
Discriminatively Trained Templates for 3D Object Detection:
A Real Time Scalable Approach

Reyes Rios-Cabreraa,b
aCINVESTAV, Robotics and Advanced Manufacturing

Av. Industria Metalurgica 1062
Ramos Arizpe, 25900, Mexico
reyes.rios@cinvestav.edu.mx

Tinne Tuytelaarsb
bKU Leuven, ESAT-PSI-VISICS, iMinds

Kasteelpark Arenberg 10
Leuven, B-3001, Belgium

tinne.tuytelaars@esat.kuleuven.be

Abstract

In this paper we propose a new method for detecting
multiple specific 3D objects in real time. We start from the
template-based approach based on the LINE2D/LINEMOD
representation introduced recently by Hinterstoisser et al.,
yet extend it in two ways. First, we propose to learn the tem-
plates in a discriminative fashion. We show that this can be
done online during the collection of the example images, in
just a few milliseconds, and has a big impact on the accu-
racy of the detector. Second, we propose a scheme based on
cascades that speeds up detection.

Since detection of an object is fast, new objects can be
added with very low cost, making our approach scale well.
In our experiments, we easily handle 10-30 3D objects at
frame rates above 10fps using a single CPU core. We out-
perform the state-of-the-art both in terms of speed as well
as in terms of accuracy, as validated on 3 different datasets.
This holds both when using monocular color images (with
LINE2D) and when using RGBD images (with LINEMOD).
Moreover, we propose a challenging new dataset made of 12
objects, for future competing methods on monocular color
images.

1. Introduction

Recognition of specific objects, when compared to

category-level recognition, may look like an easy task.

However, methods are expected to be more efficient (de-

tecting multiple objects in realtime) and more accurate (less

false positives/false negatives, as well as more precise lo-

calization and pose estimation). Both are relevant e.g. in a

robotic context. In general, methods in the literature can be

split in local feature based methods, that work well on tex-

tured objects, and template-based methods, that work well

on texture-poor objects. Here we follow the latter line of

research, building on the work of Hinterstoisser et al. [5].

Figure 1. 1st row: our approach on heavily cluttered images (our

dataset). 2nd row: it is running at 14fps detecting 30 objects si-

multaneously (dataset of [2]). 3rd row: our approach detecting

objects’ 3D pose (the rotation of each axis is shown in yellow,

green and red for the middle object)(dataset of [7]).

Template matching traditionally has been a popular

method in manufacturing environments, where occlusions

and clutter can mostly be avoided and lighting and pose

variations can be carefully controlled, although it has also

been applied in more challenging settings such as, e.g.,

pedestrian detection [4]. The main advantages of template

matching are that it can be implemented efficiently and that

it works well also for objects with few discriminating fea-

tures that are dominantly determined based on their overall

shape. While initially applied mostly in a relatively clean

2D setting, it has been shown that, by using multiple tem-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.256

2048

plates and robust representations, it can also be very suc-

cessful for detecting 3D objects in more uncontrolled sce-

narios [5, 7]. Additionally, the use of templates also al-

lows to transfer efficiently and accurately metadata that has

been provided in an offline phase for the example images, to

the object in the test image once it has been detected. This

could be useful to indicate, e.g., possible grasping points or

other anchor points to guide robot manipulation.

Current template based methods use greedy or heuristic

approaches to learn the templates [2, 5, 6, 7, 13], which

often produce suboptimal results. They cannot scale eas-

ily [5, 6, 7, 13] or are not fast enough [13], or cannot handle

heavy clutter [2]. In this paper we propose to combine tech-

niques that are usually used for offline learning methods,

with techniques used in online learning ones, to overcome

these limitations.

