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Abstract

We consider a parametrized relaxation of the widely
adopted quadratic assignment problem (QAP) formula-
tion for minimum distortion correspondence between de-
formable shapes. In order to control the accuracy/sparsity
trade-off we introduce a weighting parameter on the com-
bination of two existing relaxations, namely spectral and
game-theoretic. This leads to the introduction of the elastic
net penalty function into shape matching problems. In com-
bination with an efficient algorithm to project onto the elas-
tic net ball, we obtain an approach for deformable shape
matching with controllable sparsity. Experiments on a stan-
dard benchmark confirm the effectiveness of the approach.

1. Introduction
Shape matching is a pervasive problem in computer

vision and arises in several different fields ranging from

robotics to medical imaging. In its most typical form, it con-

cerns the problem of determining a map f : X → Y among

two given shapes in such a way that their geometrical prop-

erties are preserved by the transformation. A particularly

challenging instance of this problem occurs when the two

shapes undergo general non-rigid deformations. As such,

matching of deformable shapes has attracted the interest

of researchers during the years and a wide variety of ap-

proaches have been proposed (see, e.g. [2] and references

therein for a recent comparison).

A prominent approach to the matching problem from

a metric perspective was introduced in [12], a concept

that was explored further in [3] with the introduction of

the GMDS framework, where the minimum distortion iso-

metric embedding of one surface onto another is explic-

itly sought. A different view on the problem stems from

the notion of uniformization space [9, 17]. Lipman and

Funkhouser [9] proposed to model deviations from isometry

by a transportation distance between corresponding points

in a canonical domain (the complex plane); the result of this

process is a “fuzzy” correspondence matrix, whose values

can be given the natural interpretation of confidence levels

attributed to each match. This idea of a fuzzy map of as-

signments is not novel, and can be traced back, for instance,

to the softassign method for graph matching [6]. In the

specific case of non-rigid shapes, fuzzy schemes are typi-

cally adopted to relax the point-to-point mappings [11, 14].

While methods based on uniformization theory are made

attractive by the low dimensionality of the embedding do-

main, they do not behave well with different kinds of de-

formations (e.g., topological changes), and are subject to

global inconsistencies in the final mapping. More recently,

Windheuser et al. [16] gave a linear programming relax-

ation to the matching problem; the method notably allows

to obtain continuous correspondences, but it is sensitive to

topological changes and, as noted by the authors, its GPU

implementation takes about 2 hours per matching.

In this paper, we consider the widely adopted quadratic

assignment problem (QAP) formulation for minimum dis-

tortion correspondence between deformable shapes. No-

table attempts at relaxing the NP-hard QAP include gradu-

ated assignment [6], spectral relaxation [8] and the more re-

cent game-theoretic approach [14]. Motivated by the obser-

vation that good accuracy often comes at the price of high

sparsity, whereas large cardinality tends to bring distorted

matches into the correspondence, we attempt to control the

accuracy/sparsity trade-off by introducing a weighting pa-

rameter on the combination of two effective relaxations,

namely the spectral and game-theoretic techniques, which

we relate to their regularizer counterparts from regression

analysis. This leads us to the introduction of the elastic net
penalty function [18] into shape matching problems.

The contributions of this paper are two-fold: First, we

provide an interpretation of the correspondence problem

from the point of view of regression analysis, yielding a nat-
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ural connection between existing approaches and well es-

tablished regularization techniques. We introduce the fam-

ily of elastic net constraints into a relaxed QAP formula-

tion, and show how previous relaxation attempts naturally

constitute special cases of our formulation. Experiments

on a standard benchmark demonstrate densifying behavior

while maintaining at the same time high accuracy of the cor-

respondence. Second, we give a solution to the projection

problem onto the new set of constraints from the viewpoint

of variable selection, giving rise to an especially simple and

efficient projection algorithm.

