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Abstract

Humans use rich natural language to describe and com-
municate visual perceptions. In order to provide natural
language descriptions for visual content, this paper com-
bines two important ingredients. First, we generate a rich
semantic representation of the visual content including e.g.
object and activity labels. To predict the semantic represen-
tation we learn a CRF to model the relationships between
different components of the visual input. And second, we
propose to formulate the generation of natural language as
a machine translation problem using the semantic represen-
tation as source language and the generated sentences as
target language. For this we exploit the power of a parallel
corpus of videos and textual descriptions and adapt statis-
tical machine translation to translate between our two lan-
guages. We evaluate our video descriptions on the TACoS
dataset [23], which contains video snippets aligned with
sentence descriptions. Using automatic evaluation and hu-
man judgments we show significant improvements over sev-
eral baseline approaches, motivated by prior work. Our
translation approach also shows improvements over related
work on an image description task.

1. Introduction
Computer vision has advanced to detect people, classify

their actions, or to distinguish between a large number of

objects and specify their attributes. The output is often a

semantic representation encoding activities and objects cat-

egories. While such representations can be well processed

by automated systems, the natural way to communicate this

information with humans is natural language. Thus, this

work addresses the problem of generating textual descrip-

tions for videos. This task has a wide range of applications

in the domain of human-computer/robot interaction, gener-

ating summary descriptions of (web-)videos, and automat-

ing movie descriptions for visually impaired people. Fur-

thermore, being able to convert visual content to language is

an important step in understanding the relationship between

visual and linguistic information which are the richest inter-

action modalities available to humans.

Generating natural language descriptions of visual con-

tent is an intriguing task but requires combining the funda-

mental research problems of visual recognition and natural

language generation (NLG). While for descriptions of im-

ages, recent approaches have proposed to statistically model

the conversion from images to text [5, 15, 16, 18], most ap-

proaches for video description use rules and templates to

generated video descriptions [14, 9, 2, 10, 11, 26, 3, 8]. Al-

though these works have started exploring the domain of

describing visual content, important research questions re-

main: (1) How to best approach the conversion from visual

information to linguistic expressions? (2) Which part of the

visual information is verbalized by humans and what is ver-

balized even though it is not directly present in the visual

information? (3) What is a good semantic representation

(SR) of visual content and what is the limit of such a repre-

sentation given perfect visual recognition?

Answering these questions is clearly beyond the scope of

a single paper but we aim to address them jointly here. To

address the first question we suggest to learn the conversion

from video to language descriptions in a two-step approach.

In the first step we learn an intermediate SR using a prob-

abilistic model, following ideas used to generate image de-

scriptions [5, 15]. Then, given the SR, we propose to phrase

the problem of NLG as a translation problem, that is trans-

lating the SRs to natural language descriptions. In contrast

to related work on video description, we learn both the SR

as well as the language descriptions from an aligned parallel

corpus containing videos, semantic annotations and textual

descriptions. We compare our approach to related work and

baselines using no intermediate SR and/or language model.

Second, we do not want to define manually the right level

of verbalization. Instead we learn from a parallel training

corpus the most relevant information to verbalize and how

to verbalize it. For this we employ the methods from statis-
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tical machine translation [12]. (a) We learn the correct or-

dering of words and phrases, referred to as surface realiza-

tion in NLG. (b) We can learn which SR should be realized

in language. When describing a video, using “cooking” as

a running example, the visually recognized object PEELER

would normally not be mentioned when describing that a
person is peeling a carrot but can still contribute to the ver-

balization of peeling. (c) We learn the proper correspon-

dence between semantic concepts and verbalization, i.e. we

do not have to define how semantic concepts are realized.

E.g. the concepts 〈MOVE, PAN, COUNTER, HOB〉 could be

realized as He puts the frying pan on the stove rather than

being limited to He moves the pan from the counter to the
hob when just adding function words.

Although NLG can be defined purely by rules and tem-

plates which might provide a more robust approach for

limited domains, we believe that learning these parameters

from data is a much more attractive approach. For any suf-

ficiently rich domain, the required complexity of rules and

templates is likely to make the rule engineering task either

infeasible or prohibitively expensive. This has been shown

for language translation, where statistical machine transla-

tion has generally replaced rule-based approaches [12].

