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Abstract

Visual saliency has been an increasingly active research
area in the last ten years with dozens of saliency models
recently published. Nowadays, one of the big challenges
in the field is to find a way to fairly evaluate all of these
models. In this paper, on human eye fixations ,we compare
the ranking of 12 state-of-the art saliency models using 12
similarity metrics. The comparison is done on Jian Li’s
database containing several hundreds of natural images.
Based on Kendall concordance coefficient, it is shown that
some of the metrics are strongly correlated leading to a re-
dundancy in the performance metrics reported in the avail-
able benchmarks. On the other hand, other metrics provide
a more diverse picture of models’ overall performance. As
a recommendation, three similarity metrics should be used
to obtain a complete point of view of saliency model perfor-
mance.

1. Introduction

In the field of computer vision, a wide variety of models

that aim at mimicking the visual attention cognitive pro-

cess exists [15] [30]. By outputing saliency maps that esti-

mate the probability of each image area to grab our atten-

tion, those models allow to automatically predict the most

relevant regions from images. In practice, rare, novel or

surprising information is considered as salient.

Since the early 2000s, an increasing amount of saliency

models have been proposed mainly splitting into two ap-

proaches. Some of them focus on salient object detection

while others deal with predicting human eye fixations. In

terms of validation, the first category uses one gold stan-

dard: Precision/Recall/F-measure metrics while the other

category uses a lot of different metrics.

Due to the diversity of available metrics for eye fixation

prediction assessment, several benchmarks were proposed.

In 2011, Toets proposed in [27] to compare saliency mod-

els based on the Spearman’s rank correlation coefficient. In

2012, Borji built a benchmark [5] where three evaluation

scores (CC, NSS and AUC) are used. Finally, Judd [14] pro-

posed a platform using three different metrics: AUC-Judd,

a Similarity metric, and the Earth Mover’s Distance (EMD).

Lemeur in [16] also reported about methods for comparing

scanpaths and saliency maps. Although these benchmarks

are major contributions, none of those studies deeply dis-

cussed the relevance of their similarity metrics mix.

Therefore, the redundancy of these metrics is discussed

in the paper which is organized as follows. Section 2 con-

tains a review of all similarity metrics based on human

eye fixations. Section 3 describes the methods and exper-

iments used to study metrics based on Kendall concordance

scores.The results are presented in Section 4 while section

5 provides a discussion.

2. Literature Review of Similarity Metrics

In this section, all the similarity metrics that have been

used to assess saliency models are presented. We propose

here a two-dimensional taxonomy to classify all similar-

ity metrics. The first dimension is related to the nature of

the similarity metric and can be divided into three cate-

gories: ”value-based”, ”location-based” and ”distribution-

based” (Tab. 1). On a second dimension, among those met-

rics, some are general metrics which were not specifically

built for saliency models and are called ”common metrics”,

others are existing similarity measures which were adapted

to the field of saliency model evaluation and can be called

”hybrid metrics” and finally some metrics were specifically

built for saliency models assessment and are called ”specific

metrics” in our taxonomy (Tab. 1). In the next sections, the

similarity metrics are briefly described within the first three

categories of the proposed taxonomy, namely value-based,

location-based and distribution-based.
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Value-based Metrics Location-based Metrics Distribution-based Metrics
Common Metrics AUC-Judd KL-DiV / CC / Spear / Similarity

Hybrid Metrics AUC-Zhao / AUC-Li EMD

Specific Metrics NSS / Percentile / Pf AUC-Borji

Table 1. Proposed two-dimensional taxonomy for visual salience metrics

2.1. Value-based metrics: focus on saliency map
values at eye gaze positions

This first category of metrics compares the saliency am-

plitudes with the corresponding eye fixations maps.

2.1.1 Normalized Scanpath Saliency (NSS)

The Normalized Scanpath Saliency (NSS) metric was intro-

duced in 2005 by Peeters and Itti [23]. The idea is to quan-

tify the saliency map values at the eye fixation locations and

to normalize it with the saliency map variance:

NSS(p) =
SM(p)− μSM

σSM
(1)

where p is the location of one fixation and SM is the

saliency map which is normalized to have a zero mean and

unit standard deviation. Indeed, the NSS score should be

decreased if the saliency map variance is important or if all

values are globally similar (small difference between fix-

ation values and mean) because it shows that the saliency

model will not be very predictive, while he will precisely

point a direction of interest if the variance is small or the

difference between fixation values and mean high.