2. Minimum distortion correspondence
We model shapes as compact Riemannian manifolds en-

dowed with an intrinsic metric d. A point-to-point corre-

spondence between two shapes X and Y can be defined as

a binary function c : X × Y → {0, 1} satisfying the map-

ping constraints∑
x∈X

c(x, y) ≤ 1 ,
∑
y∈Y

c(x, y) ≤ 1 , (1)

for every x ∈ X and y ∈ Y . Note that these constraints en-

sure that every point in one shape has at most one corre-

sponding point in the other (and vice versa), thus allowing

the two shapes to have different size. In the following, we

will slightly abuse nomenclature and equivalently refer to

the correspondence as the respective collection of matches,

that is, the set of pairs C ⊂ X × Y for which c(x, y) �= 0.

In order to give a measure of quality to the correspon-

dence, we evaluate the distortion induced by the map-

ping as measured on the two shapes using the respec-

tive metrics dX and dY . In particular, given two matches

(x, y), (x′, y′) ∈ C, the absolute criterion

ε(x, y, x′, y′) = |dX(x, x′)− dY (y, y
′)| (2)

directly quantifies to which extent the estimated correspon-

dence deviates from isometry. Following [11, 14], we first

relax the correspondence from a discrete to a fuzzy no-

tion by letting c : X × Y → [0, 1], effectively setting off the

problem from its combinatorial nature and bringing it to a

continuous optimization domain. Further, we adopt the so

called Gromov-Wasserstein [11] family of metrics, which

give rise to a relaxed notion of proximity between shapes:

D(X,Y ) = (3)

1

2
min
C

∑
(x,y),(x′,y′)∈C

εp(x, y, x′, y′)c(x, y)c(x′, y′) .

Establishing a minimum distortion correspondence between

the two shapes amounts to finding a minimizer of the above

distance. To this end, note that the problem can be easily

recast as a relaxed QAP,

minC vec{C}TA vec{C} (4)

s.t. C1 � 1, CT1 � 1, C � 0 ,

where vec{C} is the |C|-dimensional column-stack vector

representation of the correspondence matrix C, A is a non-

negative symmetric cost matrix containing the pairwise dis-

tortion terms that appear in (3), 1 is a vector of n = |C|
ones, and � denotes element-wise inequality. Note that in

the standard QAP, function c is taken to be a binary corre-

spondence and the mapping constraints (1) hold with equal-

ity (requiring C to be a permutation matrix).

In the following, we present two existing approaches that

relax the mapping constraints in (4) to find a minimum dis-

tortion correspondence. Even though originating from dis-

tinct motivations, the two methods share a convenient inter-

pretation as partitioning problems in the space of potential

assignments. Their introduction here is useful for the con-

struction we will present in Section 3.

2.1. Spectral matching
Taking the point of view of graph clustering, [8] pro-

posed the simplified problem

minx xTAx (5)

s.t. ‖x‖22 = 1 ,

where x ≡ vec{C} ∈ Rn is the vector representation for

the correspondence. Following Rayleigh’s quotient theo-

rem, this modified QAP is minimized by the eigenvector

x� corresponding to the minimum eigenvalue of A. Note

that mapping constraints are not imposed in (5). The au-

thors follow a greedy algorithm to impose such constraints

only after a solution has been obtained. The method has a

tendency to produce matches for each point. This makes it

of limited use in real settings, where shapes may undergo

partiality deformations. Further, symmetries and structured

noise in the data (indeed a characteristic of the non-rigid

setting) may lead to unstable eigenvectors [8] and thus un-

reliable assignments. The spectral method has been applied

for non-rigid matching in [13].

The L2 relaxation to the QAP was introduced mainly be-

cause it allows to obtain a global solution to the modified

problem in closed form. Here we give another interpre-

tation of this approach as a relaxed two-way partitioning

problem [1]. Consider the set of constraints taking the form

x2
i = 1 for i = 1 . . . n; these constraints restrict the values

of xi to±1, so the problem is equivalent to finding the parti-

tioning (as “match” or “non-match”) on a set of n elements

that minimizes the total cost xTAx. Here, the coefficients

Aij can be interpreted as the cost of having elements i and

j in the same partition. Clearly, the new constraints imply∑n
i=1 x

2
i = ‖x‖22 = n; since this actually allows the xi to

take on any (small enough) real number, optimizing over

this feasible set will yield a lower bound on the optimal

value of the original partitioning problem.