In particular, we build on the work of

LINE2D/LINEMOD [5], yet extend it in several directions,

applying ideas that have proven useful for category-level

recognition to the setting of specific objects: adding a

discriminative learning phase for better performance and

adding a cascade for better efficiency. Discriminative

learning is standard for category-level recognition, but not

often used for specific objects – probably because i) it’s

often assumed all appearance changes can be modeled

mathematically (e.g. modeling viewpoint changes with

affine transformations), and ii) people usually target online

schemes. Regarding the former argument, this only holds

under certain restricting assumptions (e.g. planar or

symmetric objects) or when a 3D model of the object is

available - which usually is not the case. Starting from

example images, this usually means that a large number of

templates is needed, each of them covering only a small

range of viewpoints or viewing conditions. Regarding

the latter, the main idea is that one wants a fast system

able to learn by simply showing it images of the object to

be detected and discriminative learning is not a straight

forward step because of lack of intraclass features. Here,

we show that learning in a discriminative fashion what is

really characteristic for the object at hand vs. what can

easily be confused with other objects/background, has a

strong impact on recognition performance. We also show

that learning time can be kept low – in fact neglectable

compared to the time needed to collect images of the

object. We add three types of discriminative learning: 1)

learning each template discriminatively, focusing on what

is characteristic (we refer to this as DTT: Discriminatively

Trained Templates), 2) using a boosting-scheme to learn

weights for the different templates and how to combine

their scores – in this step, we also create a cascade that

speeds up the detection, and 3) tuning each template in

terms of the number of non-zero bits. With these last

two improvements added we refer to our method as DTT-

OPT (DTT Optimized). Figure 1 shows some example

detections obtained with our method.

This combination of online methods with learning based

methods for specific object detection is our main contribu-

tion. Hinterstoisser et al. [5] and Damen et al. [2] explain

the advantage of having an online learning system without

the need of costly optimization. Another argument is that

they do not need a training dataset, a step that requires ex-

tensive manual labeling. But why not optimize the tem-

plates obtained via the online learning ? This way we can

get significant improvement in terms of accuracy and speed.

Here we demonstrate how to accomplish that.

2. Related Work
The detection of instances of a specific object was not ad-

dressed for a while, since it was considered an easier prob-

lem (compared to category-level object detection), and tra-

ditional methods such as [1, 8, 11] seemed to work well as

long as the objects have enough texture. However, in fields

like robotics where a robot has to handle texture-poor ob-

jects and localize them in real-time, including their orien-

tation, with high accuracy, and possibly their contours and

segmentation, those traditional methods do not work well.

Texture-poor Object Detection: Addressing this issue,

recently several new methods have been proposed for de-

tection of 3D texture-poor objects. Hinterstoisser et al. [6]

propose a method coined DOT (Dominant Orientation Tem-

plates). The method does not require a time consuming

training stage, and can handle untextured objects. It is

designed to be robust to small image transformations by

spreading gradient orientations on a regular grid. Using bi-

nary operations, evaluation of the templates is very fast. An-

other advantage of the DOT detector, is that the Hamming

distance between templates can be used to create clusters

grouped by OR’ing similar templates. This allows for ef-

ficient branch and bound. However, the method becomes

slow when handling several objects at the same time, and it

is not template size invariant.

In [13], Steger proposed a method for object recogni-

tion aimed for industrial inspection. This method matches a

2D model of an object to an input test image and is able to

recognize objects under similarity transformations at video

rate (even back in 2002 when it was first proposed) by us-

ing a similarity measure that is inherently robust against oc-

clusion, clutter, and nonlinear illumination changes. How-

ever, when using thousands of templates, as needed for 3D

objects or when detecting multiple objects, its speed de-

creases, as demonstrated in [5], where it was compared to

the LINE2D detector and was shown to be 100 times slower

even when using already 4 pyramid levels for speeding up.