To address the third question of the right visual input

we compare three different visual representations, namely a

raw video descriptor [27], an attribute based representation

[24], and our CRF model. To understand the limits of our

SR we also run the translation on ground truth annotations.

The main contributions are as follows. First, we phrase

video description as a translation problem from video con-

tent to natural language descriptions (Sec. 3). As inter-

mediate step we employ a SR of the video content. Sec-

ond, we evaluate our approach on the TACoS [23] video-

description dataset (Sec. 5.1). Using automatic as well

as human evaluation, the proposed approach outperforms

several baseline methods inspired by previous work. The

SR, when using ground truth annotations, allows generat-

ing language that is close to human performance. Addi-

tionally our approach also compares favorably to [5] on

the Pascal-sentence dataset for an image description task

(Sec. 6). Third, annotations as well as intermediate outputs

and final descriptions to allow for comparisons to our work

or building on our SR are released on our website.

2. Related work
Statistical machine translation (SMT). Machine trans-

lation aims to translate from one natural language to an-

other. SMT formulates this problem as data-driven ma-

chine learning problem. SMT is a mature field with existing

approaches achieving respectable results across many lan-

guage pairs, see e.g. [17] for a review and tutorial. Based

on sentence-aligned corpora of source and target language a

translation model is estimated. Additionally, a model for the

target language is learnt to generate a fluent and grammat-

ical output. The open source Moses [13] toolkit optimizes

this pipeline on a training set (see Sec 3.2). [4] propose to

approach object recognition in analogy to machine transla-

tion by learning a lexicon from images segments to asso-

ciated keywords from images with keywords. Rather than

translating to words or labels we translate from a SR to full

descriptions.

NLG from images and video. Generating descriptions

of visual content can be roughly divided in four different di-

rections according to: (1) generating descriptions for (test)

images or videos which already contain some associated

text, (2) generating descriptions by using manually defined

rules or templates, (3) retrieving existing descriptions from

similar visual content, or (4) learning a language model

from a training corpus to generate descriptions.

(1) Assuming the availability of text associated with the

image at test time one can effectively use summarization

techniques [1, 7] which benefit from visual content. This

setting is different from ours as we want to generate de-

scriptions at test time from visual content only.

(2) Given a SR extracted from visual content it is possi-

ble to generate language using manually defined rules and

templates. To describe images, [15] extracts objects and

their attributes as well as their spatial prepositions from

images. These entities are modeled in a Conditional Ran-

dom Field (CRF). From the CRF predictions they generate

descriptions based on simple templates (or n-gram model,

which falls into (4)). We also use a CRF to predict an in-

termediate SR but we show that our translation system gen-

erates descriptions more similar to human descriptions. For

videos, [14] builds a concept hierarchy of actions which is

manually defined and associated with different body, hand

and head movements. Our setting is visually more chal-

lenging and varied making manual definitions challenging.

[26] learns audio-visual concepts and generates a video de-

scription for three different activities using rules to com-

bine action, scene, and audio concepts with glue words. [9]

extracts an AND-OR graph from sports videos to model

causal relationships. Using the graph, sentences can then

be constructed using simple templates. [10, 2] extract ac-

tions, body-pose, objects and their tracks on the DARPA

Mind’s eye corpus which depict 48 different verbs. Using

a set of templates they generate text for their SR. Similarly,

[11] uses templates to describe videos on the TREC Video

summarization task. [3] follows a different route and uses a

topic model to jointly model textual and visual words and a

tripartite graph based on object/concept detectors. Text gen-

eration is done with manually defined templates. The recent

work of [8] predicts multiple subject-verb-object triples for

a video snippet. These are reweighed according to the con-

fidence along a classifier hierarchy and a language model.

The best suited triple is used to generate multiple sentences
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based on a template which are again scored against a n-

gram language model. Similarly, our translation approach

weights resulting sentences according to a language model.

However, using templates limits the natural flexibility of

language, as noted by [16].

(3) The third group of approaches reduces the generation

process to retrieving sentences from a training corpus based

on locally [20] or globally [5] similar images. [5] learns

an intermediate SR of object, action, and scenes using a

Markov Random Field. We compare to their retrieval results

by applying our translation approach to their SR.