2.2. Game-theoretic matching
Given the inherent difficulty to solve for a minimum dis-

tortion correspondence under general deformations, in a re-
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Figure 1. Contour plots of the L2 (circle), L1 (diamond), and elas-

tic net (in between) balls in R2. In this example we set α = 0.6.

The strength of convexity varies with α.

cent paper [14] we proposed to shift the focus to the search

of a maximal group of matches having least distortion, re-
gardless of its cardinality. To achieve this, we proposed to

optimize over the probability simplex

‖x‖1 = 1TC1 = 1 , x � 0 . (6)

The main benefits of adopting such L1-type constraint

for the matching problem arise from its convenient game-

theoretical interpretation, leading to very efficient algo-

rithms for (local) optimization and, most remarkably, in

allowing the mapping constraints to be embedded directly

into the cost matrix A. Unfortunately, the strong selectivity

demonstrated by the game-theoretic approach is hardly de-

sirable for matching problems. While existing algorithms

may be applied to densify the few obtained matches, in

practice the high spatial locality of the final correspon-

dence does not allow to properly constrain such densifica-

tion methods [17, 13].

Similarly to the L2 case, the game-theoretic approach

can be regarded as an attempt to solve a partitioning prob-

lem where the two partitions are represented by xi = 0
or 1 for i = 1 . . . n. This, in turn, corresponds to impos-

ing a bound on the “counting” norm ‖x‖0, which is re-

laxed here to the continuous sparsity-inducing counterpart∑n
i=1 |xi| = ‖x‖1 = n, with xi ≥ 0 for all i.

3. Matching with the elastic net
Both methods presented in the previous section are vir-

tually free from parameters, but their performance directly

depends on the specific definition of the distortion function

ε. It is very difficult, in practice, to give a definition for

ε that works well for any given pair of shapes. This is, in

fact, a difficulty shared by any method attempting to min-

imize (4). Ovsjanikov et al. [13] recently introduced the

notion of shape condition number. According to this no-

tion, the stability of the matching can be characterized as an

intrinsic property of the shape itself, and is related to its in-

trinsic symmetries as well as the specific choice of a metric.

In order to incorporate a somewhat elusive notion of sta-

bility into the matching process, we propose to change the

point of view by drawing an analogy between the corre-

spondence problem and model-fitting. Our goal, in this

context, is to determine a good approximation of the true

relationship between the two shapes: we seek to fit or ap-

proximate the optimal correspondence x� as closely as pos-

sible, with deviation measured in the Gromov-Wasserstein

distance, i.e., in the quadratic form xTAx. Problems of

this kind are often studied with the tools of regression anal-

ysis [1]. Here the interest shifts from finding a best fit to

analyzing the relationships among the several variables that

build up the set of potential assignments {xi}i=1...n. These

candidate matches act as predictors for the minimum distor-

tion correspondence, and can be given the interpretation of

explanatory variables which we observe, while we seek to

find the combination that best describes the data in the mini-

mal distortion sense. Since in general these variables hold a

certain degree of correlation among them, it is of particular

interest to attempt to determine whole groups of highly cor-

related predictors, as they will likely form consistent groups

of matches in terms of the adopted measure of distortion.

In this view, spectral matching can be directly related

to ridge regression, whose L2 penalty is known to generally

improve conditioning of the problem, yet always keeping all

the predictors in the model. Similarly, the game-theoretic

technique finds its equivalent in the lasso, the sparsity-

inducing L1 regularizer performing continuous shrinkage

and automatic variable selection simultaneously [1, 18]; one

major limitation of the lasso is its tendency to select only

one variable from a group of variables among which the

pairwise correlations are very high. While none of the two

methods dominates the other in all circumstances, both have

appealing features. Our aim is to strike a balance between

the two. To this end, we adopt a family of constraints known

as elastic net [18]. This regularization technique shares with

the lasso the ideal property of performing automatic vari-

able selection, and most notably it is able to select entire

groups of highly correlated variables. The elastic net cri-

terion is defined as a convex combination of the lasso and

ridge penalties:

(1− α)‖x‖1 + α‖x‖22 , α ∈ [0, 1] . (7)

It becomes ridge regression for α = 1, and the lasso for

α = 0. This penalty function is singular at 0 and strictly
convex (differently from the lasso) for α > 0, thus possess-

ing the characteristics of both penalties (see Fig. 1).