The NSS score is the average of NSS(p) for all fixations:

NSS =
1

N
∗

N∑

p=1

NSS(p) (2)

where N is the total number of eye fixations.

2.1.2 Percentile

The percentile metric is, for each pixel p on the eye fixation

map, a ratio between the number of pixels in the saliency

map with values smaller than the one corresponding to pixel

p from the eye fixation map and the total number of pixels

(Eq.3). This metric was defined by Peeters and Itti [22].

P (p) =
|x ∈ X : SM(x) < SM(p)|

|SM | (3)

where X is the set of all pixels of the saliency map SM ,

p is the location of one eye fixation and |SM | indicates the

total number of pixels. Similar to NSS, the global percentile

score is the average of P (p) for all the eye fixations.

2.1.3 Percentage of fixations into the salient region (Pf)

This metric was introduced by Torralba [29]. It aims at mea-

suring the percentage of fixations into the salient region.

First, saliency maps are thresholded at T = 0.8 where the

saliency is normalized between 0 and 1. The threshold is set

so that the selected image region occupies a fixed proportion

of the image size. Second, the percentage of fixations in this

area is computed and called Pf.

2.2. Distribution-based metrics: focus on saliency
and gaze statistical distributions

In the literature, there are similarity and dissimilarity-

based metrics between two distributions. Here, two dissim-

ilarity and three similarity metrics are described.

2.2.1 Kullback-Leibler Divergence (KL-Div)

The Kullback-Leibler divergence is a commonly used met-

ric to estimate an overall dissimilarity between two dis-

tributions. Many authors like [24], [26] and [17] already

used this metric to compare saliency maps with human eyes

fixations. The KL-Div is a measure of the information

lost when the saliency maps probability distribution (called

SM ) is used to approximate the human eye fixation map

probability distribution (called FM ).

KLdiv =
X∑

x=1

FM(x) ∗ log( FM(x)

SM(x) + ε
+ ε) (4)

where X is the number of pixels and ε is a small constant to

avoid log and division by zero. SM and FM distributions

are both normalized as in Eq.5 and 6.

SM(x) =
SM(x)

∑X
x=1 SM(x) + ε

(5)

FM(x) =
FM(x)

∑X
x=1 FM(x) + ε

(6)

when the two maps are strictly equal, the KL-divergence

value is zero.

2.2.2 Earth Mover’s Distance (EMD)

Earth Mover’s Distance metric is a measure of the distance

between two probability distributions over a region. Judd
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[14] used this metric in her benchmark which is now avail-

able online. She uses a fast implementation of EMD pro-

vided by Pele and Werman [20] [21], but without a thresh-

old. It computes the minimal cost to transform the proba-

bility distribution of the saliency maps SM into the the one

of the human eye fixations FM .

EMD = (min
fij

∑

i,j

fijdij)+|
∑

i

FMi−
∑

j

SMj |max
i,j

dij

s.t.fij ≥ 0,
∑

j

fij ≤ FMi,
∑

i

fij ≤ SMj , (7)

and ∑

i,j

fij = min(
∑

i

FMi −
∑

j

SMj)

where each fij represents the amount transported from the

ith supply to the jth demand. dij is the ground distance be-

tween bin i and bin j in the distribution. Starting from zero,

a larger EMD indicates a larger overall difference between

the two distributions.

2.2.3 Linear Correlation Coefficient (CC)

The linear correlation coefficient also named Pearson corre-

lation coefficient is used by some authors like [19] or [17].

The linear CC output range is between −1 and 1. When

the correlation value is close to −1 or 1, there is almost a

perfect linear relationship between the two variables:

CC =
cov(SM,FM)

σSM ∗ σFM
(8)

2.2.4 Spearman’s rank correlation coefficient

The Spearman’s rank correlation coefficient metric [27] is

defined as the CC metric (Eq. 8) but on ranked variables.