As DOT, the LINE2D method of [5] does not require

a time consuming training stage and can handle untextured

2049

objects. It is also based on dominant gradient orientations, it

is robust to small image transformations and very robust to

strong clutter. This is the type of templates that we mainly

build on in this work (although the main idea can also be ap-

plied to other types of templates, e.g. DOT). Additionally,

the authors of [5] show how to combine color images with

a dense depth sensor, if available, by taking 3D surface nor-

mal orientations into account. That variation of the method

is called LINEMOD, and we also perform experiments with

it in this paper.

LINE2D shows a much higher accuracy than DOT. How-

ever it is also slower and, as DOT, it is not scalable for de-

tection of many objects simultaneously. In [5], it was shown

that LINE2D reduces greatly the false positive rate, having

very few per image in spite of heavy clutter. However, the

evaluation criterion used in this study was not very strict, as

we discuss later in section 5.

Recently, a method based on LINEMOD [5] for the auto-

matic modeling, detection, and tracking of 3D objects with

RGBD (Red, Green, Blue plus Depth) sensors was proposed

in [7] . They demonstrate how to build templates from 3D

models, and how to estimate the 6 degrees-of-freedom pose

accurately and in real-time. They use pose estimation and

color information to check the detection hypotheses as a

post-processing step. That improves the correct detection

rate by 13% with respect to the original LINEMOD. The

method achieves very accurate results. However, if we in-

tend to handle the 15 objects it proposes simultaneously,

the detection speed again falls to 0.72 fps using 2 cores.

Another drawback is the need for a 3D model to train.

Recently, Damen et al. [2] presented a method for learn-

ing and detecting multiple texture-less 3D objects. The

method they propose is able to run in real time, and was

designed for video input. It is also scalable by implement-

ing tractable extraction of edgelet constellations and using

a library lookup based on rotation and scale-invariant de-

scriptors. In their test setup, they evaluate multi-object de-

tection on a 30 objects dataset showing detections in the

order of milliseconds. They show how their method can

scale keeping a high frame rate performance. However,

their testing dataset has very small amounts of clutter. In

their testing, they evaluate using the 50% intersection over

union criterion, which we consider not precise enough for

template matching methods. This approach has the ad-

vantage that it does not need to train all views or sizes as

DOT/LINE2D/LINEMOD do. It can also handle many ob-

jects at the same time. It’s the only method that can han-

dle 5 objects or more simultaneously and still run at several

frames per second. However the approaches based on ori-

ented gradients are much more discriminant and can han-

dle much higher amounts of background clutter. Moreover,

even though the edgelets method runs in real time, it suffers

an increase of testing time by 10 folds, when ambiguous

objects are included.

Learning Based Methods: The literature of learning

based methods is very wide and falls largely outside the

scope of this paper. An example of such methods, trained

to handle templates and metadata transfer, was proposed re-

cently by Malisiewicz [9]. The method combines multiple

SVMs, one per training sample. However, it is extremely

slow and therefore not usable in a robotics context. Only re-

cently [14] proposed an efficient template learning scheme,

albeit in a different context (finegrained classification).

In [12], a method for learning an efficient multiview

category-level object detector based on DOT [6] was pro-

posed. To this end, the authors propose to first cluster the

training examples using HOG, then generate a DOT tem-

plate for each training example and learn a mask for it based

on a linear SVM, so as to remove background noise while at

the same time keeping the relevant context information. The

different templates are then combined into a strong classi-

fier using boosting. They also experiment with meta-data

transfer. Here, we build on this work, using the same ideas

of applying a linear SVM to discriminatively train the tem-

plates and using boosting to combine multiple templates

into a cascade structure. However, we build on LINE2D

instead of DOT. More importantly, we focus on specific ob-

ject detection instead of category-level detection. While the

high-level ideas are similar, the way they are employed for

these different tasks are completely different.

Considering the analysis above, we can conclude that all

methods have their own disadvantages. In the problem of

specific object detection there is still room for improvement

in terms of both speed, scalability and accuracy.

