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Abstract

Superpixel algorithms represent a very useful and in-
creasingly popular preprocessing step for a wide range of
computer vision applications, as they offer the potential
to boost efficiency and effectiveness. In this regards, this
paper presents a highly competitive approach for tempo-
rally consistent superpixels for video content. The approach
is based on energy-minimizing clustering utilizing a novel
hybrid clustering strategy for a multi-dimensional feature
space working in a global color subspace and local spatial
subspaces. Moreover, a new contour evolution based strat-
egy is introduced to ensure spatial coherency of the gener-
ated superpixels. For a thorough evaluation the proposed
approach is compared to state of the art supervoxel algo-
rithms using established benchmarks and shows a superior
performance.

1. Introduction

The idea to utilize superpixels as primitives for image

analysis and processing was introduced by Ren and Malik

in [14]. In the following years, several authors proposed

different approaches to generate superpixels with special

properties from still images [12, 23, 9, 1, 19, 13]. They

all follow the common principle to group spatially coherent

pixels sharing similar low-level features like color or texture

into so called superpixels. This grouping leads to a major

reduction of the image primitives, which results in an in-

creased computational efficiency for subsequent processing

steps and allows for more complex algorithms computation-

ally infeasible on pixel level [14]. Another benefit is the

creation of a spatial support for region-based features [6].

There are a wide variety of applications utilizing super-

pixels including tracking [20], image parsing [16], depth-

map enhancement [24], 3D geometry reconstruction [6] and

video segmentation [18].

Especially for video applications, the usage of superpix-

els instead of raw pixel data is beneficial, as otherwise a vast

amount of data has to be handled. But until recently, super-

pixel algorithms were mainly targeting still images. When

Figure 1. Top row: Original sequence with frame numbers. Mid

row: Subset of superpixels manually selected in frame 15 and

shown as color-coded labels. The superpixels in the frames 22 and

30 are generated with our approach and are displayed using the

same label colors to indicate temporal consistency. Bottom row:

The soccer players are cut out based on the selected superpixels.

(Best viewed in color)

applied to video sequences, this leads to volatile and flicker-

ing superpixel contours even if there are only slight changes

between consecutive frames. Moreover, by design they omit

the temporal connection between superpixels in successive

images. Consequently, the same image regions in consecu-

tive frames are not consistently labeled. As an example,

Figure 1 shows the benefits of consistent labels, which are

considered to be valuable for a wide range of video applica-

tions.

Hence, in this work we propose a new approach to gener-

ate superpixels that ensures temporal consistency and pro-

vides a consistent labeling. It can be seen as one way for

spatio-temporal over-segmentation. We call our approach

temporally consistent superpixels (TCS).

The key contributions of our paper are:

• an approach for temporally consistent superpixels

based on energy-minimizing clustering utilizing a

novel hybrid clustering strategy working in a global

color subspace and local spatial subspaces

• a new contour evolution based strategy to ensure spa-
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tially coherent superpixels generated with clustering

based approaches

The remainder of the paper is organized as follows: In

Section 2, we shortly summarize the previous work on

spatio-temporal over-segmentation. Subsequently, in Sec-

tion 3, we briefly explain the generation of superpixels us-

ing energy-minimizing clustering that is extended in Sec-

tion 4, where we present our approach for temporally con-

sistent superpixels. In Section 5 our approach is thoroughly

evaluated and compared to other state of the art approaches

using established benchmarks before concluding the paper

in Section 6.

2. Related Work
In [19, 5, 8, 1] the superpixel idea is extended from the

still image to the video domain starting to take the issue of

temporal consistency into focus. One proposal was to gen-

erate so called supervoxels by grouping adjacent voxels in

the video volume, which are similar e.g. in terms of color.

These supervoxels connect coherent image regions or seg-

ments over multiple frames.

