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Abstract

This paper proposes modeling the complex web image
collections with an automatically generated graph structure
called visual semantic complex network (VSCN). The nodes
on this complex network are clusters of images with both
visual and semantic consistency, called semantic concepts.
These nodes are connected based on the visual and seman-
tic correlations. Our VSCN with 33, 240 concepts is gener-
ated from a collection of 10 million web images. 1 A great
deal of valuable information on the structures of the web
image collections can be revealed by exploring the VSCN,
such as the small-world behavior, concept community, in-
degree distribution, hubs, and isolated concepts. It not only
helps us better understand the web image collections at a
macroscopic level, but also has many important practical
applications. This paper presents two application exam-
ples: content-based image retrieval and image browsing.
Experimental results show that the VSCN leads to signifi-
cant improvement on both the precision of image retrieval
(over 200%) and user experience for image browsing.

1. Introduction

The enormous and ever-growing amount of images on

the web has inspired many important applications related

to web image search, browsing, and clustering. Such ap-

plications aim to provide users with easier access to web

images. An essential issue facing all these tasks is how to

model the relevance of images on the web. This problem is

particularly challenging due to the large diversity and com-

plex structures of web images. Most search engines rely on

textual information to index web images and measure their

relevance. Such an approach has some well known draw-

backs. Because of the ambiguous nature of textual descrip-

tion, images indexed by the same keyword may come from

irrelevant concepts and exhibit large diversity on visual con-

tent. More importantly, some relevant images under differ-

1Our VSCN data can be downloaded from http://mmlab.ie.
cuhk.edu.hk/project_VSCN.html
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Figure 1. Illustration of the VSCN. T and V are textual and visual

descriptors for a semantic concept.

ent keyword indices such as “palm pixi” and “apple iphone”

fail to be connected by this approach. Another approach

estimates image relevance by comparing visual features ex-

tracted from image contents. Various approximate nearest

neighbor (ANN) search algorithms (e.g. hashing) have been

used to improve the search efficiency. However, such visual

features and ANN algorithms are only effective for images

with very similar visual content, i.e. near duplicate, and can-

not find relevant images that have the same semantic mean-

ing but moderate difference in visual content.

Both of the above approaches only allow users to inter-

act with the huge web image collections at a microscopic

level, i.e. exploring images within a very small local region

either in the textual or visual feature space, which limits the

effective access of web images. We attribute this limita-

tion to the lack of a top-down organization of web images

that models their underlying visual and semantic structures.

Although efforts have been made to manually organize por-

tions of web images such as ImageNet [6], it is derived from

a human-defined ontology that has inherent discrepancies

with dynamic web images. It is also very expensive to scale.

The purpose of this work is to automatically discover

and model the visual and semantic structures of web image

collections, study their properties at a macroscopic level,
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and demonstrate the use of such structures and properties

through concrete applications. To this end, we propose

to model web image collections using the Visual Seman-
tic Complex Network (VSCN), an automatically generated

graph structure (illustrated in Figure 1) on which images

that are relevant in both semantics and visual content are

well connected and organized. Our key observation is that

images on the web are not distributed randomly, but do tend

to form visually and semantically compact clusters. These

image clusters can be used as the elementary units for mod-

eling the structures of web image collections. We automati-

cally discover image clusters with both semantic and visual

consistency, and treat them as nodes on the graph. We refer

to the discovered image clusters as semantic concepts, and

associate them with visual and textual descriptors. Seman-

tic concepts are connected with edges based on their visual

and semantic correlations. The semantic concepts and their

correlations bring structures to web images and allow more

accurate modeling of image relevance. Our VSCN currently

comprises 33, 240 semantic concepts and around 10 mil-

lion web images. Each concept contains an average of 300
exemplar images. Given more computation resources, this

complex network can be readily scaled by including more

concepts and more images under each concept.

We can better understand web image collections at a

macroscopic level by studying the structural properties of

the VSCN from the perspective of complex network [1]. We

explore a few of them in this work, including small-world

behavior, concept community, hub structures, and isolated

concepts, and reveal some interesting findings. Such prop-

erties provide valuable information that opens doors for

many important applications such as text or content-based

web image retrieval, web image browsing, discovering pop-

ular web image topics, and defining image similarities

based on structural information [22].

We devote particular attention to two applications:

content-based image retrieval (CBIR) and image browsing.