This can be viewed as a non linear correlation. Toets uses

this metrics in [27] to evaluate 13 models.

2.2.5 Similarity metric

The similarity metric [14] also uses the normalized proba-

bility distributions of the saliency map SM and human eye

fixation map FM . The similarity is the sum of the mini-

mum values at each point in the distributions. Mathemati-

cally, the similarity between two maps SM and FM is:

S =

X∑

x=1

min(SM(x), FM(x)) (9)

where
X∑

x=1

SM(x) =
X∑

x=1

FM(x) = 1. (10)

A similarity score of one indicates that the distributions are

the same. A similarity score of zero indicates that they do

not overlap at all and are completely different.

2.3. Location-based Metrics: focus on location of
salient regions at gaze positions

Location-based metrics are based on the notion of AU-

ROC (Area under the Receiver Operating Characteristic

curve) coming from signal detection theory. Here, four

main different implementations are available dealing with

some limitations of the classical approach.

2.3.1 Judd implementation (AUC-Judd)

In [14], Judd proposed a classical AUC. First, fixations pix-

els were counted once and the same number of random

pixels are extracted from the saliency map. For one given

threshold, saliency pixels can be treated as a classifier, with

all points above threshold indicated as ’fixation’ and all

points below threshold as ’background’ For any particular

value of the threshold, there is some fraction of the actual

fixation points which are labelled as True Positives (TP),

and some fraction of points which were not fixation but la-

belled as False Positive (FP). This operation is repeated one

hundred times. Then the ROC curve can be drawn and the

Area Under the Curve (AUC) computed. An ideal score is

one while random classiffication provides 0.5.

2.3.2 Zhao implementation (AUC-Zhao)

In [32], Zhao used a normalized AUC (nAUC). The idea is

that no saliency algorithm can perform better (on average)

than the area under the ROC curve dictated by inter-subject

variability for each image. Zhao computes an ideal AUC by

measuring how well the human fixations of one subject can

be predicted by those of the other n − 1 subjects, iterating

over all n subjects and averaging the result. Finally, the

AUC of the saliency map is normalized by this ideal AUC.

2.3.3 Borji implementation (AUC Borji)

In [5], Borji applied to saliency maps validation a suit-

able AUC metric called shuffled AUC. In classical AUC,

saliency map values from random points from the image

are addressed to create a binary mask. In the shuffled AUC

metric, saliency values and fixations from another image

(instead of random) of the same dataset are taken into ac-

count. In that way, the more or less centered distribution of

the human fixations of the database is taken into account.

This point is important because the AUROC scores can dra-

matically increase if a saliency map is weighted by a centred

Gaussian. Indeed, human eye fixations are rarely near the

edges of general test images and the amateur photographer

often places salient objects in the image centre.
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2.3.4 Li implementation (AUC-Li)

In [18], Li set the border cuts for all models to be of equal

size and avoids in that way to artificially increase the AUC

scores. This allows a fair comparisons between models

which already do this pre-processing in comparisons with

those which do not. The border cut post-processing affect-

ing the fairness during the assessment is thus eliminated.

3. Experimental Setup

The 12 metrics presented in section 2 have two inputs:

the saliency map SM and the human fixation maps FM .

The output is a similarity (or dissimilarity) score (scalar).

The purpose of this section is to introduce these two issues

as well as the design of the study.

3.1. Database and Eye Fixation Maps

The human eye fixation maps used in this paper are those

in the database published by Li [18]. This database provides

eye fixation ground truth (collected with an eye tracker) for

235 colour images, of a size of 480 x 640 pixels. The fix-

ation data was recorded by the eye tracker Tobii T60 on

around 20 viewers. The images are quite different with ob-

jects of interest of different sizes (small, medium and large)

to avoid a size-based bias of the saliency models.

3.2. Saliency maps from 12 models

Twelve state-of-the-art models are used to obtain differ-

ent saliency maps in this study. They represent the updated

version of the online available models from Borji’s review

paper [4] where models are sorted based on their mecha-

nism to obtain saliency map. So, we use a wide method-

based range of recently published saliency models.