The relation between supervoxels and temporally con-

sistent superpixels can be described in the following way:

Temporally consistent superpixels can be stacked up to

build supervoxels. Similarly, a superpixel representation

with temporal consistency can be obtained by slicing a su-

pervoxel representation at frame instances. It should be

noted that this does not hold in the case where the cross

section of a supervoxel at a frame instance splits up into

non-contiguous segments. Nevertheless, these approaches

are the most akin methods and therefore will serve as com-

parison in Section 5.

In [5] an approach for hierarchical video segmentation

was proposed, which is referred to as GBH in [21]. It is

based on a twofold application of the graph based image

segmentation approach presented in [4], which tends to gen-

erate rather small segments in the vicinity of edges and in

highly structured areas. In [22] a solution based on GBH

was presented that provides streaming capabilities by us-

ing a Markov assumption (sGBH). Moreover, [21] presents

an overview of available supervoxel methods and proposed

corresponding benchmark metrics that are extensions of the

established superpixel metrics.

The SLIC supervoxel approach [1] as well as the ap-

proach presented in [19] enforce a rather short temporal

duration of the generated supervoxels, either implicitly or

explicitly. Therefore, the superpixels are temporally consis-

tent but only over a short range of frames.

A different approach towards spatio-temporal superpix-

els, which utilizes optical flow information, was published

in [8]. This reduces to some extent the noisy flickering of

the superpixels from one frame to the next. Still the super-

pixels are only generated on a per frame basis and there is

no explicit strategy to handle disocclusions and new objects

entering the scene.

3. Superpixels based on Energy-minimizing
Clustering

As our approach for temporally consistent superpixels

is based on energy-minimizing clustering (c.f . [24, 1, 23]),

we will briefly outline the principles of clustering for the

generation of superpixels.

For the clustering, pixels of an image are seen as data

points in a multi-dimensional feature space, in which each

dimension corresponds to a color channel or image coordi-

nate of the pixels. Superpixels are represented by clusters

in this multi-dimensional feature space and each data point

can only be assigned to one cluster. This assignment finally

determines the over-segmentation and thus the superpixel

generation.

In order to find an optimal solution for this assignment

problem, an energy function Etotal is defined, which sums

up the energy E(n, k) that is needed to assign a data point

n ∈ N to a cluster k ∈ K:

Etotal =
∑

n∈N
E(n, k) , (1)

whereN is the set of pixels in the image and K is the set of

clusters representing the superpixels. The energy E(n, k)
can be further refined as the weighted sum of a color-

difference related energy Ec(n, k) and a spatial-distance-

related energy Es(n, k):

E(n, k) = (1−α)Ec(n, k) + αEs(n, k) (2)

The energy Ec(n, k) is directly proportional to the Eu-

clidean distance between a data point n and the color center

of cluster k in the CIELAB color space. Likewise Es(n, k)
is proportional to the Euclidean distance of the spatial po-

sition of n and the spatial position of the center of cluster

k. In order to make the results independent from the image

size, the spatial distance is scaled with the factor
√|K|/|N |

where |·| is the number of elements in a set. With the param-

eter α that was introduced in [15] the user can steer the seg-

mentation results to be more compact or more sensitive to

fine-grained image structures. For a given number of clus-

ters |K| and a user-defined α, an optimal over-segmentation

in terms of energy can be determined by finding a constel-

lation of clusters that minimizes (1).

The assignment problem is solved by applying the iter-

ative Lloyd’s algorithm [10], which converges to a locally

optimal solution. The initial spatial position of the clus-

ter centers is grid-like including a perturbing of the spatial

centers towards the lowest gradient in a 3×3 neighborhood

(see [9, 1]). To minimize the energy term (1), the algorithm

iterates two alternating steps: the assignment-step and the
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update-step. In the assignment-step, each data point n is

assigned to the cluster, for which the energy term (2) has

its minimum given the set of clusters K. Based on these

assignments, the parameters of the cluster centers are re-

estimated in the update-step by calculating the mean color

and mean position of their assigned pixels. The iteration

stops when no changes in the assignment-step are detected

or a maximum number of iterations have been performed.