For web-scale CBIR, existing approaches typically match

images with visual features and ANN search algorithms

(e.g. hashing). These algorithms often lead only to a small

portion of images highly similar to the query (near dupli-

cate). In this work, these detected images are connected

to other relevant images that form community structures on

the VSCN. Therefore, many more relevant images can be

found by exploiting the structural information provided by

the VSCN. In the second application, a novel visualization

scheme is proposed for web image browsing. Users can ex-

plore the web image collections by navigating the VSCN

without being limited by query keywords. Our study shows

that the VSCN has small-world behaviour, like many other

complex networks, which indicates that most semantic con-

cepts can reach each other by taking a short path, which

enables efficient image browsing.

2. Related Work
Modeling Structure of Web Images: ImageNet [6]

and Tiny Images [20] both provide large-scale hierar-

chical structures of images, by associating web images

with/without human selection to nodes in the WordNet on-

tology. They both inherit the structure of WordNet, which

is pre-defined by human experts and does not well cap-

ture the diverse and dynamic images on the web. In con-

trast, our VSCN is automatically generated from the visual

and textual contents on the web, making it well-suited for

tasks related to web images. Visual Synset [21] and LCSS

[14] learn a set of prototypical concepts from web images,

but neither of them model the correlations among concepts.

Their learned concepts are used independently for image

annotation tasks. ImageKB [26] obtains representative en-

tities for web images and organizes these entities by divid-

ing them into different categories according to an entity-

category table. Our VSCN differs from ImageKB in that we

organize the semantic concepts using a complex network,

which provides richer information about the structures of

web images, as presented in Section 4.

Content-Based Image Retrieval: Content-based im-

age retrieval (CBIR) has been studied for years, and al-

though remarkable progress has been made in specific areas,

such as particular object retrieval [16], duplicate image re-

trieval [27], scalable indexing [10, 8], and image re-ranking

[3, 4, 19, 24, 25, 17], the fundamental problem of finding

semantically similar images remains largely unsolved. It

is especially difficult for web-scale image collections. In

recent years, vision researchers have tried to approach this

problem from several directions, including leveraging high-

level semantic attributes and signatures [5, 24, 25], fusing

multiple types of visual features [7], and learning semantic-

preserving image similarity [2]. Such efforts have aimed to

close the semantic gap by learning more powerful features

and similarities, but the large variation of visual contents

make this problem extremely challenging. This challenge

implies the need for a better organization method that well

models the structures of web images to improve web-scale

CBIR.

Image Collection Browsing: An effective browsing

scheme is critical for users to access their desired images

[12]. A number of browsing schemes organize images on

a plane based on visual similarities [13], such that images

with higher visual similarities are placed closer. These

methods do not consider the underlying semantic structure,

which is very important for understanding the overall con-

tent of an image collection. IGroup [23] groups images us-

ing surrounding texts and enables users to browse images

by semantic clusters. However, it ignores the relationships

among semantic clusters. All of these approaches are more

suitable for browsing an image collection under one partic-

ular query, but not the entire web image collection.
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Figure 2. Flowchart of VSCN construction (best viewed in color).

3. VSCN Construction

3.1. Semantic Concept Discovery

The flowchart of constructing VSCN is shown in Figure

2. Starting with 2, 000 top query keywords of Bing image

search engine, we automatically discover 33, 240 semantic

concepts that are compact image clusters with visual and

semantic consistency. Our method learns the semantic con-

cepts by discovering keywords that occur frequently in vi-

sually similar images. These discovered keywords corre-

late well with the image content and therefore leads to de-

scriptive concepts. We summarize the method of concept

discovery in Algorithm 1. For every query q, e.g. “apple”,

we submit q to an image search engine. With the retrieved

collection of images Iq and surrounding texts Tq , their rel-

evant semantic concepts, such as “apple fruit” and “apple

iphone”, can be automatically discovered. Such concepts

have more specific semantic meanings and less visual di-

versity, and can be viewed as elementary units of web im-

age collections. The learned concepts under query keyword

q are denoted as Cq = {ci}Mq

i=1. The concepts learned from

different queries form the nodes of the VSCN.

3.2. Inter-concept Correlations

We further explore correlations between semantic con-

cepts. As the number of concepts is very large (33240 in this

work, and potentially even larger if we expand the VSCN),

we use two efficient methods to compute semantic and vi-

sual correlations as described below.