3. Background and notations
The LINE2D/LINEMOD method binarizes gradient ori-

entations into a byte. It selects gradients based on their mag-

nitudes. However, the location of each gradient is taken into

account to avoid the problem of accumulating many gradi-

ent orientations in a local area. In order to binarize the gra-

dient orientations, it defines a range from [0 − 180◦] and it

uses steps of 180◦/8 = 22.5◦ to define the bit position it

belongs to. For example an orientation of 44◦ would result

into [0000 0010]. See [5] for a complete reference.

Then during testing only bitwise operations are used.

This speeds up detection.

A model or template T can then be defined as a pair

T = (O,P), where O is a reference image of the object

to detect, and P specifies a region in O. The template can

then be compared with a region at location c in a test image

I based on the similarity measure proposed by Steger [13]:

εs(I, T , c) =
∑
r∈P

| cos(ori(O, r)− ori(I, c+ r))| (1)

2050

where ori(O, r) and ori(I, c + r) are the gradient orienta-

tions at location r in O and c+ r in I respectively. In [5],

a variant of this measure is proposed, using the maximum

over a small neighbourhood:

ε(I, T , c) =
∑
r∈P

(
max

t∈R(c+r)
| cos(ori(O, r)− ori(I, t))|

)
(2)

By finding the maximum, gradients in the template and test

image get better aligned.

As in [12], we convert binary templates into weak clas-

sifiers. We define a weak classifier�t(I) based on template

Tt that classifies input image windows I = (I, c)
as:

�t(I) =

{
+1 if ε(I, Tt, c) ≥ τt
−1 otherwise

(3)

Based on the binary response of �t(I) for a pool of tem-

plates Tt, we then build a strong classifier H(I):

H(I) = sign

(
T0∑
t=1

αt�t(I)

)
(4)

H(I) builds on T0 templates selected by AdaBoost.

Weights αt and thresholds τt (used in �t(I)) are set au-

tomatically for each template using the standard AdaBoost

procedure.

4. Description of Our Method
In our proposal we try to reconcile the advantages of tra-

ditional offline learning-based methods that use big anno-

tated datasets with the advantages of online learning meth-

ods. To this end, we follow 3 main steps: i) we propose

to use a small validation set constructed from negative im-

ages. Since acquiring a set of negative images is not costly

at all, we use one to learn better templates with a linear

SVM, building on the method of [12]. ii) Then we create a

cascaded version to further speed up the detection process.

iii) Finally, we further tune each template using the negative

samples, i.e. we decide which bits should be kept, and how

many of them, starting from the weights learnt by the linear

SVM. Contrary to the template based methods of [5, 6, 7],

we tune each of the templates separately because using the

same parameters (number of regions) for every single tem-

plate is suboptimal. Each of these steps is described in the

sections below. We show how to optimize them quickly,

keeping online learning speeds.

4.1. DTT: Discriminatively Trained Templates

Inspired by [12], we propose to learn the most impor-

tant elements of a template by using the weights of a linear

SVM. We emphasize the fact that once we have learned the

weights, we binarize the values so we can directly use it as

a template. This is done before learning a cascade struc-

ture to further speed up (see section 4.2). Hence using the

SVM for training does not take extra time during testing, as

shown in [12]. In [10] it was shown experimentally that fea-

ture selection using weights from linear SVMs yields bet-

ter classification performance than other feature weighting

methods. A Support Vector Machine trains a linear classi-

fier of the form sgn(wTx + b). Learning is addressed as

an optimization problem with the goal of maximizing the

margin, i.e., the distance between the separating hyperplane

wTx+b = 0 and the nearest training vectors. We use of the

weights of a linear classifier to discriminate which regions

of the templates are most important to compare with a test

sample, and which are actually damaging the performance.

The elements of the weights vector w that are negative

are considered to be damaging the template performance,

since those were generated mainly by support vectors from

the negatives. We use a threshold on the elements of w so as

to select only those elements that contribute most positively

to the object detection.