As the spatial extent of the superpixels is known to be

limited a priori, it is sufficient in the assignment-step to

search for pixels only in a limited search window around

each cluster center. This leads to a significant reduction

of the computational complexity [1]. In order to enforce

the spatial connectivity of the resulting segments, a post-

processing step assigns split-off fractions, which are not

connected to the main mass of the corresponding super-

pixel, to its nearest directly connected superpixel.

4. Temporally Consistent Superpixels

4.1. General Idea

To be able to generate temporally consistent superpix-

els, we separate the original five-dimensional feature space

for the superpixels into a global color subspace compris-

ing multiple frames and multiple local spatial subspaces on

frame level following the idea that the color clustering is

done globally and the spatial clustering locally. As a con-

sequence, each temporally consistent superpixel has a sin-

gle color center for all frames and a separate spatial center

for each frame. The latter preserves the spatial locality on

frame level and the former ensures temporal consistency.

The motivation for this approach is the observation that the

color of matching image regions occupied by a temporally

consistent superpixel over multiple frames does not change

rapidly in most cases. Therefore, the mean colors of the as-

sociated superpixels are –in a first approximation– almost

constant over multiple frames. In contrast, the positions can

vary significantly depending on the motion in the scene.

In order to allow for a certain degree of scene changes,

e.g. gradual changes of illumination or color over time, we

introduce a sliding window approach. For this, a window

comprising W consecutive frames is shifted along the video

volume frame by frame. This sliding window contains P so

called past frames and F so called future frames and one

current frame with W =F+P+1. An example with W =5
and P = F = 2 is depicted in Figure 2. In this example,

the frame t is the current frame and it is in the center of the

sliding window.

For the current frame, the resulting, final superpixel

segmentation is generated. The segmentation of the past
frames is immutable and thus will not be altered anymore

but it influences the superpixel generation in the current
frame and future frames. The segmentation of current and

timepast current future

immutable mutable
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s
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Figure 2. Sliding window approach. Bottom row: Frames in slid-

ing window (non-transparent) are divided into three groups. Top

row: Corresponding label maps.

future frames is still mutable and thus can change during the

optimization. The future frames help to adapt to changes in

the scene, whereas the past frames are conservative and try

to preserve the superpixel color clustering found. If more

past than future frames are used, the update of the color cen-

ters is more conservative. If more future than past frames

are used, the update is more adaptive.

4.2. Hybrid Clustering Approach

The energy function (1) and the energy term (2) as well

as the iterative optimization algorithm explained in Sec-

tion 3 have to be extended to the general idea of global

color and local spatial centers. First, we extend the energy

term (2) with the frame index τ as the energy Es is now

proportional to the distance to the spatial centers in the lo-

cal frame:

E(n, k, τ) = (1−α)Ec(n, k) + αEs(n, k, τ) . (3)

Second, we need to sum over all the frames in the sliding

window to calculate the total energy with regard to the cur-
rent frame t:

Etotal(t) =

t+F∑

τ=t−P

∑

n∈N(τ)

E(n, k, τ) , (4)

where N (τ) is the set of pixels in the frame τ . Third, the

iterative optimization scheme is adopted to the hybrid ap-

proach as explained below. Algorithm 1 shows the principal

approach for the hybrid clustering for I iterations.

After each shift of the sliding window, a number of I it-

erations of the hybrid clustering algorithm is performed. In

the assignment-step, each pixel of the mutable frames, i.e.

the current and the future frames, is assigned to one clus-

ter (and thus to one temporally consistent superpixel), for
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input : W frames in sliding window; K
output: Assignment of pixels to clusters; updated K
for i ∈ I do

foreach mutable frame in sliding window do
assign pixels to clusters;

end
forall the frames in sliding window do

if mutable frame then
update local spatial centers;

end
accumulate global color information;

end
update global color centers;

end
Algorithm 1: Hybrid clustering

which the energy term (3) has its minimum. The color-

difference related energy Ec is proportional to the Eu-

clidean distance to the global color center and the spatial-

distance-related energy Es is proportional to the Euclidean

distance to the local spatial center on frame level.