Itti’s model [12] represents the cognitive approach. SUN

[31] and Torralba [28] are Baysian models. AIM [6], DVA

[10] and RARE [25] are into the information theoretic cat-

egory. SR [9], PFT [8], PQFT [8] and Achanta [1] use a

spectral analysis approach to compute their saliency map.

Two additional models are used: HFT [18] and AWS [7].

AWS predicts very well human gaze into different databases

with various metrics. HFT is also an efficient model which

is proposed by the database author Jian Li [18].

3.3. Analysis method

The goal of the experiment part is twofold. First, it

shows which metrics are close to each other. Second, it

intends to reduce the dimensionality of the used metrics

and see which metrics should be used to do an efficient

benchmark. Indeed, it is important to decide which metrics

should be used together because they are complementary

and which ones it is useless to compute together because

they will provide redundant information.

For this purpose, the 12 models from section 3.2 produce

a saliency map for each of the 235 images of the database

and these saliency maps are compared with the correspond-

ing human eye fixation map. The comparison is achieved

using all the 12 previously described metrics (section 2). A

mean score can be computed on the whole database for each

model using the different metrics which leads to 12 different

rankings of the 12 models for each comparison metric.

During the following study, we will use the ranking be-

tween models and not their mean score values. This is due

to the fact that the output of the metrics can be very different

in terms of range of score value and some of them should

be maximized (correlation measures) while others should

be minimized (divergence measures). Therefore, a direct

score value comparison does not make a lot of sense. By

contrast, the relative rank of the different models is a con-

sistent measure common to all metrics and its range is here

between 1 and 12 (from the best model to the weakest).

To compare models rank according to the different met-

rics, Kendall’s W concordance measure [11] is used (as de-

fined as Eq. 11)

W =
12 ∗ S

m2 ∗ (n2n)
(11)

where n is the number of models and m, the number of

metrics. So here m = n = 12. S, the sum of squared

deviations, is defined as in Eq. 12:

S =
n∑

i=1

(Ri − R̄)2. (12)

where Ri is the total rank given to model i and R̄ the

mean value of these total ranks.

Kendall’s W concordance is a coefficient measuring the

degree of agreement between metrics. The value ranges

from 0 (no agreement between model ranks) to 1 (full agree-

ment, same models ranking). Furthermore, some rules of

thumb are provided [11] to allow the researcher to interpret

this measure as depicted in Tab. 2.

Table 2. Interpretation of Kendall’s W coefficient

W Interpretation Rank Confidence

0.5 Moderate agreement Fair

0.7 Strong agreement High

0.9 Unusually strong agreement Very High

1 Complete agreement Very High

In our study, the ranking range of 1 to 12 is small there-

fore, higher threholds are required to keep on the interpre-

tation. That is why we decided to be much more selective

than in Tab. 2: we interpret the Kendall coefficient as in Tab.

3. Indeed this interpretation shows that W=0.98 means that

only 2 or 3 models are switched between the rankings.
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Figure 1. Kendall’s analysis. (a) Kendall’s Matrix on the 12 metrics. (b) Kendall’s Measure on group of metrics with Classical Multidi-

mensional scaling of Evaluation Measures in 2D: 1. NSS / 2. Percentile / 3. PF / 4. KL-DiV / 5. EMD / 6. CC / 7. SPEAR / 8. Similarity /

9. AUC-Borji / 10. AUC-Zhao / 11. AUC-Judd / 12. AUC-Li.

Table 3. Interpretation of Kendall’s W coefficient on mean scores

W Interpretation Rank Confidence

0.7 Moderate agreement Fair

0.85 Strong agreement High

0.93 Very Strong agreement High

0.98 Unusually strong agreement Very High

with 2 or 3 switched models

0.99 Unusually strong agreement Very High

with 1 or 2 switched models

1 Complete agreement Very High

4. Experimental Results

This section is organized as follows. Experiment 1 anal-

yses the concordance between metrics. The second reduces

the metrics dimensionality. The third uses previous results

to provide a fair assessment of the 12 saliency models.

4.1. Experiment 1: Analysis of metrics consistency

4.1.1 Intra-Group Metrics

The concordance is computed between all metrics into the

three categories: value-based (amplitude), location-based

and distribution-based metrics (Tab. 4).