Strict convexity plays an important role as it guaran-

tees the grouping effect in the extreme situation with iden-

tical predictors (that is, whenever the distortion between

two matches is exactly 0), and provides a quantitative de-

scription of their degree of correlation (proportional in

our case to the deviation from isometry) otherwise. Let

x ∈ R|C| be the vector representation of some correspon-

dence C ⊂ X × Y , we expect the elastic net-penalized so-
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lution to keep the difference |xi − xj | small whenever the

metric distortion ε(Ci, Cj) between the two matches is

small. The trade-off between size of the correspondence

and matching error is regulated by the convexity parameter

α, which allows to fine tune the model complexity and bal-

ance the action of the penalty ranging from the highly selec-

tive pure lasso for α = 0 to the more tolerant ridge behavior

for α = 1. This leads to the following family of relaxations

for the QAP:

min
x

xTAx (8)

s.t. (1− α)‖x‖1 + α‖x‖22 = 1, x � 0 ,

with α ∈ [0, 1]. The family directly generalizes the spectral

and game-theoretic techniques. Similarly to the spectral ap-

proach, this formulation does not guarantee the final solu-

tion to represent a bijective mapping, which can neverthe-

less be efficiently obtained a posteriori using, for instance,

the same greedy technique of [8]. Note that this final step is

only performed to emphasize the generalization property of

our formulation, as it will transition smoothly from a sparse

behavior equivalent to [14] to one similar to [8].

3.1. Optimization
We undertake a projected gradient approach [1] to deter-

mine a local optimum for problem (8). The optimization

process is governed by the equations

x(t+1) = Π
(
x(t) − γ(t)Ax(t)

)
, (9)

where Ax = 1
2∇xTAx is a descent direction for the ob-

jective, γ > 0 is the step length taken in that direction,

and Π : Rn → Rn is a projection operator taking a solution

back onto the feasible set.

While efficient methods for projecting onto the L2 and

L1 balls have been proposed in literature [15], projection

onto their convex combination is a more involved task. A

detailed explanation of our approach on the computation of

Π is deferred to the next Section; nevertheless, we antic-

ipate here that this projection step can be performed in a

very efficient manner. This allows us to determine the op-

timal step size in (9) at each iteration by performing exact

line search [1] along the ray {x+ γAx : γ ≥ 0} through

the application of Newton’s method [1], a quadratic fitting

algorithm having order two convergence.

Finally, we initialize x(0) to the barycenter of the elastic

net boundary, i.e., for all i = 1 . . . n we set xi to the positive

solution of the quadratic equation αnx2+(1−α)nx−1 = 0.

3.2. Projection onto the elastic net ball
Computing the Euclidean projection Π(x0) onto the

(positive) elastic net ball boundary amounts to solving the

following projection problem

minx ‖x− x0‖22 (10)

s.t. (1− α)1Tx+ αxTx = t, x � 0 ,

with α ∈ [0, 1]. Efficient attempts at solving this problem

arose only recently [10, 7]. Gong et al. [7] formulate the

minimization as a root finding problem for a piecewise con-

tinuous function. While the method allows to obtain a so-

lution in linear time, the procedure is highly susceptible to

numerical errors; these errors are exacerbated when the di-

mension of the projected vector is high, severely limiting

the applicability of the method in several practical settings.

Further, the approach draws its major benefits from sparse

projected vectors. However, in sparse matching problems

vectors tend to be dense, and in this situation the method

does not perform as efficiently. Mairal et al. [10] propose a

linear time projection algorithm based on randomized me-

dian search; the algorithm is numerically stable, but it is

outperformed by root finding for low dimensions [7].

