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Abstract

Most MAP inference algorithms for CRFs optimize an
energy function knowing all the potentials. In this paper,
we focus on CRFs where the computational cost of instanti-
ating the potentials is orders of magnitude higher than MAP
inference. This is often the case in semantic image segmen-
tation, where most potentials are instantiated by slow clas-
sifiers fed with costly features. We introduce Active MAP in-
ference 1) to on-the-fly select a subset of potentials to be in-
stantiated in the energy function, leaving the rest of the pa-
rameters of the potentials unknown, and 2) to estimate the
MAP labeling from such incomplete energy function. Re-
sults for semantic segmentation benchmarks, namely PAS-
CAL VOC 2010 [5] and MSRC-21 [19], show that Active
MAP inference achieves similar levels of accuracy but with
major efficiency gains.

1. Introduction
In many state-of-the-art methods for semantic segmen-

tation, contextual information plays a central role. A suc-

cessful trend has been to encode the contextual constraints

with a Conditional Random Field (CRF) [11], by modeling

the interactions between different regions and scales of the

image. Most methods use sophisticated potentials between

different neighboring regions [7, 21], and the state-of-the-

art has been boosted with the use of high-order potentials in

hierarchical CRFs [2, 9, 17].

Another common way to include contextual informa-

tion has been to extend image descriptors with contextual

cues [6, 8, 15], or also, combining semantic classifiers fed

from different contextual features [4, 13, 14]. It is a remark-

able feat the balance struck between accuracy and efficiency

by the semantic texton forests of Shotton et al. [19]. The

good performance exhibited by many methods that do not

benefit from introducing context to a CRF, lead Lucchi et
al. [12] ask the provocative question: ‘Are spatial and global

constraints really necessary for segmentation?’ From the

experimental results, they conclude that the CRF structures

boost performance when the features only encode local in-
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Figure 1. Active MAP inference (best seen in color). Example of

CRF with unknown unary potentials. Active MAP selects the po-

tentials to instantiate that maximize the expected reward. Also, it

estimates the MAP labeling from the incomplete energy function.

formation, whereas the further gain is very little when the

features already encode contextual information. This begs

the question whether we can really benefit from CRFs in

semantic segmentation when using such powerful features

that already encode context.

We present a novel use of CRFs for semantic segmen-

tation. We exploit CRFs to estimate the semantic label-

ing without computing the descriptors and classifiers ev-

erywhere in the image. Given a budget of time, it decides

which potentials to compute. In doing so, it dramatically re-

duces the computational complexity of the whole pipeline.

This is because the computational burden of instantiating

the potentials that extract descriptors and apply classifiers,

which can be much higher than MAP inference for most of

the energy functions in the literature [2, 6, 12].

We introduce a relation between CRFs with some un-

known unary potentials, which correspond to the features

and classifiers that we do not compute, and the Perturb-and-

MAP (PM) random field model [16]. We build our MAP

inference algorithm - coined Active MAP inference - based

on this finding. We use the term ‘active’ because during in-

ference it selects which potentials to instantiate on-the-fly.

This stands in contrast to previous MAP inference methods,

which first execute the features/classifiers that instantiate
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Figure 2. Examples of segmented images on VOC10 and MSRC-
21. Active MAP inference using observing different amounts of

unary potentials. Results are obtained by selecting the unary po-

tentials with the expected labeling change.

the CRF, and then run the MAP-CRF inference. Surpris-

ingly, seeing the instantiation of the CRF energy function

and MAP-CRF inference as two joint steps received little

attention in the community.

In a serie of experiments, we show that active MAP in-

ference successfully exploits spatial consistency to avoid

evaluating the classifiers and features everywhere. It ob-

tains comparable results to instantiating all the potentials in

the CRF for the PASCAL VOC 2010 segmentation chal-

lenge [5] and for the MSRC-21 dataset [19], but with major

efficiency gains. In Fig. 1 we illustrate some results on se-

mantic segmentation obtained with active MAP inference.

2. Active MAP Inference in CRFs
This section describes the approach for active MAP in-

ference. Its formulation uses a CRF to model the probability

density distribution expressing the likeliness of a certain la-

beling. Let G = (V, E) be the graph that represents such

distribution, and X the set of random variables or nodes

of the graph. The elements of V are indices of the nodes,

i.e. X = {Xi} in which i ∈ V , and the elements of E are

the indices of the undirected edges of the graph. We denote

an instance of the random variables as x = {xi}, where xi

takes a value from a set of discrete labels L. Thus, x ∈ LN ,

with N the cardinality of V .