Semantic correlation is computed using the Google

Kernel (GK) proposed by Sahami et al. [18]. We adopt this

method because it has been shown to work robustly in mea-

suring the similarity of two short texts (a short text contains

a set of keywords) at the semantic level, and because of its

efficiency. For a short text x, a set of Google snippets S(x)
is obtained from the Google web search. A Google snip-

pet is a short text summary generated by Google for each

search result item with query c. We collect the snippets of

the top N search result items, which provide rich semantic

Algorithm 1 Concept Discovery through Query Expansion

Input: Query q, image collection Iq , surrounding texts Tq .

Output: Learned concept set Cq = {ci}Mq

i=1.

1: Initialization: Cq := ∅, rI(w) := 0.

2: for all images Ik ∈ Iq do
3: Find the top K visual neighbors, denote asN (Ik)
4: Let W (Ik) = {wi

Ik
}Ti=1 be the T most frequent words in

the surrounding texts ofN (Ik).
5: for all words wi

Ik
∈W (Ik) do

6: rI(w
i
Ik
) := rI(w

i
Ik
) + (T − i).

7: end for
8: end for
9: Combine q and the Mq words with largest rI(w) to form Cq .

context for x. We then determine the similarity between two

texts x1 and x2 by computing the textual similarity between

S(x1) and S(x2) using the term vector model and cosine

similarity. For each concept ci ∈ C,

1. Use ci as a query input on the Google web search.

2. Collect the top 50 Google snippets, denoted as S(ci).

3. Compute the term frequency (TF) vector of S(ci) and

keep the top 100 terms with highest TFs.

4. L2-normalize the truncated vector, and denote the re-

sult vector as ntf(ci).

The semantic correlation between ci and cj is:

S Cor = Cosine(ntf(ci), ntf(cj)). (1)

Visual correlation of two concepts is measured by the

visual similarity between their corresponding exemplar im-

age sets. For each concept, its exemplar image set consists

of the top 300 images retrieved from the search engine by

using the concept as query keyword. This exemplar image

set is further represented as a binary code by sim-hashing

algorithm [15]. This sim-hashing code can be viewed as a

visual signature of the original exemplar image set. The vi-

sual similarity between any pair of exemplar image sets can

then be approximated by the negative of hamming distance

between their sim-hashing codes. Concretely, for a concept

ci ∈ C, we denote its exemplar image set by Ici.
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Figure 3. (a) Size and the average shortest path length of the largest

connected component on the VSCN. (b) In-degree distribution and

cumulative frequency. See Section 4.1 and 4.2 for details.

apple laptop
apple mouse

mighty mouse mickey disney disney logo

Figure 4. The path connecting two semantically irrelevant con-

cepts “apple laptop” and “disney logo”. “mighty mouse” on

the path is a key step that contains two dominant components—

computer mouse and cartoon character—from different domains.

1. Ik ∈ Ici is encoded in an M-dimensional binary vector

H(Ik) using an M-bit base hashing function H 2.

2. Accumulate the binary vectors as A =
∑

H(Ik).

3. Quantize the accumulated vector back to binary vector,

simhash(ci) = sign(A).

The visual correlation between ci and cj is,

V Cor = 1− 1

M
HamDist(simhash(ci), simhash(cj)).

We fuse the semantic correlation and visual correlation by

Cor = S cor+V cor. Finally, we build the VSCN as a K-

nearest-neighbor (K-NN) graph by connecting each node to

its top K neighbors with the largest correlations.

3.3. Complexity
After downloading the images and metadata, our method

takes 70 seconds to learn semantic concepts from one query.

Discovering all 33,240 concepts takes 40 CPU hours. The

inter-concept correlations requires the computation of co-

sine similarity between sparse word histograms and ham-

ming distance between binary vectors, both of which can

be done efficiently. Computing the two types of correlations

takes 3 and 11 CPU hours, respectively.

4. Exploring Structures of the VSCN
Complex networks have many important properties [1],

some of which are explored with our VSCN in this section.

The study of these properties not only yields a better under-

standing of web image collections at a macroscopic level,

but also provides valuable information that assists in impor-

tant tasks including CBIR and image browsing, as presented

in Section 5 and 6.

2Here we represent each bit with ±1.

Figure 5. Part of the VSCN. Ellipses indicate different semantic

regions. See Section 4.2 for details.