One major disadvantage of the existing methods lies in

their inherently sequential nature. With the advancement

of computational technologies and the applications they en-

able, it has become necessary to provide algorithms that

exploit this computational power and scale up with the in-

creased dimensionality of real-world problems. Both meth-

ods presented above are unable to address the need. To this

end, we take a different point of view and regard the projec-

tion problem as one of coordinate selection. Our method is

not susceptible to numerical errors, it is at least as efficient

as existing methods in its basic form and, most importantly,

it easily lends itself to a parallel implementation.

It is immediate to see that the solution to (10) lies in

the intersection of two convex sets: a sphere of equation

(1 − α)1Tx + αxTx = t (which we denote by C1), and

the non-negative cone (C2). Projection onto the intersection

of convex sets has been extensively studied in the past; of

particular relevance is a result which can be traced back to

Dykstra [5], an iterative technique usually referred to as the

method of alternating projections.

We determine a closed form projection onto C1 as fol-

lows. Disregarding the non-negativity constraints and in-

troducing Lagrange multiplier λ ∈ R, we obtain the La-

grangian associated to problem (10)

L(x, λ) = ‖x− x0‖22 + λ
[
(1−α)1Tx+ αxTx− t

]
. (11)

The KKT optimality conditions require that the gradient of

L(x, λ) with respect to x vanish at the optimum, i.e.,

∇xL(x, λ) = 2(1 + λα)x− 2x0 + λ(1− α)1 = 0, (12)

from which we obtain the optimal x as

x =
x0 − λ 1−α

2 1

1 + λα
. (13)

Determining the optimal value for λ is straightforward; im-

posing the elastic net constraints on x, it must hold

α
n∑

i=1

(
x0i − λ 1−α

2

1 + λα

)2

+(1− α)
n∑

i=1

x0i − λ 1−α
2

1 + λα
= t. (14)
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Figure 2. Example of matchings obtained with the game-theoretic, elastic net and spectral techniques. The set of potential assignments is

constructed by taking ∼200 farthest points on one shape (shown in the left image for reference), and then building the whole Cartesian

product with the correct corresponding points from the other shape, after 45% of them have been moved to random positions over the

surface. This setup simulates a moderately challenging scenario in which only ∼50% of the shape is matchable with low distortion, and

the feasible set comprises all possible assignments between the two shapes. The game-theoretic (L1) solution is highly selective and only

assigns 3% of the shape samples, with geodesic error 3.12 (left image); in contrast, the spectral (L2) approach favors dense solutions and

yields matches for 93% of the points, with total error 62.53 (right image). Elastic net matching (middle) allows to regulate the trade-off

between size and distortion: the correspondence is made more dense, and 53% of the points are matched while keeping the error at 15.87

(compare with Table 1). Here we set α = 0.85.

From this we obtain a quadratic equation in λ; substituting

the λ obtained into Eq. (13) we get the desired projection.

Projection onto the constraint set C1 ∩ C2 from prob-

lem (10) can be obtained in an iterative manner according to

the alternating projections scheme; however, the method of

alternated projections is mainly of theoretical importance,

while empirical evidence often reveals slow convergence

rate and poor scalability. In the following we present a novel

iterative approach, in which the original minimum-distance

problem is modified with the introduction of a selection

term on the optimization variables; the proposed formula-

tion is rather general, and as such it provides a heuristic to

a broader class of projection problems.

Let e ∈ {0, 1}n be an indicator vector used to select in-

active coordinates for C2; consider the minimization prob-

lem

minx,e ‖(x− x0) ◦ e‖22 (15)

s.t. (1− α)xT e+ α(x ◦ e)T (x ◦ e) = t

e ∈ {0, 1}n,

where ◦ denotes the Hadamard product among two vectors.

Note that problems (10) and (15) are equivalent, since they

have the same minimizers; however, the addition of the in-

dicator variable allows us to devise an iterative procedure

which converges efficiently to the global optimum.

Let us assume we are given an initial guess for vector e,

for instance e
(0)
i = 1 for all i = 1 . . . n. Ruling out e from

the optimization variables, and following similar deriva-

tions as in Eq. (11)-(13), we get the solution

x =
x̄0 − λ(e) 1−α

2 e

1 + λ(e)α
, (16)

where x̄0 = x0 ◦ e, and λ is obtained in a similar manner to

Eq. (14) by solving the resulting quadratic equation:

c− bλ− α

2
bλ2 = 0 , with (17)

c ≡ (1− α)xT
0 e+ α(x0 ◦ e)T (x0 ◦ e)− t ,

b ≡ eT e

2
(1− α)2 + 2tα .