The concordance shows a moderate agreement for

location-based and distribution-based metrics. This means

that these metrics provide some complementary informa-

tion: they might provide different results for the same

Table 4. Kendall’s W coefficient of Intra-Group Metrics

Group of Metrics W

Amplitude .9534

Distribution .7869

Location .8488

saliency map, thus one of those metrics cannot just be ig-

nored without a possible information loose about model

ranking. However, one can see that the concordance be-

tween the amplitude metrics is high, which means that those

measures are close and can therefore be summarized by a

small subset of value-based metrics.

4.1.2 Inter-Group Metrics

Contrary to the intra-group study that does not achieve

enough concordance, the inter-group suggests that some

metrics are very close as it is shown in the Kendall matrix

of Fig. 1 (a). NSS, Percentile, Correlation and AUC-Judd

seem to be very close. On the opposite side, the KL-DiV

metric seems like an outlier in this matrix and it is different

from most of the other metrics in terms of model ranking.

This result is explained by the KL-Div measure itself which

is physically different from the others as it does not take

space into account but only the map statistical distributions.

To provide a better representation of the proximity in

terms of model ranking among metrics, we apply, on

Kendall’s coefficient, a classical multidimensional scaling
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Figure 2. Kendall’s analysis. (a) Kendall’s Matrix on cluster, global and 7 metrics. (b) Kendall’s Measure on group of metrics with Classical

Multidimensional scaling of Evaluation Measures in 2D: 2. PF / 3. KL-DiV / 4. EMD / 5. SPEAR / 6. AUC-Borji / 7. AUC-Zhao / 8.

AUC-Li

(CMDS). Also known as Principal Coordinates Analysis,

CMDS uses statistical techniques to visualize and explore

similarities or dissimilarities in data. The results are dis-

played in Fig. 1 (b). In this representation, X axis (equiv-

alent to a first eigenvector) is more important than Y axis

(equivalent to a second eigenvector). From the figure, one

can see, for example, that PF and NSS are closer than PF

and AUC-Li. This representation will be used in the next

experiment.

4.2. Experiment 2: Study of the dimensionality

Based on the representation of Fig. 1, we decide to use

a concordance of 98 % as a threshold to fuse metrics (in

terms of rank). This threshold means that only the rank of

2 or 3 couples of models can be inverted on the 12 mod-

els which means that the differences in terms of classifica-

tion of the saliency models are really minor. By using this

threshold, five metrics can be fused to create a new metric

called Cluster. In Fig. 1 b), the concordance of the metrics

contained into the Cluster is of 98.15 %. The ranking of

Cluster is defined as the mean ranking of all the metrics

composing it.

For model validation, this Cluster means that one mea-

sure from those included in this set is enough and the com-

putation of the others inside this Cluster is useless in terms

of new information about models ranking. In this case the

five metrics can be summarized well enough by any of them.

4.3. Experiment 3: Model assessment

A Global metric is also computed as the mean of the

ranking of all metrics. Kendall’s matrix and a classical mul-

tidimensional scaling is again applied on the reduced num-

ber of metrics: Cluster replaces its 5 redundant metrics.

Global is also added and acts like all metrics’ barycentre.

In the last part of the experiment, Tab. 5 shows an as-

sessment of each of the 12 saliency models with differ-

ent metrics. The resulting Cluster and the Global met-

rics are included. One can see the rankings of the differ-

ent saliency models from the best (1) to the weakest (12)

on the 8 remaining metrics after dimensionality reduction.

The Global metric is the final ranking result after mixing

all the remaining metrics (rank mean between the different

rankings). Tab. 5 shows that the best saliency models in

predicting human eye-tracking on Li’s database are RARE,

AWS and PQFT.

5. Discussion

Our approach is able to fairly compare saliency models

rankings and not values, thus it is not possible here to test if

the differences between the saliency models are statistically

significant. For example, we observe that RARE is better

than AWS, but we do not know if RARE is significantly

better than AWS. To obtain this information, one should go

back to the metrics values.