We denote P (x|θ) as the probability density distribu-

tion of a labeling modeled with the graph G. According

to the Hammersley-Clifford theorem (c.f . [10]), the proba-

bility density that satisfies the Markov properties with re-

spect to the graph G is a Gibbs distribution. Thus, P (x|θ)

can be written as the normalized negative exponential of

an energy function Eθ(x) = θTφ(x), in which φ(x) =
(φ1(x), . . . , φM (x))T is the vector of potentials, or the so-

called sufficient statistics, and θ ∈ R
M are the parameters

of the potentials. We use the canonical over-complete rep-
resentation, in which {φi(x)} are built using indicator func-

tions that allow us to express the energy function as such

linear combination of the potentials (c.f . [23]). The most

probable state x� is obtained by inferring the Maximum a

Posteriori (MAP) of P (x|θ), or equivalently by minimizing

the energy, i.e. x� = argminx∈LN θTφ(x). As usual, we

categorize the potentials of the energy function depending

on the number of random variables that they involve: unary

and pairwise.

In the case of semantic segmentation, there is a node de-

fined for each pixel or superpixel in the image. The param-

eters of θ related to the unary potentials are typically the

result of evaluating classifiers fed with features extracted

from the image. The pairwise and high-order potentials use

some a priori assumptions like the smoothness of the la-

beling. It is important to note that the instantiation of θ
might be orders of magnitude more computationally expen-

sive than MAP inference. Usually, state-of-the-art methods

for semantic segmentation use features and classifiers that

take minutes to compute for a single image [2, 6, 12].

At testing phase, the common way to proceed is to in-

stantiate θ, and then to run an off-the-shelf MAP infer-

ence algorithm to obtain the most probable labeling. Ac-

tive MAP inference aims at estimating x� with only a sub-

set of the elements of θ, {θj}, which is selected by the al-

gorithm. The computational gain comes from not comput-

ing all classifiers and features needed to fully instantiate θ.

Even though we do not have the complete energy function

anymore because part of θ is unknown, we will show in the

sequel that we can still estimate x�. We define δ ∈ {0, 1}M ,

with the purpose of introducing the concept of selected pa-

rameters in our notation, i.e. it works as an indicator func-

tion. When the element j of the vector θ, i.e. θj , is not

computed, then, δj is zero, and if the parameter is com-

puted, then δj equals 1. This is

θjδj =

{
θj if δj = 1
unknown otherwise

. (1)

Note that with this notation we can still easily express the

initial formulation that instantiates all parameters, using

δ = 1 and θ1, where 1 is a vector of ones.

With missing parameters, the energy function does not

represent the initial labeling problem anymore. It would

be wrong to replace the unknown parameters by 0, or any

value indicating that ‘the potential is missing’. There is no

guarantee that, in doing so, the new energy function would

assign energy values similar to the ones given by the com-

plete energy.
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General Overview. Given a budget of time, Active MAP

inference instantiates a subset of the potentials (δ), and only

with them, it computes the complete MAP labeling (x�).

In the following section, we introduce Perturb-and-MAP, as

we use this mathematical tool in the rest of the paper. In sec-

tion 4, we introduce the estimation of x� when δ is given,

and in section 5, we introduce the algorithm to determine

δ. Finally, we show results for the application of semantic

image segmentation, where we save the cost of instantiat-

ing all the unary potentials. Active MAP inference is more

general and can also be applied in many other applications.

3. Preliminaries: Perturb-and-MAP
Generating samples from CRFs is unusual in computer

vision. For most problems, sampling over the discrete space

of the CRF is prohibitive due to the complexity of these

spaces. Recently, Papandreou and Yuille introduced the PM

random field [16], which is a model that allows for gen-

erating samples, built around the effective MAP inference

algorithms in CRF. In a follow-up paper, Tarlow et al. [20]

extended this idea to a more broader set of model.