4.1. Small-World Behavior
The small-world behavior exists in many complex net-

works such as social networks and the World Wide Web. It

means that most nodes can be reached from the others in a

small number of hops. It is of great interest to study whether

this phenomenon also exists in our VSCN. The small-world

behavior has important implications in some applications

such as image browsing by navigating the VSCN.

As the VSCN is constructed locally, it is interesting to

know how it is globally connected. We find that even for

a small neighborhood size (K = 5), there already emerges

a dominant connected component that includes more than

half of the nodes on the VSCN, as shown in Figure 3 (a).

The largest connected component grows quickly with K
and covers 96% of the VSCN when K = 20. Thus, the

VSCN is a well connected network.

We compute the average shortest path length [1] by

L =
1

|V |(|V | − 1)

∑

vi,vj∈V,vi �=vj

d(vi, vj). (2)

V is defined as the largest connected component to avoid

divergence of L. Figure 3 (a) shows L as a function of K.

L drops quickly at the beginning. For K > 20, the average

separation between two nodes on V is only about six hops.

The existence of a dominant connected component and its

small separation between nodes suggest it is possible to nav-

igate the VSCN by following its edges, which inspires the

novel image browsing scheme introduced in Section 6. In

the rest of this paper, K will be fixed at 20. It is interesting

to see how semantically different concepts are connected on

the VSCN as exemplified in Figure 4.

4.2. In-degree Distribution
In-degree is an important measurement in complex net-

works. On the VSCN, the nodes have identical out-degree

(K = 20), but their in-degrees differ widely from 0 to 500,
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and the distribution of in-degrees are highly skewed (Fig-

ure 3 (b)). The low in-degree part (in-degree less than 20)

is close to an uniform distribution, while the high in-degree

part approximates a power-law distribution. The cumula-

tive frequency of in-degrees shows that 74% of nodes have

in-degrees less than 20. Only 1% of nodes have in-degrees

larger than 100. In general, representative and popular con-

cepts that are neighbors of many other concepts have high

in-degrees, and form hub structures. Isolated concepts have

zero in-degree. They are typically uncommon concepts

such as “geodesic dome”and “ant grasshopper”, or the fail-

ures of concept detection such as “dscn jpg” which does not

have semantic meanings. Figure 5 shows part of the VSCN,

with concepts of large in-degrees. We can identify several

semantic regions formed by these concepts, including trav-

eling, entertainments, wallpapers, and automobile, which

correspond to the green, yellow, dark blue, and light blue

regions, respectively.

4.3. Concept Community
The semantic regions observed from Figure 5 suggest the

existence of community structures on the VSCN. In the lit-

erature of complex networks, a community is referred to as

a subgraph with tightly connected nodes. On the VSCN, it

corresponds to a group of closely related semantic concepts,

called a concept community. To find such communities, we

adopt the graph-based agglomerative algorithm in [28] due

to its good performance and high efficiency. The algorithm

starts by treating each single node as a cluster, and itera-

tively merges clusters with largest affinity, measured via the

product of in-degrees and out-degrees between the two clus-

ters. We cluster the nodes on the VSCN into 5, 000 groups.

We observe a few interesting facts from the clustering

results. First, the size of clusters approximately follows a

sun flowers

yellow iris

fall flowers

…

yellow iris
sun flower
fall flowers

…… …

…

gold fish yellow iris
fall flowers

……

sun flower
yellow tulip

……

gold fish
……

Community-level 
Estimation (Sec 5.1)

Re-ranking pool

(a)

(b)

(c)(d)
(e)

(f)

Concept-level 
Estimation (Sec 5.2)

Figure 7. Flowchart of our VSCN-based image retrieval.

power-law distribution (see 6 (d)), and 10% of the clusters

are with size larger than 10. They cover 52% nodes on the

VSCN. Second, these clusters correspond to various seman-

tic topics, such as cars, food, plants, and animals. Figure 6

(a) and (b) show the structures of two exemplar clusters.

Figure 6 (a) shows a concept community related to “wall-

paper”, which has 225 concepts. Figure 6 (b) shows another

community with a moderate size, which can be interpreted

as a topic related to “sports cars”.