Training the Templates We use a precomputed set of

10,000 negative samples, from 100 cluttered images that

do not contain the objects we want to train. To apply the

scheme above and select the most relevant elements of the

templates as proposed in [12], we need a set of positive sam-

ples as well. How these are extracted is explained below.

Considering online learning, for each template ta of an

image a (containing homogeneous background) we follow

the next steps:

1. We capture the input image to learn the template ta.

We set a regular grid for the training image and com-

pute the gradients. As in LINE2D, to each location of

the image we assign the gradient whose quantized ori-

entation occurs most often in a 3 × 3 neighborhood.

Here we emphasize that we do not use the regular grid

when testing but only for selecting the most discrimi-

native gradient orientations in the training process.

2. Then we obtain all the strongest unique gradient ori-

entations located in the cells (up to bn) that are above

a threshold. This is done homogeneously on the input

image (as opposed to the approach in [5, 12], where

only the strongest top n0 gradient orientations are cho-

sen). We do not select the top n0 gradient orientations,

because it is possible that all the top n0 could be asso-

ciated with the same gradient orientation. We observe

that this can produce redundancy of orientations in the

LINE2D method.

3. Then we find up to P nearest neighbors (NN) among

the previously trained templates, that will be used as

2051

additional positive examples for learning the linear

SVM (if no templates were learnt yet, we use only the

current one). For this, we compare templates using the

similarity measurement of equation 1. We keep only

those nearest neighbors that have a similarity above

90%. For each NN, we obtain the orientations as in

step 2.

4. We select a random set of a few hundred negatives

from the large pool of negatives, (precomputed with

the gradient spreading algorithm of [5]).

5. Then we AND the template gradients of ta with each

of the NN, to produce positive training vectors for the

SVM, and with the selected negative subset, to produce

negative training vectors.

6. A linear SVM is trained, and the resulting weights w
are used to select the R most discriminative regions.

4.2. DTT-OPT: Optimized Scheme

For each object separately, once we have trained the tem-

plates, we create C clusters. We use the bottom-up cluster-

ing method suggested in [6], but computing similarity with

eq 1. This clustering takes only few milliseconds. For each

cluster, we construct a strong classifier using AdaBoost.

This focuses only on the templates of group Ci. Figure 2

shows this procedure. Then we convert each strong classi-

fier into a cascade by using Multiple Instance Pruning (MIP)

proposed in [15]. This procedure takes about 2 seconds per

cluster. We use in practice 12 clusters per object. MIP en-

sures that all positive training samples are correctly classi-

fied. Once we have created the cascades, we can detect the

objects (right part of Figure 2). Only if the object makes it

to the end of the cascade, we proceed to compare with the

whole tuned look up table of cluster Ci as in the traditional

template based methods.

For the final clustered table, we tune each template ta to

keep R±r bits. We calculate the similarity using equation 1

for each of the 10,000 negative samples. If the similarity

is bigger than a threshold value (65%), we count it as an

error. We decrease the number of bits (eliminating first the

ones with smaller weights) until we reach a target error, or

a minimum allowed number of regions R − r. We refer to

the optimized version as DTT-OPT.

5. Experimental Results
We evaluate our method on 3 datasets: i) our data set 1

consisting of 12 objects, ii) a dataset consisting of 30 ob-

jects to be handled simultaneously [2], and iii) a 15 objects

data set, consisting of 3D models [7], where not only detec-

tion of the object is evaluated, but also its 3D pose.

1Available online, contact the authors for a link

Figure 2. We cluster the templates into C groups. For each we

learn a strong classifier and create a MIP cascade. Only hypothesis

passing the cascade are compared with the tuned cluster table.

Figure 3. The 12 objects of our dataset.