PM is based on injecting noise in the energy function to

perturb it, and then, it calculates the frequency that labelings

are the MAP of the perturbed energy. Let ε ∈ R
M be the

random variable that it is used to perturb the parameters of

the energy function, and let fε(ε) be the probability density

of ε. We denote the perturbed parameters of the energy as

θ̃ = θ + ε. For each perturbed θ̃, we can infer a MAP

labeling. The different θ̃s that yield the same MAP labeling

x, can be grouped together. We use Px to denote such set

of θ̃s,

Px =

{
θ̃ ∈ R

M |x = arg min
x′∈LN

θ̃Tφ(x′)
}
. (2)

Analogously, we can define the set of perturbations

ε, that yields the labeling x when doing MAP in-

ference. We denote this set as Px − θ, and it is{
ε ∈ R

M |x = argminx′∈LN (θ + ε)Tφ(x′)
}

. PM as-

signs a probability to x equal to the probability of drawing

a perturbation ε that belongs to the set Px − θ. Thus, the

PM distribution is

fPM (x|θ) =
∫
Px−θ

fε(ε)dε, (3)

Intuitively, the PM calculates how frequent is that a label-

ing x is the MAP labeling, when injecting noise to the en-

ergy function. Even though calculating the exact value of

fPM (x;θ) might be not feasible for most practical cases,

note that we can easily draw samples from a PM distribu-

tion by simply doing MAP inference on a perturbed energy.

For a complete explanation of the PM random field we refer

the reader to the paper [16].

4. MAP Inference for Incomplete Energies
This section aims at estimating the labeling from the in-

complete energy function. We assume that δ is given, and

the potentials indicated by δ have been instantiated.

4.1. Relation to Perturb-and-MAP

Rather than filling in the energy function by inventing

the unknown parameters or setting them to a learned con-

stant value, we use P (θ|θδ) to model them. P (θ|θδ) is

the probability that the parameters of the potentials take the

values θ given θδ . The CRF models the probability of the

labeling, but it does not directly model P (θ|θδ). In order

to alleviate the lack of an exact expression for P (θ|θδ), we

use a model to approximate it, referred to as fθ(θ|δ,π),
where π are the parameters of the model. The definition

of this model is open and adaptable to each problem. We

specify fθ and π in the subsequent section.

Changing θ in the energy function produces different

MAP labelings, x�. Therefore, P (θ|θδ) induces a proba-

bility on x�. We use P (X� = x|θδ) to define such proba-

bility on x�, i.e. the probability that x is the MAP labeling.

It can be computed as∫
RM

I

[
x = arg min

x′∈LN
Eθ(x

′)
]
P (θ|θδ)dθ, (4)

where I[·] is the indicator function. Eq. (4) can be seen as

a natural way to calculate P (X� = x|θδ), since it accu-

mulates the probability density of P (θ|θδ) with θ yielding

the minimum energy labeling equal to x. The integral ex-

plores all complete energy functions, Eθ(x), and for each

of them, it checks whether the MAP labeling is x or not. In

case it is equal to x, the corresponding probability density

of P (θ|θδ) is accumulated into the final probability.

Deriving the exact P (X� = x|θδ) is computationally in-

tractable, because of the number and complexity of the con-

straints needed to define Eθ . Fortunately, it can be shown

that P (X� = x|θδ) is indeed a PM random field, from

which we can easily draw samples. We state it formally

in the following proposition.

Proposition 1. Let P (θ|θδ) = fθ(θ|δ,π), and fθ(θ|δ,π)
has mean equal to μ ∈ R

M . Let fPM (x|δ,μ) be the den-
sity distribution of a PM model with energy Eμ(x), i.e. the
energy with parameter μ ∈ R

M , and the perturbations are
drawn from ε ∼ fθ(ε+ μ|δ,π). Then,

P (X� = x|θδ) = fPM (x|δ,μ). (5)

The proof is in the Supplementary Material. Observe

that the density distribution of the PM model in Prop. 1 is

fPM (x|δ,μ) =
∫
Px−μ

fθ(ε+ μ|δ,π)dε, (6)
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where Px − μ is the set of ε ∈ R
M such that x minimizes

the energy function E(μ+ε) (see Eq. (2)). Note also that

we draw ε from fθ(ε + μ|δ,π), which is fθ centered at

0. Prop. 1 shows that this PM distribution reproduces the

definition of P (X� = x|θδ) in Eq. (4). To obtain samples

of x� in practice, we simply perturb μ using ε, and then, we

apply MAP inference to E(μ+ε)(x).
Note that Prop. 1 is valid for any fθ(θ|δ,π). Yet, the key

assumption in Prop. 1 is P (θ|θδ) = fθ(θ|δ,π), which pre-

supposes an underlying model for the known and unknown

θ. This is addressed in the following.