In the update-step, for each cluster a new global color

center is calculated using the accumulated color informa-

tion of those pixels in all frames in the sliding window,

which are assigned to this cluster. The spatial centers are

updated locally per frame using only the image coordinates

of the pixels that are assigned to this cluster in the corre-

sponding frame. For our experiments we use I = 5 iter-

ations after each shift of the sliding window. During our

evaluation it turned out that the gain using a higher number

of iterations is negligible.

4.3. Contour Evolution

As already stated in Section 3, the clustering does not

necessarily lead to spatially coherent superpixels. Thus,

a post-processing step is required to ensure the spatial

connectivity of the pixels. Contour evolution approaches

like [11, 15] can overcome this drawback.

In addition, in [15] it was stated that the post-processing

method proposed in [1] assigns the isolated superpixel frag-

ments to arbitrary neighboring segments without consider-

ing any similarity measure between the isolated fragments

and the neighboring segments. In our approach, we also

utilize contour evolution. But in contrast to [11, 15] we

use it as a post-processing step. In this way, we combine

the fast initial convergence of a clustering approach and

the connectivity-preserving properties of the contour evolu-

tion. Therefore, we can avoid the high number of iterations

to find a locally optimal solution required by conventional

contour evolution approaches.

In our approach, the contour evolution step is applied for

those frames transitioning from the current to the first past

Figure 3. Contour evolution. Left: Clusters after hybrid cluster-

ing. The blue cluster is not completely spatially coherent. Right:

Small split-off fragment is set to unassigned and marked as muta-

ble. The contours of the red and yellow cluster can evolve into the

unassigned region (Best viewed in color).

frame, i.e. changing the position from t to t−1 in the sliding

window. Thereby, we determine for each cluster the largest

spatially coherent part and set the unconnected fragments of

the cluster to unassigned and mark them as mutable. Fig-

ure 3 shows a small example. The contours of those clusters

adjacent to a region marked as mutable can evolve into this

region during the contour evolution iterations. In the right

image of Figure 3 this can be the contours of the red and

the yellow cluster. Only those pixels that are in a region

marked as mutable are processed, the other pixels are unaf-

fected. In each iteration of the contour evolution the cluster

assignment for those pixels at a boundary within a region

marked as mutable can be changed. The assignment of a

pixel is changed if the pixel has no assignment yet. Then, it

is assigned to the cluster of one of its adjacent pixels, which

minimizes the energy term (3). In addition, an assignment

of a pixel is changed to the cluster of one of its adjacent

pixels if the energy term (3) is smaller for this cluster than

for the one it was previously assigned to. The iterations are

stopped if all pixels in the marked regions are assigned to a

cluster and no further changes at the boundaries occur. The

resulting spatially coherent clusters are the final superpix-

els.

4.4. Initialization

As the position of matching image regions and thus the

superpixel position can differ in consecutive frames, a con-

current initialization of all frames in the sliding window is

not practicable. Therefore, we propose a successive filling

of the sliding window according to the following scheme.

At the start, the sliding window is empty. The first frame

of a video sequence to enter the sliding window is initial-

ized by distributing |K| spatial cluster centers in a grid-like

structure on the frame similar to [9, 1] including a perturba-

tion of the spatial centers towards the lowest gradient in a

3×3 neighborhood. This frame is positioned at index t+F
in the sliding window. As a future frame its segmentation is

mutable. For this future frame the energy-minimizing clus-

tering with regard to (3) is performed.