5.1. Our 12-Object Dataset

We created a dataset of about 1K images per object for

testing (12,530 images for the 12 objects). The testing im-

ages include heavy clutter, changes in illumination, and oc-

clusion. Figure 1 first row, shows 2 test images. In order

to create the dataset, we first determined an approximate lo-

cation of the objects by using a calibration pattern. Then

we ran LINE2D very densely only in the approximate loca-

tion to determine a tight bounding box. Once we had this

preliminary annotations, we inspected the images manually

and corrected the errors.

We trained about 1000 templates for each object, cover-

ing sizes [1.0:2.0], 360 degrees rotation, 30-85 degrees of

tilt rotation and ± 45 degrees of in-plane rotation. During

training it takes on average about 60msec to optimize a tem-

plate. We can train at 10fps while showing the object to the

camera, and learning only a new template when this is 6%

different from all saved ones. Once the object is learnt, we

need 24s for creating the cascades using a single core.

For evaluation, contrary to [5], we compute the

precision-recall curves for each experiment. We use this

type of evaluation, because it allows a more accurate com-

parison than selecting only the top 1 or top N detections of

each image.

Moreover, if we only get the top N detections from each

image, then comparing detections with other images is in-

accurate. To be accurate, we need to retrieve as many detec-

tions as there are available and sort the scores over images

(some test images might be much harder than others). Then

we can accurately compute the performance of detections.

To compute the Area under the curve (AuC) we calculate

2052

the area of the polygon below each curve. In the original

LINE2D testing dataset [5], the authors consider the object

to be correctly detected if the predicted location was within

a fixed radius of the ground truth annotations (specified as a

single coordinate). That approximation has a serious draw-

back. The location is only approximated to the centroid of

the object. However the size of the bounding box and the

aspect ratio can vary drastically, and this is not evaluated

with this measure.

Since template based detectors try to find the best tem-

plate fit, here we set a minimum bounding box overlap

of 70% intersection over union. Inspecting the bounding

boxes, and the associated template for each detection, we

found out that 70% was a fair choice to represent the ob-

ject. We show results of our methods DTT and DTT-OPT,

compared to LINE2D, in Figure 4. Detecting the 12 ob-

jects simultaneously, LINE2D runs at 1.4fps using 2 pyra-

mid levels and 2 CPU cores. DTT-OPT runs at 11.25fps

using a single core to detect the objects simultaneously, see

Table 1.

Method AuC At 70% recall Speed CPU

DTT-OPT 85.5% 83.9% precision 11.25fps i7@2.8GHz, 8GB RAM (1core)

LINE2D 73.6% 68.8% precision 1.4fps i7@2.8GHz, 8GB RAM (2 cores)

Table 1. Comparing our method with LINE2D [5] in our proposed

dataset. The AuC is averaged over the 12 objects. The speed is

measured at 70% recall. Our method improves 11.9% in average

AuC, and 15.1% in precision at 70% recall, while being 8 times

faster using half the number of cores.

5.2. Dataset of 30 Textureless Objects

We also evaluate on the data set proposed by Damen et
al. [2]. Since our method needs explicit templates for dif-

ferent views and sizes, we rotate each training image from

the dataset and increase their sizes in steps of 12% to train

in total about 32,000 templates for the whole set of 30 ob-

jects. We learn a new template, only when it was at least

10% different from the already learnt ones. See Table 2.

Method At 50% recall Speed CPU

DTT-OPT 90% precision 14.3fps i7@2.8GHz, 8GB RAM (1core)

LINE2D 80% precision 4.1fps i7@2.8GHz, 8GB RAM (2 cores)

Damen et al 75% precision 7fps 2.53Hz, 6GB RAM (1 core)

Table 2. Comparing our method with LINE2D [5] and Damen et
al. [2]. Our method outperforms the state of the art methods in

both speed and accuracy.

In our testing we search for all 30 objects, apply non-

maximum suppression and select the winning hypothesis

by selecting the biggest object found (if it is greater than

a threshold). This is because some templates appear to be

subparts of bigger objects. At a 50% recall, LINE2D runs

on average at 4.1fps. This is using 2 pyramid levels and 2

cores. This is faster than when we tested on heavily clut-

tered images using more than double templates. The rea-

son is because the testing images have very few/no clutter.