4.2. Model of the Missing Parameters

We use a simple collection of independent Gaussian vari-

ables to define fθ(θ|δ,π). The parameters for this model

are the mean and the standard deviation, referred to as

μ ∈ R
M and σ ∈ R

M respectively, where for notation

simplicity π indicates both μ and σ. We use the stan-

dard Gaussian distribution due to its simplicity and its well-

known properties. Specifically, we define fθ(θ|δ,π) such

that, if the parameter of the potential is unknown (δi = 0),

it is a univariate Gaussian distribution, centered at μi and

deviation σi. Otherwise it is consistent with the instantiated

potential, fθ(θ
i|δi = 1, πi) = I[θi = θiδi ], where I[·] is the

indicator function. In this latter case, there is no uncertainty,

and πi and σi are not used.

We set π to a fixed value that we learn by cross-

validation. Thus, all fθ(θ
i|δi = 0, πi) are a Gaussian dis-

tribution with the same parameters. We could find the more

likely π given the observations, but it is out of the scope

of this paper. From a practical perspective, it suffices to as-

sume that π takes a fixed value to achieve good performance

in practice.

5. Selection of δ
In this section we describe the selection of δ. The al-

gorithm starts from δ = 0, and it sequentially determines

which potential to compute next, until the time budget,

ttotal, expires. We denote the known potentials at time t
as θδt

. The algorithm ranks the unknown potentials with a

score, and thus prioritizes the potentials in the time budget.

This is done by selecting the potentials with higher score.

We summarize all steps in Alg. 1.

Let Si
δt

be the score that ranks the potentials. We define

Si
δt

as the expected reward of instantiating the potential i.
This is

Si
δt

= Eθ

[
R

(
P

(
X� = x|θδt

: θi = θ
))]

, (7)

where the expected value is over θ ∼ fθ
(
θi|δi = 0, πi

)
,

which is the Gaussian model of the posterior P (θi|θδt).
We use θδt : θi = θ to indicate that θi in θδt has been

set to θ. R(·) is the reward of instantiating θi = θ, and

it evaluates the probability distribution of X�. The reward

Algorithm 1: Active MAP

δ0 = 0;

while t<ttotal do
� Compute the score for the Unkown Unary Potentials:
forall the δit = 0 do

Si
δt = Eθ

[
R

(
fPM

(
x|δt : δi = 1,πt : μ

i = θ
))]

end

� Instantiate the Unary Potential with higher Si
δt :

i� = argmaxi S
i
δt

δi
�

= 1, Compute θi
�

end
x� = argmaxx fPM (x|δ,μ)

prioritizes probability distributions using a pre-defined cri-

terion, such as having low uncertainty in the labeling of X�.

There are different possible criterions to define it, and we

analyze two of them in the sequel. Observe that Eq. (7)

evaluates the expected value of the reward by sampling θs

from fθ(θ
i|δi = 0, πi), and evaluating the reward we would

get if θi is clamped to the sampled θ.

We can further develop Si
δt

in Eq. (7). According

to Prop. 1, P
(
X� = x|θδt : θ

i = θ
)

is a PM, which is

fPM

(
x|δt : δi = 1,πt : μ

i = θ
)
. Thus, Si

δt
becomes

Si
δt

= Eθ

[
R

(
fPM

(
x|δt : δi = 1,πt : μ

i = θ
))]

, (8)

Below, we introduce two possible criterions for the ex-

pected reward, and analyze the computational cost of cal-

culating the reward.

5.1. Expected Reward

To compute the reward, we adapt two standard tech-

niques from the active learning literature [18], namely the

residual entropy and the labeling change. In the following

we discuss them in the context of active MAP inference,

and we show that both criteria can be effectively computed

from a set of samples derived from the PM.