(4) The fourth line of work, which also includes this

work, goes beyond retrieving existing descriptions by learn-

ing a language model to compose novel descriptions. [15]

learns an n-gram language model to predict function words

for their SR. One of our baselines is based on this idea

(Sec. 4.2). Two recent approaches use an aligned corpus

of images and descriptions as a basis for generating novel

descriptions for images using state-of-the art language gen-

eration techniques. [16] retrieves candidate phrases from an

image-caption database based on object, scene, and region

recognition. Using an Integer Linear Programming formu-

lation for content planning and surface realization they con-

struct the most relevant and linguistically coherent descrip-

tions. While they hand craft constraints to translate from

the image, we learn a statistical translation model. [18]

uses a corpus of 700,000 Flickr images with associated de-

scriptions. Based on the visual recognition system of [15]

they learn to predict sets of nouns and their order and add

necessary prepositions, predicates, and determiners to form

syntactically well-formed phrases. In contrast to their Tree-

adjoining-grammar (TAG)-like natural language generation

approach we use flat, cooccurrence based techniques from

SMT.

3. Video description as a translation problem
In this section we present a two-step approach which de-

scribes video content with natural language. We assume

that for training we have a parallel corpus which contains a

set of video snippets and sentences. Video snippets repre-

sented by the video descriptor xi are aligned with a sentence

zi, i.e we have (xi, zi). In case there is an extra description

for the same video snippet we treat it as an independent

alignment (xk, zk) with xk = xi. Additionally we intro-

duce an intermediate level semantic representation (SR) in

form of labels yi.
At test time we first predict the SR y∗ for a new video

(descriptor) x∗ and then generate a sentence z∗ from y∗.

In the following we present our proposed approach using

human-activity videos in a kitchen scenario based on the

TACoS corpus, where people are recorded preparing differ-

ent kinds of ingredients. However, we show in section 6 that

this can also be applied to translate images to descriptions.

We build the SR based on the annotations provided

with TACoS. It distinguishes activities, tools, ingredi-
ents/objects, (source) location/container, and (target) loca-
tion/container. This directly converts to our SR y in the

form of 〈ACTIVITY, TOOL, OBJECT, SOURCE, TARGET〉.
As a tool, object or location can be missing, we represent

this with an additional NULL label for the respective node.

The SR annotations in TACoS have some-

times a finer granularity than the sentences, i.e.

(y1i , . . . , y
li
i , . . . , y

Li
i , zi) where Li is the number of

SR annotations for sentence zi. For learning the SR we

just extract the corresponding video snippet for the SR, i.e.

(xli
i , y

li
i ). As there are no annotations at test time, there

exist no alignment problem when predicting y∗. In Sec. 3.2

we discuss several variants how to handle the different

granularity of the SR and the sentences.

3.1. Predicting a SR from visual content

In the first step we extract a SR from the visual content.

Typically different visual information is highly correlated

with each other. E.g. for cooking activities, the activity

slice is more correlated with the object carrot and tool knife
than with milk and spoon. We model these relationships

with a CRF where the visual entities are modeled as nodes

nj observing the video descriptors x as unaries. In our case

we use a fully connected graph and learn linear pairwise (p)

and unary (u) weights, using the following standard energy

formulation for the structured model:

E(n1, ..., nN ;xi) =
N∑

j=1

Eu(nj ;xi)+
∑

j∼k

Ep(nj , nk) (1)

with Eu(nj ;xi) = 〈wu
j , xi〉, where wu

j is a vector of the

size of the video representation xi and Ep(nj , nk) = wp
j,k.

We learn the model with training videos xli
i and SR la-

bels ylii = 〈n1, n2, . . . , nN 〉 using loopy belief propagation

(LBP) implemented in [25]. We model the five SR cate-

gories as nodes (N = 5), the different states are based on

the provided labels of TACoS (for samples see Table 1).

3.2. Translating from a SR to a description

Converting a SR to descriptions (SR → D) has many

similarities to translating from a source to a target language

(LS → LT ) in machine translation.

1. For SR → D we have to find the verbalization of a

label ni, e.g. HOB→stove, similar to translating a word

from LS to LT .

2. For SR → D we have to determine the ordering of the

concepts of the SR in D, which is similar to finding

the alignment between two languages.

3. In a natural description of video not necessarily all

semantic concepts are verbalized, e.g. KNIFE might

not be verbalized when we describe He cuts a carrot.
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There exists a similar problem for LS → LT , where

certain words in LS , e.g. articles, are either not repre-

sented in LT or multiple ones are combined to one.