Then, the sliding window is shifted, whereby a new
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frame enters the window at position t+F and the old frame

is moved to t+F−1. The spatial centers of frame t+F are ini-

tialized by projecting the spatial centers of frame t+F−1 into

frame t+F using optical flow. As in [8], a weighted average

of the dense optical flow computed over all pixels assigned

to the center is used. For our experiments we calculate

the dense optical flow using the Horn-Schunck method [7].

During our evaluations, we found out that the results of our

approach are almost independent from the optical flow al-

gorithm utilized. After the projection of the centers is done,

the energy-minimizing clustering is performed again.

This procedure is repeated until the sliding window is

completely filled. Then the generation of temporally con-

sistent superpixel can further proceed. Thereby, the slid-

ing window is repeatedly shifted as described above until

the video sequence is completely processed. The super-

pixel segmentations of frame t−1 of the sliding window

are stored, which is the first past frame and thus immutable.

4.5. Structural Changes in the Video Volume

In general, the generated superpixels should capture the

temporal consistency inherent in the video volume as com-

pletely as possible. But the continuous adaptation of the su-

perpixels to the video content can lead to steadily growing

or shrinking superpixels that tend to violate the constraint of

a rather homogeneous size. This effect can be observed in

Figure 4 that depicts the temporally consistent label maps of

two segmented frames from the soccer sequence that were

generated without utilizing any method to ensure a homo-

geneous size of the superpixels over time. One can see that

the superpixels in the right image are squeezed together on

the left side of the soccer player while they are huge on the

right side. Similar effects can be found using the method

described in [8].

A trivial solution to minimize this effect is to enforce a

rather short temporal duration of the generated superpixels

(see Section 2). But in order to meet the size constraints

without enforcing a short temporal consistency, we try to

solve the following constrained energy minimization:

Minimize Etotal(t) s.t. (5)

∀k∈K, τ ∈ [t−P ;t+F ] :Amin <A (k, τ)<Amax ,

where A (k, τ) is the number of pixels assigned to cluster k
in frame τ . We implemented this constrained energy mini-

mization in a first simple but effective approach in our slid-

ing window framework. To meet the constraints the number

of pixels assigned to a cluster is traced in two consecutive

future frames. The growth and decrease in size of the clus-

ters is predicted for the next frames using a linear growth

assumption. If the predicted number of pixels assigned to a

cluster is greater than Amax in frame τ = t+F+2 (outside

the sliding window) the cluster is split in two. Thereby, each

spatial center of the cluster is replaced by two new spatial

Figure 4. Label maps of the frames 1 and 60 of the soccer sequence

segmented with temporal consistency but without a method to

cope with structural changes in the video volume.

centers in all future frames and its color center is duplicated.

The new spatial centers are shifted in opposite directions

towards the biggest eigenvector of the spatial distribution

of the cluster similar to the superpixel splitting in [23]. In

case that –based on this prediction– the number of pixels

assigned to a cluster would be lower than Amin in frame

τ = t+F+2, the cluster is terminated by removing its spa-

tial centers from the future frames. To keep the number of

clusters (thus superpixels) constant over time, the number

of splits and terminations should be equal. If this is not the

case the initial number of superpixels is restored by splitting

or terminating the biggest or smallest clusters, respectively.

For our experiments in Section 5 we chose Amin to be 0 and

Amax to be 1.5 ·Ā where Ā is the targeted average cluster

size.

5. Experiments

5.1. Experimental Setup and Performance Metrics

We implemented our approach for temporally consistent

superpixels (TCS) in MATLAB and compared it with state

of the art methods for spatio-temporal over-segmentation.

For the experiments, we use the SegTrack data set [17] and

the Chen data set [3]. The SegTrack data set contains six

video clips with 21 to 71 frames and binary ground truth

segmentation data. The Chen data set is a collection of eight

video clips with around 80 frames per clip and a multi-label

ground truth segmentation.

We compared our approach (TCS) against two state of

the art supervoxel methods: the SLIC approach for su-

pervoxels (SLIC) [1] and the streaming hierarchical video

segmentation (sGBH) [22]. sGBH was selected as a top-

performing candidate for the class of streaming capable

supervoxel approaches and SLIC was selected as a top-

performing candidate for the class of clustering based su-

pervoxel approaches.