Eq. (17) always admits two real solutions, only one of which

gives the correct projection (we omit the complete deriva-

tions for space reasons).

Note that no positivity constraints are imposed on this

solution. The key step now consists in deselecting those co-

ordinates getting a non-positive value after an unconstrained

projection takes place: this gives us a rule for updating the

indicator vector in such a way that projecting again with

the new e will directly put those variables to zero. This

leads to an iterative scheme which converges to the unique

minimum-distance projection.

Lemma 1. Let x(0) = x0, and e(0) = 1 (a vector of n
ones). Then projection problem (10) is minimized by ap-
plication of the iterative rules

x(t+1) =
x(0) − λ(e(t)) 1−α

2 e(t)

1 + λ(e(t))α
(18)

e
(t+1)
i =

{
0 if x

(t+1)
i ≤ 0

e
(t)
i otherwise,

, (19)

where λ(e(t)) is a positive solution to the second order
equation (17).

The process terminates when it reaches the fixed point

e(t+1) = e(t) (equivalently when x(t+1) � 0).
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Figure 3. Precision/recall graphs for α ranging over [0, 1], computed with tolerance radii r = 1 (shape matching) and r = 10 (shape

retrieval). On the right, a scatter plot of error vs number of matches over the whole dataset. Color encodes the value of α.

Sketch of proof. In [15] it is shown that the L1 projection

is monotonic, i.e.,

x0i > x0j ⇒ xi = 0→ xj = 0 . (20)

Using an analogous derivation we can show that the same

holds for the elastic net projection. Further, projection (16)

is also monotonic in the active selected coordinates, i.e.,

those for which ei = 1. Due to this monotonicity of the

projection the entries of e are eliminated in coordinate rank

order, thus the algorithm never eliminates a coordinate that

has a non-zero value in the optimal projection and con-

verges in at most k steps, where k is the number of zero

entries in the final vector.

3.3. Performance of the projection
We compared the projection time against other projec-

tion methods onto the elastic net, namely piecewise root

finding [7], randomized median finding [10], our method

(coordinate selection), and its parallel version. The parallel

version was obtained compiling the code with OpenMP and

using 8 cores on an Intel Core i7. For these comparisons, we

generated random vectors of varying size and ran each pro-

jection method on the same input. The experiment was re-

peated 100 times per size, and projection times accumulated

and plotted for each method. Fig. 4 show a logarithmic-

scale plot of the measured times. While all methods demon-

strate linear complexity, we observed that the root finding

method produced suboptimal solutions for sizes larger than

104. The coordinate selection approach converged up to 4

times faster than previous methods in its single-core imple-

mentation, and two orders of magnitude faster in its parallel

version, showing the almost linear speedup with the number

��� ��� ��� ��� ��� ��� ���
��	�

��	�

��	�

���

���

Figure 4. Comparison of projection methods for the elastic net.

of cores due to the intrinsically parallel nature of the algo-

rithm. Arguably we can expect even faster speedup with a

GPU implementation.

4. Experimental results
We performed a wide range of experiments on the

SHREC’10 standard dataset [2]. The dataset consists of 3

models of varying resolution (10K-50K points) undergoing

9 different types of deformation (listed in Table 1), each ap-

pearing in 5 intensity levels. We measure the matching er-

ror of a correspondence C ⊂ X × Y as its average geodesic

distance from the ground-truth Cg , taking into account pos-

sible intrinsic symmetries, as in [2]:

D(C,Cg) =
1

|C|min

⎧⎨
⎩
|C|∑
k=1

dX(xk, x
′
k),

|C|∑
k=1

dX(xk, x
′′
k)

⎫⎬
⎭ ,

where dX is the geodesic metric on X and x′k, x
′′
k are the di-

rect and symmetric ground-truth positions of point xk ∈ X .