4. The inverse problem also exist, e.g. adding function

words to the SR to form a full sentence, e.g. CUT,

CARROT→He cuts the carrots.

5. When translating LS → LT a language model of LT

is used to achieve a grammatically correct and fluent

target sentence, same for D in SR → D.

Motivated by these similarities, we propose to use estab-

lished techniques for statistical machine translation (SMT)

to learn a translation model from a parallel corpus of SRs

and descriptions. We use the widely used Moses toolkit [13]

to learn a translation model and in the following shortly lay-

out the steps taken.

First we have to build a parallel corpus. In TACoS we

encounter the problem that one sentence can be aligned to

multiple SRs, i.e. (y1i , . . . , y
Li
i , zi). However, the input for

SMT is aligned single sentences. We propose the following

variants to handle the different granularity levels of SRs and

descriptions:

All. For all SR annotations aligned to a sentence we cre-

ate a separate training example, i.e. (y1i , zi), . . . ,(yLi
i , zi).

Last. We only use the last SR as this frequently is the

most important one, which is an artifact of the recording

of the TACoS dataset, where users indicate only the ending

time of their description in the video, i.e. (yLi
i , zi).

Semantic overlap. We estimate the highest word

overlap between the sentence and the string of the SR:
|yi∩Lemma(zi)|

|yi| , where Lemma refers to lemmatizing, i.e.

reducing to base forms, e.g. took to take, knives to knife.

Sentence level prediction. While we do not have an

annotated SR for the sentence level, we can predict one SR

for each sentence, i.e. y∗i for zi. While this will be noisier

during training time it also reflects better the situation at

test time where we also have predictions at sentence level

as annotations are unavailable.

SMT expects an input string as source language ex-

pression. We convert our SR 〈ACTIVITY, TOOL, OBJECT,

SOURCE, TARGET〉 in a string by concatenating the con-

cepts using spaces as delimiters to indicate word bound-

aries, i.e. activity tool object source target, where NULL

states are converted to empty strings.

Next we use giza++ [19] to learn a word-level alignment,

i.e. in our case concepts-word alignment. This is the basis

for the phrase-based translation model learned by Moses,

which does not look at single words but tries to find multiple

words (phrases) which correspond to each other and the cor-

responding probability. Additionally a reordering model is

learned based on the training data alignment statistics [13].

To estimate the fluency of the descriptions we use

IRSTLM [6] which is based on n-gram statistics of TACoS.

The final step involves optimizing a linear model be-

tween the probabilities from the language model, phrase ta-

bles, and reordering model, as well as word, phrase, and

rule counts [13]. For this we use 10% of the training data as

a validation set. In the optimization, the BLEU@4 score is

used to compute the difference between predicted and pro-

vided reference descriptions.

For testing, we apply our translation model to the SR

y∗ predicted by the CRF for a given input video x∗. This

decoding results in the description z∗.

4. Baselines

In the following we describe baselines which are moti-

vated by related work and which fully or partially replace

our translation approach. For all these variants we use the

same setup as for our translation system, see Sec. 5.

4.1. Sentence retrieval

An alternative to generating novel descriptions is to re-

trieve the most likely sentence from a training corpus [5].

Given a test video x∗ we search for the closest training

video xi and output the sentence z∗ = zi (in case there

are several we choose the first). To measure the distance

between videos we distinguish three variants:

Raw video features. We use the L2-distance between

BoW quantized dense trajectory representations [27]. This

requires no intermediate level annotation of the data.

Attribute classifiers. While the raw video features tend

to be too noisy to compute reliable distances, it has been

shown that using the vector of attribute classifier outputs

instead of the raw video features improves similarity esti-

mates between videos [23].

CRF predictions. We use the estimated configuration

to find the most similar SR in training data using hamming

distance. This is the most similar variant to [5] which also

use a probabilistic graphical model to represent the interme-

diate representation.