For both sGBH and SLIC, the implementations provided

on the authors’ websites were used to generate multiple

spatio-temporal over-segmentations with different levels of

detail, i.e. different numbers of supervoxels. Other parame-

ters for sGBH and SLIC were left unchanged from the de-
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Figure 5. Results for Chen data set. All diagrams are plotted over the number of supervoxels (Best viewed in color).

fault values provided by the authors. As described in Sec-

tion 2, temporally consistent superpixels can be stacked to

obtain supervoxels. For a comparison, we selected the val-

ues for |K| in such way that the number of generated super-

voxels is approximately identical with those of sGBH and

SLIC and set α in (3) to 0.96. To evaluate the performance

of our method we used the following performance metrics

for supervoxels and superpixels. The benchmark results

were produced using the code provided by [2] and [21].

Mean Duration measures the duration of the generated

supervoxels or temporally consistent superpixels in terms

of number of frames. 2D and 3D Undersegmentation er-
ror were introduced in [9] and [21], respectively. The un-

dersegmentation error is a metric to evaluate how precisely

the ground truth segments can be reproduced using the pro-

vided segmentation. Thereby, the number of pixels (or vox-

els) is determined that exceed the boundary of the ground

truth. It should be noted, that a large mean duration of a

spatio-temporal segment is only valuable in combination

with a low 3D undersegmentation error. 3D Segmenta-
tion Accuracy was introduced by [21]. It measures how

well a segmentation fills out the ground truth. 2D Bound-
ary Recall quantifies how precise the alignment of the seg-

mentation with the ground truth boundaries is. Explained
Variation was introduced by [12]. It measures how well

the data of the original pixels can be reproduced with the

over-segmentation. Variance of Area (VoA) and Mean Iso-
perimetric Quotient (Q) were proposed in [13] to quantify

the homogeneity of the size and the compactness of the gen-

erated superpixels. The iso-perimetric quotient was adopted

in [15] to calculate the Superpixel Compactness.

5.2. Benchmark Results

The Figures 5 and 6 show the results for the performance

metrics over the number of supervoxels as common param-

eter for the three compared approaches and the two bench-

mark data sets Chen (see Figure 5) and SegTrack (see Fig-

ure 6). In Figures 5a and 5b as well as Figures 6a and 6b it

can be seen that our approach (TCS) generates the spatio-

temporal segments with the longest temporal duration while

producing the best over-segmentation with respect to the 3D

undersegmentation error for the Chen data set and a compa-

rable over-segmentation for the Segtrack data set. It should

be added that the number of past frames in the sliding win-

dow has a negligible effect on the mean duration while the

undersegmentation error, up to some extent, decreases with

an increasing number of past frames. This behavior is inline

with the description in Section 4.1 that the past frames pre-

serve the color of superpixels and thus prevent them from

e.g. overlapping object boundaries. For the sake of clarity,

we show in the diagrams the results for TCS only with the

number of past frames P =12. The number of future frames

was fixed to F =2.

Figures 5c and 5d as well as Figures 6c and 6d also show

that our approach (TCS) provides better or competitive seg-

mentation results with respect to the 3D segmentation accu-

racy and the explained variation when compared to SLIC

and sGBH. Finally, in Figures 5e and 6e it can be seen

that TCS produces the lowest 2D undersegmentation error

among the three approaches while producing only a slightly

less precise but still highly competitive 2D boundary recall

when compared to sGBH as depicted in Figures 5f and 6f.

This is remarkable as sGBH produces considerably less
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Figure 6. Results for SegTrack data set. All diagrams are plotted over the number of supervoxels (Best viewed in color).