Expected Residual Entropy (ERE). We can compute the

reward using the residual entropy in order to reduce the

uncertainty of the MAP labeling. Then, the reward R(·)
becomes −H

(
fPM

(
x|δt : δi = 1,πt : μ

i = θ
))

, where

H(·) is the entropy, and can be computed by drawing sam-

ples from the PM. Note that reducing the uncertainty of the

MAP labeling does not necessarily mean that the labeling is

closer to the true MAP labeling.

Expected Labeling Change (ELC). [22] proposes to eval-

uate the expected change in the labeling. In the case

of our problem, it is the change in the labeling induced

from instantiating a potential. Thus, the reward R(·) is

Δ
(
x�
t , argmaxx fPM (x|δt : δi = 1,πt : μ

i = θ)
)
, where

x�
t is the MAP labeling at iteration t, and Δ(·, ·) is a func-

tion that counts how many labels of x�
t differ from the label-

ing that we obtain with the PM when instantiating θi = θ.
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Expected R(θ1) Expected R(θ2)

θ1 : θ1
a θ1

a θ1
a θ1

b θ1
b θ1

b

θ2 : θ2
a θ2

b θ2
b θ2

a θ2
a θ2

b

. . . . . . . . .

R(θ1
a) R(θ1

b) R(θ2
a) R(θ2

b)+ +

K = 3

MAP labelings are reused
to compute the Rewards

T = 2

Figure 3. Illustrative example of the TK samples of θ to com-
pute the expected Reward for all unknown potentials (best seen in
color). Example with 2 unknown potentials, T = 2 and K = 3.

5.2. Efficient Computation of the Reward

We can see by analyzing Eq. (8), that in the calculation

of the expected reward, there are TK computations of MAP

inference, where T is the number of samples of θi, and K
the number of samples of the PM. This is because for the

T samples of θi, we evaluate a PM that computes MAP K
times. Thus, the cost of computing the scores for a number

U of unknown potentials is O(TKUm), where m is the

cost of inferring the MAP labeling.

According to Alg. 1, the scores are evaluated every time

we instantiate a potential. Thus, if doing TKU times MAP

has a comparable cost to instantiate one potential, rather

than speeding up the whole pipeline, Active MAP may be-

come the computational bottleneck. In the following, we in-

troduce two complementary strategies that render the eval-

uation of the scores efficient in practice.

Efficient computation of the expected reward. We first

introduce a strategy to reduce O(TKUm) to O(TKm). It

is based on the observation that the PM draws the unknown

parameters of the energy from fθ
(
θi|δi = 0, πi

)
, which is

the same probability distribution that we use to generate the

θs for the expected value. Thus, we could reuse the same

samples of θ to calculate both the expected value, and the

energy function of the different perturbations of the PM.

Recall that in the expected reward, for each θi, PM com-

putes MAP inference K times with μi fixed to θi. We can

generate a set of TK samples that can be used for all PMs of

any unknown potential. This is feasible by drawing T val-

ues of θi from fθ , and extending them, by repeating those

T initial values of θi by K times, in a random order. We

do this for all unknown potentials and obtain a set of TK
different vectors of θ. Fig. 3 is an example of θs generated

in that way. Note that for each value of θi, we always have

K different samples of θ, having the unknown potentials

perturbed and θi fixed. This coincides with the form of the

energy function of the K perturbations of the PM.

The limitation of this method is that θi takes only T dif-

ferent values in the TK samples, and they might not be

diverse enough to correctly estimate the reward. Yet, we

Algorithm 2: Active MAP with Area of Influence

δ0 = 0;

while t<ttotal do
� Compute the score for the Unkown Unary Potentials:
forall the δit = 0 do

Si
δt = Eθ

[
R

(
fPM

(
x|δt : δi = 1,πt : μ

i = θ
))]

end

while ∃Si
δt �= −∞ do

� Instantiate the Unary Potential with higher Si
δt

i� = argmaxi S
i
δt

δi
�

= 1, Compute θi
�

� Delete Candidates from the Area of Influence:
forall the xj ∈ A. Infl. (δi = 1, {x}K2) do

Si
δt = −∞

end

end
end
x� = argmaxx fPM (x|δ,μ)

Figure 4. Area of Influence and Expected Reward. The top row

shows the original image and two samples of PM with 0% of ob-

served unary potentials. The bottom row shows the area of influ-

ence of the first selected superpixels that ranked higher with ELC.

observed in the experiments that this approach achieves the

same performance as using TKU different samples, even

with small K and T .