Our study also shows that one metric is not enough to

evaluate the saliency model ranking on eye fixation data.
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Metrics Ranks

1 2 3 4 5 6 7 8 9 10 11 12

CLUSTER RARE PQFT AWS DVA ITTI AIM TOR PFT-SUN SR HFT FT

Pf AWS RARE PQFT DVA AIM SUN TOR ITTI PFT SR FT HFT

KL-DiV DVA RARE PQFT HFT AWS SR PFT ITTI AIM FT SUN TOR

EMD RARE PQFT AIM DVA AWS TOR ITTI HFT SR PFT SUN FT

SPEAR RARE PQFT DVA AWS ITTI AIM PFT TOR SUN SR HFT FT

AUC-Borji AWS RARE AIM SUN TOR PQFT ITTI DVA PFT SR FT HFT

AUC-Zhao RARE AWS ITTI AIM PQFT TOR SUN DVA PFT SR HFT FT

AUC-Li RARE AWS PQFT ITTI DVA HFT TOR AIM SUN PFT SR FT

GLOBAL RARE AWS PQFT DVA AIM ITTI TOR SUN PFT HFT SR FT

Table 5. Model assessment for Cluster, Global and all metrics not included in Cluster. The 3 bold-marked similarity metrics are enough

to provide a fair saliency models rank comparison in terms of similarity with human eye-tracking data.

The minimal set of similarity metrics which should be used

is a) one of the metrics composing the Cluster, b) AUC-

Borji and c) KL-Div. The use of those three metrics is

enough to cover most of the space in Fig. 2 (b) and pro-

vide a fair ranking result (Tab. 5).

The Global and Cluster metrics are very close (Fig.

2) which means that Cluster must be used to assess any

saliency model. However, the Cluster metric alone shows

some limitations by giving unfair advantages to some mod-

els on others. To represent the Cluster metric any of its

component metrics namely Percentile or AUC-Judd or CC

or NSS or Similarity metrics can be used (Fig. 1).

Another interesting metric is the KL-Div which is an out-

lier (Fig. 1) providing really complementary results. Nev-

ertheless, despite the fact that a lot of authors already used

it alone, the KL-Div is not sufficient by itself. Indeed, two

similar distributions can have very different spatial config-

urations. Thus, we propose to use it along with location

and amplitude-based metrics, which will also verify the spa-

tial coherence between the maps. Of course, one interest

of KL-divergence is robust to gaze position errors during

acquisition or the exact pointing of objects (not location-

dependent), which may vary a little between participants.

The third recommended metric is AUC-Borji which is

complementary in terms of information to the two others

by bringing comparison between the eye-tracking data and

saliency maps peak locations. Moreover, this metric is

known to eliminate the effect of centred Gaussians. As only

some models use centred Gaussians, eliminating this effect

provides a more fair comparison.

Therefore, some saliency model benchmarks existing

online as Borji [3] or Judd [13] use partly redundant sim-

ilarity measures. Indeed in the case of Borji benchmark the

use of NSS and AUC-Borji makes a lot of sense, but the

use of the third metric (CC) does not bring any additional

valuable information. Concerning Judd benchmark, while

the choice of AUC-Judd and EMD metrics make sense, the

use of the Similarity metric is redundant with AUC-Judd. In

Judd benchmark the final ranking is obtained by averaging

the three metrics, while AUC-Judd and EMD should have

bigger weights compared to Similarity.

6. Conclusions
In this paper, we reviewed 12 state-of-the-art similarity

metrics for visual saliency models validation and compared

them over Jian Li’s human eye-tracking fixations database

with 12 recently published saliency models. The compari-

son is based on the ranking between models using Kendall’s

W coefficient (PCA provides poor results).

The conclusion of our comparison study is that evaluat-

ing a saliency model with human fixations using only one

similarity metric is not enough to be fair. On the 12 simi-

larity metrics, 5 measures can be grouped together in a sin-

gle measure Cluster which can be adequately summarized

by any of them. In addition to Cluster, we suggest that 2

others metrics (AUC-Borji and KL-Div) with complemen-

tary interpretation should be used to fairly compare saliency

models based on human eye-tracking data.

An implementation of the codes used in this paper to

fairly assess his own saliency models on Li database is pro-

vided online [2] in the website project section.
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