5. CBIR with the VSCN
In this section, we show that the VSCN is able to sub-

stantially improve the performance of CBIR systems. The

key idea is to effectively reduce the search space by exploit-

ing the structures of web images encoded in the VSCN. Our

approach is illustrated in Figure 7. Given a query image

(Figure 7 (a)), its nearest neighbors in the database are re-

trieved with a baseline method (e.g. ITQ hashing [8]) (Fig-

ure 7 (b)). Based on the initial retrieval result, the semantic

meaning of the query image is estimated using a small set of

relevant semantic concepts on the VSCN (Figure 7 (c) and

(d)). Images under these semantic concepts are then gath-

ered to form a re-ranking pool (Figure 7 (e)). Images inside

the pool are ranked based on their visual similarity to the

query image, and the ranking list is returned (Figure 7 (f)).

The VSCN brings two key benefits: (1) as the search space

is greatly reduced, the re-ranking pool contains significantly

less noise than the entire database, leading to superior re-

trieval result. (2) The re-ranking pool contains a more man-

ageable number of images than the entire database (a few

thousand v.s. millions). It allows the use of more power-

ful features and similarity measures, further promoting the

performance.

A key step of our approach is to estimate the semantic

meaning of the query image, which is done at two levels.

At the community level, we estimate the query image’s se-

mantic meaning using a set of concept communities discov-

ered in Section 4.3. As concept communities group simi-

lar concepts, estimating the relevant communities is more

reliable than estimating individual concepts. Then, at the

concept level, a smaller set of relevant concepts are further
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identified from the previously identified communities. Both

levels fully exploit the structural information of the VSCN,

which makes our approach more robust.

5.1. Community-level Estimation
We denote detected concept communities by {Ti}KT

i=1.

Given a query image Iq , a list of top-ranked images and

their distances to Iq are returned by a baseline retrieval

algorithm (e.g. ITQ hasing [8]). From the truncated list

{(Ik, dk)}NI

k=1, we calculate a relevance score for each Ti

as:

s(Ti) =

NI∑

k=1

exp(
−dk
σ

) · χ[c(Ik), Ti]. (3)

c(Ik) is the concept to which the database image Ik be-

longs. χ[c(Ik), Ti] is 1 if c(Ik) ∈ Ti and 0 otherwise.

σ = 1
NI

∑NI

k=1 dk. After calculating relevance scores for

all the communities, we keep the top NT with the largest

relevance scores. The concepts included in these concept

communities are aggregated and denoted by C ′ = {c′i}
NC′
i=1 .

5.2. Concept-level Estimation
The results of community-level estimation enable us to

focus on a small subset of concepts C ′. In order to best

identify the most relevant concepts out of C ′, we jointly

leverage two sources of information. The first source is the

relevance score derived from the ranking list returned by

the baseline retrieval algorithm. Similar to Section 5.1, we

compute the initial relevance score for each concept c′i ∈ C ′

as:

s(c′i) =
NI∑

k=1

exp(
−dk
σ

) · 1[c(Ik) = c′i], (4)

where 1[·] is the indicator function, and σ is the same

as that in Equation 3. As s(c′i) is not sufficiently re-

liable, we introduce the second source of information—

correlations between semantic concepts—to refine the noisy

relevance score. To this end, we further construct a graph

G′(V ′, E′,W ′) by extracting a subgraph from the VSCN,

where V ′ are nodes corresponding to C ′, E′ are edges with

both nodes in V ′, and W ′ are the weights associated with

E′. To integrate the two information sources, we conduct a

Random Walk with Restart (RWR) on G′, characterized by

pn+1 = αPT pn + (1− α)π, (5)

where pn is the walker’s probability distribution over V ′

at step n. P is the transition matrix derived from W ′ and

π(i) = s(c′i)/
∑

i s(c
′
i). The physical meaning of Equation

5 can be interpreted as, at each step, the random walker

either walks, with probability α, along the E′ according to

the transition matrix P or restarts, with probability 1 − α,

from a fixed probability distribution π. Therefore, the two

information sources, incorporated into the two terms on the

r.h.s. of Equation 5, respectively, are fused by RWR up to

the balance factor α. The equilibrium distribution p of the

RWR is known as the personalized PageRank vector [11],

which has the following analytical solution:

p = (1− α)(I− αPT )−1π, (6)

where a larger probability in p indicates higher relevance

of the corresponding node. We rank the semantic concepts

according to their probability values in p, and take the top

NC to represent the semantic meaning of the query image.

Images of the top NC concepts are gathered and form an

re-ranking pool, which are matched with the query image.