In order to make the computational task more tractable,

only a limited number of samples (m = 1000 in our experi-

ments) are considered from one shape, and then potential

matches are built with the 5 closest points (in descriptor

space) in the other. The descriptor adopted for this step is

the scale invariant HKS [4]. Samples are generated via far-

thest point sampling (FPS) [12, 11] using the extrinsic Eu-

clidean metric, since it gives for large m a good and efficient

approximation to the intrinsic measures while being more

robust to topological and partiality deformations. Fig. 2

(left) shows an example of FPS with m = 190. We em-

phasize that this step is performed to simplify computations

without sacrificing precision, and the goal is not to perform

feature detection for finding repeatable interest points. Note

also that in the matching process only one of the two shapes

is subsampled, while we keep all points in the other.

Finally, for the distortion terms εp in (3) we set p = 2,

and adopt for dX , dY the multi-scale diffusion metrics

of [14], using time scales (27, . . . , 216).

4.1. Trade-off analysis
Elastic net matching can be seen as an instance of mul-

ticriterion optimization, in which we wish to maximize the

size of the correspondence while simultaneously bringing
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Transform. 1 ≤2 ≤3 ≤4 ≤5 1 ≤2 ≤3 ≤4 ≤5
Isometry 8.55 4.11 4.90 6.40 14.06 18.25/212 22.04/149 14.42/212 7.25/210 18.50/76
Topology 5.97 9.22 2.88 5.62 8.58 19.18/313 18.91/321 19.44/117 18.44/173 17.33/99
Holes 7.51 14.03 6.50 25.85 8.75 19.64/197 17.68/278 14.99/62 17.46/31 6.69/10
Micro holes 4.06 8.63 11.36 13.66 2.98 19.35/193 16.65/367 17.50/170 17.48/183 9.96/65
Scale 4.70 2.40 1.67 4.49 3.34 4.23/6 17.72/200 1.33/10 3.38/9 2.62/5
Local scale 6.54 10.89 3.47 59.16 3.69 19.86/178 17.42/302 19.12/178 55.18/19 11.19/45
Sampling 10.31 9.00 6.39 9.36 8.28 16.05/211 16.83/374 18.63/166 14.93/164 17.27/38
Noise 11.20 8.62 53.99 54.96 5.70 15.31/54 12.72/218 54.03/9 69.33/327 4.84/4
Shot noise 7.36 10.66 3.20 15.95 3.25 16.28/136 18.01/380 16.05/81 15.95/64 13.95/54
Average 7.36 8.62 10.49 21.72 6.51 16.46/167 17.55/288 19.50/112 24.38/131 11.37/44

Table 1. First table: Matching results obtained with α = 0.65. Average number of corresponding points is 50. Values in bold indicate

better performance than both GMDS and the (reiterated) game-theoretic method for the same number of matches. Second table: Matching

results (error/matches) obtained by selecting for each case the value of α giving the largest possible error below 20.

the matching distortion to zero. In most cases, it is very

difficult to satisfy these competing criteria exactly. Fig. 2

presents an example in which the correct matches have a

very small inlier ratio with respect to the set of candidates

(a full Cartesian product in this case). In this matching

scenario, our method provides a means to select only high-

precision correspondences in a situation where there is huge

ambiguity in most correspondences. In this view, we might

naturally ask how much we must pay in terms of distortion

in order to obtain an increase in the number of matches.

Solutions expressing this trade-off are called Pareto opti-

mal [1], and can be visualized as points in a plane whose di-

mensions correspond to the two scalar objectives. In Fig. 3

(right) we plot each shape-to-shape correspondence over the

whole dataset as a point in this plane; for each matching

instance, we vary the convexity coefficient α from 0 to 1

(shown by color). The figure suggests that this parameter

allows to regulate the compromise between the two criteria,

while maintaining a comparable error variance (note that

the plot is in log-log scale so we expect an expansion at the

lower end of the scale for a fixed variance).