Area of Influence. We propose a simple strategy to avoid

re-computing the scores every time we instantiate a poten-

tial. It is summarized in Alg. 2. It is assumed that instanti-

ating a potential reduces the score of the potentials that are

in its “area of influence”, while the rest remain unchanged.

Under this assumption, only the scores in the area of influ-

ence are unreliable if they are not recomputed. We discard

such scores as candidates until we re-compute the scores.

This is done at the point that all potentials have been dis-

carded.

We define an heuristic way, yet effective, to compute the

area of influence. We define the area of influence as set

of nodes that in all samples drawn from P (X� = x|θδ)
take the same labeling value, and form a connected blob in

the image. In Fig. 4 we illustrate several examples of the

estimated area of influence for some potentials, and in the

experiments section we show that using the area of influ-
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ence is as effective as not using it, but it yields dramatic

speed ups. Note that computing the area of influence does

not incorporate any extra major cost, since we can use the

samples of the PM used for calculating the rewards.

6. Experiments
We report results of our method on two popular datasets

for semantic segmentation, namely the PASCAL VOC

2010 [5] and MSRC-21 dataset [19]. We use the standard

evaluation set up. We first describe the implementation

details and discuss the computational times (with a CPU

2.8GHz i7 with 8 cores). Then, we analyze the impact of

the parameters and the heuristics we use, and we report re-

sults on the two datasets. Finally, we slightly modify the

experimental setup and we show active MAP for human-in-

the-loop semantic segmentation.

6.1. Implementation and Computational Time
We use a typical CRF with Potts pairwise potential mod-

ulated by the difference in color [6]. We use Active MAP

to select which unary potentials to compute, since they have

the higher computational load. The smoothness potentials

are always computed, and thus, δ is initialized to include

the smoothness potentials. Below we describe each of the

pipeline components for semantic image segmentation.

Unsupervised Segmentation. We first over-segment the

images using SLIC superpixels [1], which allows us to work

at superpixel level. The VOC10 images are over-segmented

with about 800 superpixels, and for MSRC-21 we use about

300. SLIC takes on average 0.2 seconds per image.

Unary Potentials. In order to show that state-of-the-art

methods can benefit from Active MAP, we use the pub-

licly available features and classifiers in [12]. It extracts

features taking into account the context of the image at dif-

ferent scales. Overlapping patches are described with SIFT

and RGB histograms, and are encoded using Bag-of-Words

(BoW) at 6 different contextual scales around the superpix-

els. The classifiers for each unary potential are SVMs with

intersection kernel. In [12] they showed that with these fea-

tures, they achieve comparable performance with or without

using a CRF.

The computational cost for the different parts in VOC10

are 0.11s to compute dense SIFT, 0.05s to compute dense

RGB histogram over the patches, and 0.6s to build all the

BoW of an image with a fast nearest neighbor extraction.

For MSRC-21 these costs are 0.03s to compute dense SIFT,

0.01s to compute RGB histograms, and 0.06s to build the

BoWs. The cost of computing these features can not be

saved by the Active MAP inference, because we use a

global classifier that uses features over the entire image.

In the case of VOC10, computing the classification score

with an SVM for a superpixel takes 0.02 seconds, and,

hence, for an image with 800 superpixels this takes 16 sec-

onds. In MSRC-21, computing the classification score for
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Figure 5. Learning the Parameters on MSRC-21. (a) Impact of λ
and (b) σ when varying the percentage of instantiated potentials.

The accuracy is normalized by the maximum accuracy for each

amount of observed potentials.

each superpixel takes 0.01 seconds, and for 300 superpix-

els 3 seconds. Most of the classifier costs - i.e. the main

bottleneck of the pipeline - can be saved by Active MAP

inference.

Smoothness Potentials. It is a Potts model modulated by

the difference of the mean of the RGB color of the con-

nected superpixels. It takes 0.1 seconds to compute for 800
superpixels, and 0.03 seconds for 300 superpixels. We de-

note the weight that multiplies the smoothness term in the

energy function as λ, and it is one of the parameters that we

learn in the following section.