Original TCS (ours)

SLIC sGBH

Figure 7. Comparison of color-coded label maps. All frames have

approximately 700 superpixels. The label maps show that TCS

and SLIC produce more compact superpixels than sGBH. (Best

viewed in color)

compact superpixels, which –by intuition– makes it easier

to capture fine-grained details compared to the more com-

pact superpixels of SLIC and TCS. The lack of compact-

ness can be seen in a qualitative manner in Figure 7 where

the color-coded label maps of an example frame generated

by the three approaches are shown. The visual impression

gained from Figure 7 is confirmed by the variance of area,

the iso-perimetric quotient and the superpixel compactness

that are depicted in Table 1. For each approach a level of

detail was selected that generates a comparable number of

superpixels or sliced supervoxels with a mean area of ap-

proximately 100 pixels. It can be seen that TCS produces

Method Mean Area VoA Q Compactness

SLIC 98 0.44 0.67 0.67

sGBH 98 1.69 0.48 0.39

TCS (ours) 100 0.15 0.67 0.69

Table 1. Variance of area (VoA), average iso-perimetric quotient Q
and superpixel compactness calculated for the entire data set of

Chen for an approximately similar level of detail (100 pixel per

superpixel).

the lowest variance of area while the iso-perimetric quotient

and the superpixel compactness are comparable to SLIC.

This indicates that the superpixels generated by TCS and

SLIC are more homogeneous in size and more compact in

shape than those of sGBH.

With the compactness parameter α in (3) TCS could be

made more sensitive to fine-grained details achieving a bet-

ter 2D boundary recall at the price of a lower compactness.

But as stated in [14, 9, 15] it is beneficial to have compact

superpixels. It e.g. allows for a better capturing of spa-

tially coherent information. In addition, it simplifies the

processing in subsequent processing steps, as e.g. compact

superpixels tend to have a lower average number of neigh-

bors which eases the evaluation of neighborhood relations,

and further calculations, e.g. feature extraction, can be per-

formed on almost equally sized segments.

5.3. Complexity Considerations

In [1], the SLIC superpixel approach for still images is

approximated to have a complexity of O(|N |), where |N |
is the numbers of pixels per image. Using this approxima-
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tion, our approach for temporally consistent superpixels has

a complexity of O(|N |WV ), where W is the sliding win-

dow size in frames and V is the number of frames in the

video sequence. As it holds that W � V < |N | for rea-

sonably long video sequences (e.g. full feature film length)

and frames with mega-pixel resolution, the complexity of

our approach TCS is O(|N |V ) as it is for the SLIC super-

voxel approach. Compared to [22] that has a complexity of

O(|N |V log |N |) it shows that our approach is more effi-

cient with regard to the computational complexity.

6. Conclusion and Future Work

In this paper, we propose a novel approach for spatio-

temporal over-segmentation for video content called tempo-
rally consistent superpixels (TCS). It performs an energy-

minimizing clustering utilizing a hybrid clustering strategy

for a multi-dimensional feature space that is separated into a

global color subspace and multiple local spatial subspaces.

Moreover, a new contour evolution based strategy is intro-

duced that ensures spatial coherency of the generated super-

pixels. The proposed approach employs a sliding window

comprising multiple consecutive frames, which are grouped

into immutable past frames and mutable current and future
frames. Whereas the future frames are intended to adapt to

changes in the video volume, the past frames are conser-

vative and try to preserve the color clustering found. An

additional benefit of the sliding window approach is the re-

sulting capability of short-delay streaming and processing

arbitrarily long video sequences. In a thorough, in-depth

evaluation based on established benchmarks, the proposed

approach was compared to state of the art supervoxel meth-

ods and provided a superior performance. These results

make the approach an excellent basis for all tasks requir-

ing temporal consistency and a high segmentation accuracy

as e.g. video segmentation and tracking applications.

In future work, we want to investigate the introduction

of additional cues or features for the superpixel generation.

Moreover, we would like to enhance the iterative energy-

minimization scheme to intrinsically cope with structural

changes in the video volume.
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