Figure 5. Results on 30 textureless objects detected simultane-

ously. Damen et al. only present results at 50% recall.

Damen et al. use a single core and their system runs at 7fps

at 50% recall. Our DTT-OPT runs at 14.3fps (average) us-

ing a single core, with a higher precision (90%). Figure 5

shows the precision recall curves for the three methods.

Approach DTT-3D Hinterstoisser[7] Drost [3]

Sequence Matching Score/Speed

Ape 95.0% / 55.8ms 95.8% / 127ms 86.5% / 22.7s

Bench Vise 98.9% / 53.3ms 98.7% / 115ms 70.7% / 2.94s

Driller 94.3% / 54.6ms 93.6% / 121ms 87.3% / 2.65s

Cam 98.2% / 58.4ms 97.5% / 148ms 78.6% / 2.81s

Can 96.3% / 55.3ms 95.4% / 122ms 80.2% / 1.60s

Iron 98.4% / 54.3ms 97.5% / 116ms 84.9% / 3.18s

Lamp 97.9% / 54.8ms 97.7% / 125ms 93.3% / 2.29s

Phone 95.3% / 58.4ms 93.3% / 157ms 80.7% / 4.70s

Cat 99.1% / 53.5ms 99.3% / 111ms 85.4% / 7.52s

Hole Puncher 97.5% / 54.2ms 95.9% / 110ms 77.4% / 8.30s

Duck 94.2% / 53.6ms 95.9% / 104ms 40.0% / 6.97s

Cup 97.5% / 54.1ms 97.1% / 105ms 68.4% / 16.7s

Bowl 99.7% / 51.50ms 99.9% / 97ms 95.7% / 5.18s

Box 99.8% / 56.0ms 99.8% / 101ms 97.0% / 2.94s

Glue 96.3% / 58.5ms 91.8% / 135ms 57.2% / 4.03s

Average 97.2% / 55.1ms 96.6% / 119ms 79.3% / 6.3s

Table 3. We use the same evaluation criteria as in [7]. Computing

the gradients and the normals takes 30ms and 12 ms. Our reported

times are for the whole pipeline using one core. [7] uses 2 pyramid

levels and needs one core for each level. Using their system to

detect simultaneously all 15 objects, we can subtract the time for

processing the gradients/normals which is computed only once.

Their system can then run at 0.72fps using 2 cores, while ours runs

at 4.2fps using a single core, which makes us roughly 10 times

faster.

5.3. 3D Model Based Dataset of 15 Objects

Finally, we use the RGB-D dataset proposed in [7],

where Hinterstoisser et al. improved LINEMOD by adding

2 post-processing steps that verify each hypothesis further.

One of them is a color checking step where the hypotheses

are compared with the original object color (difference of

its hue). The other is a depth points checking. We use the

same improvements as post-processing step. We also use

2053

Figure 4. We tested our method on 12 objects comparing with the LINE2D baseline. We tested 2 improvements. One where we trained the

template discriminatively called DTT, and a second one, where each template is tuned, and then a a cascaded strong classifier for different

clusters is added. This is called DTT-OPT.

the recommended parameters (rotation sampling of 15 de-

grees and scale sampling of 10 cm). However to train our

objects, we select the gradients and normals, using our dis-

criminatively trained method. During detection, we use the

clustered cascades to speed up detection, and the tuned ta-

bles, as described before. We call this method: DTT-3D.

Figure 6 right column shows some detection examples of

our method. During training, we need on average 62msec

for each template, plus about 24 seconds to create the speed

up cascades. In total, this brings us up to 217 seconds for

training an object. Compared to [7] where training is up to

54 seconds (for “bech vise”), it is still relatively fast, espe-

cially if one considers that this is done only once per object.