4.2. NLG with N-grams

While we keep the same SR we replace the SMT pipeline

by learning a n-gram language model on the training set

of the descriptions. It predicts function words between the

content words from the SR-labels, similar to one of the ap-

proaches discussed in [15]. For the n-gram model to work

we have do manually define the following steps: 1) the or-

der of the content words has to be identical to the ones in

the target sentence; 2) for our corpus, tool and location is

frequently not verbalized, thus our model could only find

a sensible string when we reduced it to ACTIVITY and OB-

JECT; 3) to further improve performance we only use the

verb in the activity, e.g. CUT DICE→cut, and the root word

for noun phrases, e.g. PLASTIC BAG→bag.
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Node states Example states SVM LBP

ACTIVITY 66 cut dice, pour, stir, peel 58.7 60.8
TOOL 43 fork, hand, knife, towel 81.6 82.0
OBJECT 109 bread, carrot, salt, pot 32.5 33.2
SOURCE 51 fridge, plate, cup, pot 76.0 71.0

TARGET 35 counter, plate, hook 74.9 70.3

All nodes correct 18.7 21.6

Table 1: CRF nodes of our SR. SVM vs. LBP inference:

Node accuracy in % over all test sentences.

5. Evaluation: Translating video to text

We evaluate our video description approach on the

TACoS dataset [23] which contains videos with aligned SR

annotations and sentence descriptions. We use an updated

version of TACoS with a total of 18,227 video/sentence

pairs on 7,206 unique time intervals. There are 5609 inter-

mediate level annotations, which form our semantic repre-

sentation (SR) and consists of the tuple 〈ACTIVITY, TOOL,

OBJECT, SOURCE, TARGET〉.
To describe the video we use the dense trajectory fea-

tures [27] which extract trajectory information, HOG, HOF,

and MBH to form a descriptor which has shown state-of-

the art performance on many activity recognition datasets,

including the one we use [24]. As our final video descriptor

and input for the CRF we use our attribute-classifier repre-

sentation from [24] which includes both actions and objects

on top of the dense trajectory features.

We test our approach on a subset of 490 video snippet /

sentence pairs. There is no overlap in the human subjects

to the training data. The CRF and Moses are trained on the

remaining TACoS corpus, using 10% as a validation set for

parameter estimation. The attribute classifiers are trained

on the remaining videos of the MPII Cooking Composite

Activity dataset [24], which is a superset of TACoS. We

preprocess all text data by substituting gender specific iden-

tifiers with “the person” as we do not distinguish male and

female with our visual system.

We evaluate automatically using the BLEU score which

is widely used to evaluate machine translations against ref-

erence translations [21]. It computes the geometric mean of

n-gram word overlaps for n=1,. . . ,N, weighted by a brevity

penalty. While BLEU@4 (N=4) has shown to provide the

best correlation with human judgments, we also provide

BLEU@1 to comply with results reported in [16, 15]. For

manual evaluation, we follow [16] and ask 10 human sub-

jects to rate grammatical correctness (independent of video

content), correctness, and relevance (latter two independent

of grammatical correctness). Correctness rates if the sen-

tences are correct with respect to the video, and relevance

judges if the sentence describes the most salient activity and

objects. We additionally ask the judges to separately rate the

correctness of the activity, objects (tools and ingredients),

and locations described. We ask to rate on a scale from 1

to 5 with 5: perfect, 4: almost perfect, 3:70-80% good, 2:

50-70% good, 1: totally bad [16].

We present the human judges with different sentences of

our systems in a random order for each video and ask ex-

plicitly to make consistent relative judgment between dif-

ferent sentences. If needed, continuous scores (e.g. 3.5)

can be assigned. We limit our human evaluation to the best

and most discriminant approaches.

In Table 1 we evaluate our visual recognition system,

reporting accuracy over all test sentences for the different

nodes.

5.1. Results: Translating video to text

Results of the various baselines and from our translation

system are provided in Table 2 and typical sample outputs

of our approach and baseline systems are shown in Table 4.

We start by comparing the evaluation according to BLEU

scores which is available for all approaches. We first ex-

amine the baseline approaches. When retrieving the closest

sentence from the training data based on the raw video fea-

tures (first row in Table 2), we obtain BLEU@4 of 6.0%. By

replacing the raw features with the higher level representa-

tions of attribute classifier outputs and the CRF prediction

we improve to 12.0% and 13.0% @4 respectively, where the

latter one is similar to the concept presented in [5] for image

description. Modeling the language statistics with a n-gram

model to fill function words between predicted keywords of

the SR leads to a further improvement to 16% with n = 3
and a search span of up to 10 words. Other n-gram models

with smaller search span or different n perform worse.