Fig. 5 plots per-class Pareto curves, averaged over all

strengths and models. Each curve consists of 21 points,

corresponding to as many equally spaced values for α; in

particular, the endpoints correspond to the game-theoretic

(α = 0) and spectral (α = 1) solutions. In most cases, there

is a point of large curvature where a small increase in the

number of matches can only be accomplished by a large in-

crease in matching error. This is the proverbial “knee” of

the trade-off curve [1], and can be taken as a good compro-

mise solution; it will correspond, in general, to a different

value of α for each shape, which is indeed consistent with

the idea of shape condition number (Section 3). The same

figure reveals another interesting picture. First, the small

loops appearing in the plot indicate that matches could actu-

ally be “lost” as α is pushed from 0 to 1; this fact is justified

by the presence of rather challenging shapes in the dataset

(and the specific choice of the intrinsic metric), which ren-

der the Gromov-Wasserstein distance unstable, thus leading

to different local optima as the set of constraints is modi-

fied slightly. Second, it is evident that smaller values of α
do not necessarily lead to better solutions in terms of met-

ric distortion; in particular, the game-theoretic solution will

not always be the best choice, even when a sparse solution

is being sought. This particular point is also made clearer in

Fig. 3 (see the first samples of the first two graphs).

Table 1 (last five columns) reports the results of our

method on the whole dataset, averaged over the 3 mod-

els. The reported values are geodesic error and number of

matches. The aim of this table is not to compare against

other methods, but rather to show that elastic net regulariza-

tion allows to obtain denser correspondences while main-

taining a small distortion; thus, in this case, the value for

α is selected on a per-case basis as the one keeping the er-

ror in line with the state of the art on the same dataset [2].

In particular, this choice gives on average ∼4 times more

matches than GMDS, and ∼20 times more than sparse ap-

proaches with the same error.

Finally, Fig. 3 shows precision-recall graphs as α is var-

ied in [0, 1]. The five curves correspond to different defor-

mation strengths, averaged over all models and deforma-

tions. A match is defined as true positive if it lies within a

geodesic radius of r = 1 from the ground-truth; likewise, a

Figure 5. Error versus number of matches, for α varying in [0, 1].
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false positive is a match with error larger than r, and false

negatives are low-error matches in the candidate set which

were not included in the final solution. Note that the small

recall we obtain in both graphs does not contradict the fact

that for large α we should obtain dense correspondences,

as it is due to a filtering step we perform on those matches

having a very small value for xi (below 10% of the median).

4.2. Comparisons
The adoption of a standard dataset allows us to compare

our method directly with other state of the art techniques.

Table 1 (first five columns) shows comparisons for the en-

tire dataset averaged over the 3 models, following the same

format of previous reports [2, 14]. Since we are able to

regulate the size of the final correspondence, we fix the fi-

nal number of matches to 50 (allowing us to compare di-

rectly with methods giving the same number of matches)

and determine the (unique) corresponding value of α yield-

ing, on average, the fixed number of matches over the whole

dataset. The entries in bold represent values that are better

than what is reported in the literature for similar number of

correspondences. We can see that the proposed approach is

in line and exceeds, on average, the state of the art.

In all our experiments we observed 30-100 gradient de-

scent iterations per matching, choosing as stopping criterion

the relative change in the objective value. This amounted

to ∼30 seconds per matching on average, with most of

the variance due to the specific value used for α. In fact,

since for small values it yields sparser solutions, the pro-

jection step needs more iterations to converge. For a vec-

tor of 10,000 elements, we need on average 8 iterations

with α = 0.01, and 2 iterations with α = 0.99. As a ref-

erence, the method of alternating projections for the same

vector takes up to 1800 iterations to reach a solution. Fi-

nally, adopting the parallel version of the projection algo-

rithm into the optimization process lowered the overall con-

vergence time to ∼5 seconds per matching.

5. Conclusions
In this paper, we proposed the adoption of the elastic net

family of constraints as regularizers for the quadratic as-

signment problem, which frequently arises in deformable

shape matching problems. The approach naturally gener-

alizes existing techniques. It allows to regulate the relative

contribution of distortion and size of the correspondence via

a single convexity parameter. We provided an efficient and

provably optimal solution to the projection problem onto

the new set of constraints, and demonstrated on a stan-

dard benchmark how the method allows to obtain sparse-

to-dense solutions with an accuracy at least as good as the

state of the art.
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