Inference. We use α-expansion graph cuts [3] to compute

the MAP labeling in a complete energy function. For the

PM we use K = 5 samples, which takes 0.03 seconds for

VOC10 and 0.02 seconds for MSRC-21. For the expected

reward we use T = 5, and it takes 0.15 and 0.12 seconds in

total, respectively. The final labeling x� is computed with

T = 1, i.e. a single time MAP inference.

6.2. Learning the Parameters
The parameters that we learn are the weight of the

smoothness potentials (λ), and the model of the missing

unary potentials (μ, σ). We learn them by cross-validation

in the validation set, depending on the amount of instanti-

ated potentials and the specific reward we use. In the fol-

lowing, we show the results in MSRC-21 when using the

ELC reward. For VOC10 and the other rewards, we follow

the same procedure.

Weight of the Smoothness Potential (λ). In Fig. 5a we

report the impact of λ on the accuracy. We can see that de-

pending on the amount of instantiated potentials, the opti-

mal value for λ may vary (indicated with the black line).

Note that when few potentials are instantiated, the value

of λ increases. This is because higher λ encourages label

propagation, which is more important when we have less

observations. When all potentials are observed, setting λ
to 0 or very little gives the best performance, which is in

accordance to [12]. We use the best λ for each amount of

instantiated potentials.

Model of the Missing Parameters (μ, σ). We may use μ
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Figure 6. Impact of the Heuristics on MSRC-21. (a) Average

squared deviation (error) from the mean and variance of the set of

K samples used for a PM in the calculation of the reward for one

unknown unary potential, when T = K. The error is normalized

to the error of not using the heuristic. (b) Average amount of times

the scores are calculated when varying the percentage of observed

unary potentials.

to enforce a prior distribution over the classes. Yet, since

the datasets we evaluate have only about 20 object classes,

using this prior distribution can artificially boost the perfor-

mance. Thus, we set all entries of μ to the same constant

value, which only adds an offset to the energy function that

has no effect on the MAP labeling.

In Fig. 5b we show the impact of σ on the accuracy,

when varying the percentage of observed unary potentials.

σ is the level of injected noise in P (X� = x|θδ), which

is necessary to effectively evaluate the expected rewards.

Note that when there are more potentials instantiated, the

optimal σ increases. This might be to calibrate the amount

of injected noise in the energy when less potentials can be

perturbed.

6.3. Results
Efficient Computation of the Expected Rewards. We an-

alyze the impact of the heuristics we introduced in Sec. 5.2.

In Fig. 6a we show the error of the mean and variance of

the K samples of θi when reusing the samples generated

for the expected value. Ideally, the samples of θi follow a

Gaussian distribution, but due to the heuristic we use to gen-

erate them, the samples could have deviated from the origi-

nal Gaussian distribution. We evaluate the average squared

deviation (error) from the mean and variance of the set of

K samples used in the calculation of the reward, for one un-

known unary potential. The average is over all unknown po-

tentials of all images, when there are no instantiated poten-

tials. We set T = K to proportionally increase the amount

of samples. The error is normalized to the error of not using

the heuristic. Note that as expected, the normalized error

tends to 1 (same error as not using the heuristic) when we

increase the amount of samples. In the experiments, we use

T = K = 5 samples because it is a good tradeoff between

computational cost and accuracy.

In Fig. 6b we analyze the impact of using the area of in-

fluence (Alg. 1 compared to Alg. 2). Recall that we discard

the potentials that are in the area of influence of an instan-
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Figure 7. Results on (a) VOC10 and (b) MSRC-21. Accuracy

when varying the percentage of instantiated potentials.