Next we compare the baselines to our translation sys-

tem. We first notice that most variants improve over the

various baseline approaches, up to 22.1% BLEU@4. This

is a significant improvement over the best baseline achiev-

ing 16.0% which uses a 3-gram language model. From this

we can conclude two things. First, with respect to the SR,

it seems that the CRF provides a strong intermediate rep-

resentation, compared to representing the video with only

raw or attribute features. Second, using our translation ap-

proach clearly improves over sentence retrieval (+9.1%) or

a pure n-gram model (+6.1%). We note that the n-gram

model could not be applied directly to the SR, but we had to

manually select a subset of the SR and preprossess the data

(see Sec. 4.2) which can be learned from data using SMT.

Comparing our different variants it is interesting to see

that it is important how to match a SR with descriptions

during training SMT model. When a sentence is aligned to

multiple SRs, just matching all SRs to it leads to a noisy

model (11.2%). It is better to use the last SR (16.9%), or

the largest semantic overlap between a SR and training sen-

tence (18.9%). Best is training on the predictions rather

437



BLEU in % Human judgments

Approach @4 @1 Grammar Correctness Relevance

Baselines
Sentence retrieval (raw video features) 6.0 32.3

Sentence retrieval (attributes classifiers) 12.0 39.9 4.6 2.3 (3.1/2.0/2.7) 2.1

Sentence retrieval (CRF predictions) 13.0 40.0 4.6 2.8 (3.7/2.5/3.0) 2.6

CRF + N-gram generation 16.0 56.2 4.7 2.9 (3.9/2.6/2.7) 2.5

Translation (this work)

CRF + Training on annotations (All) 11.2 38.5

CRF + Training on annotations (Last) 16.9 44.5

CRF + Training on annotations (Semantic overlap) 18.9 48.1 4.6 2.9 (3.7/2.6/3.2) 2.6

CRF + Training on sentence level predictions 22.1 49.6 4.6 3.1 (3.9/2.9/3.3) 2.8

Upper Bounds
CRF + Training & test on annotation (Last) 27.7 58.2

CRF + Training & test on annotation (Semantic overlap) 34.2 66.9 4.8 4.5 (4.5/4.7/4.0) 4.1

Human descriptions 36.01 66.91 4.6 4.6 (4.6/4.7/3.7) 4.3

Table 2: Evaluating generated descriptions on TACoS video-description corpus. Human judgments from 1-5, where 5 is best.

For correctness judgments we additionally report correctness of activity, objects, and location.

than ground truth SRs (22.1%) which is impressive given

that it is learned on noisy predictions. In contrast to the

SRs based on annotations, the predictions are on sentence

intervals. This indicates that a SR on the same level of the

sentence granularity is most powerful.

To answer the question what is the limit of our SR,

we test on the ground truth SR, i.e. we model perfect vi-

sual recognition. This results in 27.7% / 34.2% for the

last/overlap variant. This is a significant improvement and

can be explained by the noisy visual predictions (see Ta-

ble 1). As an upper bound we report the BLEU score for

the human descriptions which is 36.0%1.

While BLEU is a good indicator for performance, it can-

not level with human judgments summarized in the last

three columns of Table 2. Starting with the last column

(relevance, 6th column) the two main trends suggested by

the BLEU scores are confirmed: our proposed approach us-

ing training on sentence level predictions outperforms all

baselines; and using our SR based on annotations is en-

couragingly close to human performance (4.1 vs. 4.3, on

a scale from 1 to 5, where 5 is best). The human judgments

about correctness (5th column) show scores for overall cor-

rectness (first number) followed by the scores for activities,

objects (including tools and ingredients), and location (cov-

ering source and target location, see Table 1). Again the

two main trends are confirmed. All approaches based on

CRF perform similar (2.8-2.9), only our training on sen-
tence level predictions performs higher with a average score

of 3.1 as it can recover from errors by learning typical er-

rors by the CRF during training (see also examples in Ta-

1Computed only on a 272 sentence subset where the corpus contains

more than a single reference sentence for the same video. This reduces the

number of references by one which leads to a lower BLEU score.

ble 4). It is interesting to look at the 4th column which

judges the grammatical correctness of the produced sen-

tences disregarding the visual input. Training and testing on

annotations (score 4.8) outperforms the score for human de-

scriptions (4.6), indicating that our system learned a better

language model than most human descriptions have. Our

translation system achieves the same score as human de-

scriptions. The n-gram generation receives a slightly better

score of 4.7 which is however due to the shorter sentences

produced by this model, leading to less grammatical errors.

