Figure 4. Error comparison for the K-means clustering using methods specified in Fig. 3. (a), (b) and (c) show the error comparison
between the methods with varying number of clusters, number of samples and matrix dimensions, respectively.

Figure 5. Running time comparison for the initialization of hashing
functions, for recursive Stein mean (RSM ), non-recursive Stein
mean (SM ), recursive LogEuclidean mean (RLEM ) and recur-
sive Karcher expectation estimator (RKEE), over increasing bi-
nary code lengths.

3.4. Application to Shape Retrieval

In this section, the image hashing technique presented
in Section 3.3 is evaluated in a shape retrieval experiment,
using the MPEG-7 database [10], which consists of 70 dif-
ferent objects with 20 shapes per object, for a total of 1400
shapes. To extract the covariance features from each shape,
we first partition the image into four regions of equal area

Figure 6. Retrieval accuracy comparison for the same collection of
methods specified in Fig. 5

and compute a 2×2 covariance matrix from the (x, y) coor-
dinates of the edge points in each region. Finally, we com-
bined these matrices into a single block diagonal matrix,
resulting in an 8× 8 covariance descriptor.

We used the same methods as in Section 3.3 to compare
the shape retrieval speed and precision. Table 1 contains
the retrieval precision comparison, and it can be seen that
the RSM provides roughly the same retrieval accuracy as
RKEE, while table 2 shows that RSM is significantly faster
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Figure 7. Sample results returned by the proposed retrieval system
based on the recursive Stein mean using 640-bits binary codes.
Query images are shown in the leftmost column and the remain-
ing columns display the top five images returned by the retrieval
system. The retrieved images are sorted in the increasing order of
the Hamming distance to the query image, with Hamming distance
specified under each returned image.

BC Length RSM SM RKEE RLEM

64 60.67 62.10 61.46 61.15
128 63.59 64.65 64.69 63.23
192 69.69 69.63 70.10 68.19
256 73.13 73.13 73.84 70.14

Table 1. Average shape retrieval precision (%) for the MPEG7
database using four different Binary Code (BC) lengths.

BC Length RSM SM RKEE RLEM

64 48.76 104.61 381.14 397.66
128 53.44 185.80 366.60 415.62
192 89.04 189.89 380.41 397.66
256 105.33 196.61 368.63 398.23

Table 2. Running time (in seconds) comparison for shape retrieval.

than all the competing methods.

4. Conclusions

In this paper, we have presented a novel recursive esti-
mator for computing the Stein center/mean for a population
of SPDmatrices. The key contribution here is the derivation
of a closed form solution for the computation of a weighted
Stein mean for two SPD matrices which is then used in
developing a recursive algorithm for computing the Stein
mean of a population of SPD matrices. In the absence of a
proven convergence, we presented compelling empirical re-
sults demonstrating the convergence of the recursive Stein
mean estimator to the batch-mode Stein mean. Several ex-
periments were presented showing superior performance of
the recursive Stein estimator over the non-recursive coun-
terpart as well as the recursive Karcher expectation estima-
tor in K-means clustering and image retrieval. Another key
contribution of this work is the design of hashing functions
for the image retrieval application using covariance descrip-
tors as features. Our future work will be focused on several
new theoretical and practical aspects of the recursive esti-

mator presented here.
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