Method Global Average Features Inference Total Average Features Inference Total

MSRC-21: Test Set VOC10: Validation Set

All CRF 78 78 3s 0.02s 3.02s 32.9 16s 0.03 16.03s

All max 78 78 3s − 3s 32.0 16s − 16s

ELC 20% 76 76 0.6s 0.34s 0.94s 29.5 3.2s 0.37s 3.57s

ERE 20% 76 75 0.6s 0.34s 0.94s 29.5 3.2s 0.37s 3.57s

Random 20% 72 70 0.6s 0.1s 0.7s 23.5 3.2s 0.12s 3.32s

ELC 5% 70 68 0.15s 0.34s 0.49s 24.2 0.8s 0.12s 0.92s

ERE 5% 69 67 0.15s 0.34s 0.49s 23.9 0.8s 0.12s 0.92s

Random 5% 65 60 0.15s 0.1s 0.25s 17.4 0.8s 0.03s 0.83s

MSRC-21: Human-in-the-loop VOC10: Test Set

All 98 97 − − 300 clicks 33.5 16s − 16s

ELC 20% 94 92 − 0.34s 60 clicks 30.4 3.2s 0.37s 3.57s

ELC 5% 86 84 − 0.34s 15 clicks 24.8 0.8s 0.12s 1.17s

ELC 1% 67 67 − 0.34s 3 clicks − − − −

Table 1. Summary of all the results in MSCR-21 and VOC10. The

average score provides the per-class average. The time measure-

ments are for one image.

tiated potential, and we recompute the scores when all po-

tentials have been discarded. We report the average number

of times the scores are computed when varying the number

of observed unary potentials. We can see that with 50% of

the nodes instantiated, it only computes the scores 2 times

(in average for all images). Note that this is a dramatic re-

duction of the computational cost, since without area of in-

fluence, the number of times it needs to compute the scores

increases linearly to the number of observed unary poten-

tials. Additionally, we observed that both methods obtain

the same accuracy (we could only compare up to 10% of

instantiated potentials due to the high computational cost of

not using the area of influence).

Active MAP for semantic segmentation. We report re-

sults on MSRC-21 and VOC10, of the active MAP infer-

ence, with the ERE and ELC, and randomly selecting the

unary potentials to compute the classifiers (referred as Ran-
dom). We also report the results of using all the unary po-

tentials and taking the maximum value of each, referred as

Max, and when having the complete CRF, referred as All
CRF in the tables.

In Fig. 7 we show the evolution of the performance when

increasing the amount of instantiated potentials on MSRC-

21 and VOC10 (on the validation set), and in Table 1 we

report more detailed results on the MSRC-21 dataset and

VOC10 (validation and test set). We also report the times

for computing the features and classifiers related to the po-

tentials, and the inference time which includes the overhead

of computing the active MAP inference. We can see that on

VOC10, the Active MAP with ELC reward, yields a speed-
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Figure 8. Results on MSRC-21 with a human in the loop. (a)

Average accuracy, and (b) example of resulting images.

up of around 20x when only instantiating 5% of the unary

potentials, achieving very competitive results. When instan-

tiating only 20% of the unary potentials, there is a speed-up

of 5x, and the performance only decreases about 3% with

respect to computing all the unary potentials. Note that the

overhead of extra computation of Active MAP is very small

for all cases. The ELC achieves slightly better accuracy

than ERE reward, specially with fewer observed unary po-

tentials, and both methods outperform the Random strategy.

In Fig. 1 we show images of the results achieved with Ac-

tive MAP inference for different time budgets on VOC10.

Active MAP for human-in-the-loop segmentation. We

evaluate the case of having the true labeling for some super-

pixels. This could be the case of having some unary poten-

tials that may be prohibitive to compute, or also, when Ac-

tive MAP interacts with a human that is asked the ground-

truth for some superpixels. We slightly modify the set up

used in previous experiments, by setting the instantiated

unary potentials to add high penalties for the labels different

from the ground-truth, or 0 otherwise.

In Fig. 8 and also in Table 1 we report results on MSRC-

21. We include the case that all the unary potentials are

known with the true label (refered as Max), which gives

an upper-bound of the performance limited by the errors

introduced by the superpixels. We can see that with 2%
of the superpixels, which is about 6 superpixels in the im-

age, we obtain the same performance as the state-of-the-art

method [2].

7. Conclusions
We presented a method for active MAP inference on a

CRF with unknown parameters. We showed its relation

to the Perturb-and-MAP random field. The method incre-

mentally adds the most promising parameters to the en-

ergy function using ranking criteria borrowed from active

learning. Experiments on various datasets show that active

MAP inference leads to significant computational savings,

that clearly compensate for the overhead of computing the

complete set of parameters of the energy function. The pro-

posed method is useful when the computation of the energy

function is more demanding than the MAP inference, as is

often the case in semantic image segmentation. A research

line that we are pursuing, and that we did not exploit in this

paper, is to integrate dynamic inference techniques into our

method.
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