6. Evaluation: Translating images to text
We perform a second evaluation to compare with related

work and show that our approach for video description can

also be applied for image description. For our evaluation

we choose the Pascal sentence dataset [5] which consist of

1,000 images, each paired with 5 different descriptions of

one sentence. Rather than building our own SR (SR) we

use the predictions provided by [5]

The SR consists of object-activity-scene triples which

we annotate for the training set as they are not provided.

We learn our translation approach on the training set of

triples and image descriptions. We evaluate on a subset of

323 images where there are predicted descriptions available

for both related approaches [5, 15]. We use the first pre-

dicted triple (with highest score) from [5]. [18] also predicts

sentences for this dataset but only example sentences were

available to us.

6.1. Results

We start by comparing our computed results to num-

bers reported by related work. [15] reports 15% BLEU@1
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BLEU

Approach @4 @1

Related Work
Template-based generation [15] 0.0 14.9

MRF + sentence retrieval [5] 1.1 25.6

Translation (this work)

MRF + translation 4.6 34.6

MRF + adjective extension + translation 5.2 32.7

Upper Bound
Human descriptions 15.2 56.7

Table 3: Evaluating generated descriptions on the Pascal

Sentence dataset.

for their template-based generation and 50% for human de-

scriptions. On our test subset we receive 14.9% and 56.7%,

respectively, indicating that the results on the different sub-

sets are comparable. Next we compare the two baselines

with our approach shown in Table 3. For BLEU@4 the tem-

plate approach [15] achieves 0.0 as the 4-gram precision is

0 (n-gram precision for 2- and 3-gram are very low (0.2%,

1.4%). This is not surprising as the templates produce very

different text compared to descriptions by humans.

The sentences retrieved by [5] achieve a higher

BLEU@4 of 1.1% and BLEU@1 of 25.6%. As these are

sentences produced by humans this improvement is not sur-

prising, but indicates that errors in the prediction cannot

be recovered. Using the predicted triples from [5] together

with our translation approach significantly improves perfor-

mance to 4.6% @4 and 34.6% @1. Still, we found the SR

not to be rich enough to produce good predictions. Adding

adjectives and counts from the SR predicted by [15] could

slightly increase to 5.2% @4 but decreasing to 32.7% @1.

The BLEU@4 of only 15.2% for humans indicates the diffi-

culty and diversity of the dataset. Never-the-less we outper-

form the best reported BLEU-score result on this dataset of

30% @1 by 5% (note the not identical test set) for language

model based generation or meaning representation [15]. In

this case [15] allows synonyms which our translation sys-

tem determines automatically from the training data.

7. Conclusion

Automatically describing videos with natural language

is both a compelling as well as a challenging task. This

work proposes to learn the conversion from visual content

to natural descriptions from a parallel corpus of videos and

textual descriptions rather than using rules and templates

to generate language. Our model is a two-step approach,

first learning an intermediate representation of semantic la-

bels from the video, and then translating it to natural lan-

guage adopting techniques from statistical machine transla-

tion. This allows training which part of the visual content to

verbalize and in which order. In order to form a natural de-

scription of the content as humans would give it our model

learns which words should be added although they are not

directly present in the visual content.

In an extensive experimental evaluation we show im-

provements of our approach compared to retrieval and n-

gram based sentence generation used in prior work. The im-

provements are consistent across automatic evaluation with

BLEU scores and human judgments of correctness and rel-

evance. The application of our approach to sentence de-

scriptions shows clear improvements over [15] and [5] using

BLEU sore evaluation, indicating that we produce descrip-

tions more similar to human descriptions.

To handle the different levels of granularity in the SR

compared to the description we compare different variants

of our model, showing that an estimation of the largest se-

mantic overlap between the SR and the description during

training performs best.

While we show the benefits of phrasing video description

as a translation problem, there are many possibilities to im-

prove our work. Further directions include modeling tem-

poral dependencies in both the SR and the language genera-

tion, as well as modeling the uncertainty of the visual input

explicitly in the generation process, which has similarities

to translating from uncertain speech input. This work could

be combined with approaches which automatically extract a

semantic representation from a text description, which has

recently been proposed in [22] for activities.
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