Results can be seen in table 3. While testing, our method

is almost an order of magnitude faster when handling 15

objects simultaneously, and more accurate.

6. Conclusions
In the field of specific object detection, there is still

plenty of room for improvement. One of the standing prob-

lems is the need of several templates for training. Another

is the need to model different sizes. Nevertheless, our pro-

posed DTT-OPT and DTT-OPT-3D methods improve the

current state of the art in both speed and accuracy when

2054

Figure 6. Left: Detection examples of 12 objects detected simultaneously. Middle: Detections of 30 textureless objects (simultaneously).

Right: Detections of the 3D dataset. We show the object axes in z-yellow, x-red, y-green.

using monocular color images as well as RGBD images.

Training discriminatively each template allows an incre-

ment in detection performance. By combining techniques

usually used in offline learning methods with online learn-

ing ones, we can obtain a faster and more accurate detector.

References
[1] H. Bay, A. Ess, T. Tuytelaars, and L. J. V. Gool. Speeded-up

robust features (surf). Computer Vision and Image Under-
standing, 110(3):346–359, 2008. 2

[2] D. Damen, P. Bunnun, A. Calway, and W. Mayol-Cuevas.

Real-time learning and detection of 3d texture-less objects:

A scalable approach. In British Machine Vision Conference
(BMVC). BMVA, September 2012. 1, 2, 3, 5, 6

[3] B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model glob-

ally, match locally: Efficient and robust 3d object recogni-

tion. In Computer Vision and Pattern Recognition, CVPR
2010, pages 998–1005, 2010. 6

[4] D. Gavrila and V. Philomin. Real-time object detection for

smart vehicles. In IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), volume 1, pages 87–93, 1999. 1

[5] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab,

P. Fua, and V. Lepetit. Gradient response maps for real-time

detection of texture-less objects. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2012. 1, 2, 3, 4, 5, 6

[6] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab.

Dominant orientation templates for real-time detection of

texture-less objects. In IEEE Computer Vision and Pattern
Recognition (CVPR), pages 2257–2264, 2010. 2, 3, 4, 5

[7] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski,

K. Konolige, , and N. Navab. Model based training, detec-

tion and pose estimation of texture-less 3d objects in heavily

cluttered scenes. In Asian Conference on Computer Vision
(ACCV), 2012. 1, 2, 3, 4, 5, 6, 7

[8] D. G. Lowe. Object recognition from local scale-invariant

features. In IEEE International Conference on Computer Vi-
sion, ICCV, pages 1150–, 1999. 2

[9] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of

exemplar-svms for object detection and beyond. In IEEE
Int. Conf. on Computer Vision (ICCV), 2011. 3

[10] D. Mladenić, J. Brank, M. Grobelnik, and N. Milic-Frayling.

Feature selection using linear classifier weights: interaction

with classification models. In Conf. on Research and devel-
opment in information retrieval. ACM, 2004. 4

[11] D. Nister and H. Stewenius. Scalable recognition with a vo-

cabulary tree. In IEEE Conference on Computer Vision and
Pattern Recognition - CVPR, 2006. 2

[12] R. Rios-Cabrera and T. Tuytelaars. Boosting binary masks

and dominant orientation templates for efficient object de-

tection. Under revision CVIU. 3, 4

[13] C. Steger. Occlusion, clutter, and illumination invariant ob-

ject recognition. In International Archives of Photogram-
metry and Remote Sensing, volume XXXIV, part 3A, pages

345–350, 2002. 2, 3

[14] S. Yang, L. Bo, J. Wang, and L. G. Shapiro. Unsuper-

vised template learning for fine-grained object recognition.

In NIPS, pages 3131–3139. 3

[15] C. Zhang and P. A. Viola. Multiple-instance pruning for

learning efficient cascade detectors. In NIPS, 2007. 5

2055