5.3. Implementation Details
Multiple visual features, including Color Signature,

Color Spatialet, Wavelet, EOH, HOG, and Gist, are con-

catenated [19]. We apply ITQ hashing [8] to compress orig-

inal features into 128-bit vectors. We use ITQ hashing as the

baseline retrieval algorithm as it has been shown to achieve

state-of-the-art performance. At the re-ranking stage of our

approach, original image features are used to generate the

final ranking list. We set the parameters NI , NT , and NC

to 200, 5, and 10, respectively, by a pilot experiment on a

small set of query images. The balance factor α of RWR is

fixed at 0.85 as recommended in [11].

5.4. Experiments of CBIR
Dataset. We collect a set of query images to search

against images of the VSCN. Since the VSCN images are

gathered from Bing, we collect query images from Google.

We submit the names of semantic concepts to Google and

obtain the top five images returned. They are combined to

form a query dataset with 160K images. Images sampled

from this dataset are queried against the VSCN images.

Evaluation. For each query image, the top 100 im-

ages are retrieved and are manually labelled as being rel-

evant/irrelevant to the query image. The performance is

evaluated using average precision (AP@k). As the label-

ing of retrieval results is labor-intensive, we sampled 10K

images from the query dataset for quantitative evaluation.

We compare our approach with ITQ hasing [8].

Results. Figure 8(a) shows that our approach signifi-

cantly improves ITQ hashing [8] by enhancing the average

top 100 precision (AP@100) from 27.0% to 51.1% (a rel-

ative improvement of 89%). Since our approach builds on

the baseline method (ITQ hashing), it is important to know

whether it is able to make improvement in extreme cases

when the baseline performance is very low or very high. We

build two smaller datasets with the most difficult and easiest

query images, respectively. The difficult dataset contains

20% of the data with the lowest baseline performance in

terms of AP@100, while the easy dataset contains the 20%
with the highest baseline performance. The results are given

in Figure 8(b). Our approach still outperforms the baseline

by a large margin. Notably, on the difficult dataset, our ap-

proach boosts the AP@100 from 7.0% to 24.3% (a relative

improvement of 250%). The results clearly show that the

VSCN leads to huge improvement on CBIR. Exemplary re-

trieval results can be found on our project page.

36213628



25%

35%

45%

55%

65%

75%

Top10 Top30 Top50 Top70 Top90

Av
er

ag
e 

 P
re

ci
si

on

ITQ
ITQ + VSCN

0%

20%

40%

60%

80%

100%

Top10 Top30 Top50 Top70 Top90

Av
er

ag
e 

 P
re

ci
si

on

ITQ Difficult
ITQ + VSCN Difficult
ITQ Easy
ITQ + VSCN Easy

Figure 8. Retrieval performance of our approach (ITQ hasing +

VSCN) and the baseline method (ITQ hasing). (a) Average pre-

cision on the 10K query dataset. (b) Average precision on the

difficult and easy datasets.

6. Image Browsing with the VSCN
This section presents a new browsing scheme that helps

users explore the VSCN and find images of interest. The

user starts browsing by entering a query keyword to the sys-

tem. Since the size of the VSCN is huge, we provide local

views. As shown in Figure 2(e), our scheme allows users to

browse two spaces—the query space and the local concept

space—each of which only presents a small subgraph of the

entire VSCN. A query space visualizes semantic concepts

generated by the same query. For example, the query space

of “apple” contains concepts such as “apple fruit”, “apple

iphone”, “apple pie”, and their corresponding images. A

local concept space visualizes a centric concept (e.g., “ap-

ple iphone”) together with its neighbor concepts (e.g. “htc

diamond” and “palm pixi”), which may come from differ-

ent query keywords. In this way, it bridges images of most

related concepts and helps users access more images of in-

terest without being limited by their initial queries.

In the browsing process, users can freely switch between

the two spaces. A user who chooses a particular concept in

the query space enters into the local concept space and the

chosen concept becomes the centric concept. The user can

then move to a new concept space by choosing a neighbor-

ing concept. In this way, users can navigate over the VSCN

and search for target images. Figure 11 illustrates an image

browsing process across the two spaces.

6.1. Visualizing the VSCN
Good visualization is essential for enhancing users’ ex-

perience. Here, we provide an intuitive and informative

method to visualize the two spaces. The subgraph in the

current space is first visualized as nodes and edges. This

step provides the concept-level visualization and defines the

global layout of the visualization result. In image-level vi-

sualization, we present images in a hexagon lattice. Ex-

emplar images are assigned either to cells around nodes to

represent specific concepts, or to cells along edges to reflect

visual transitions between concepts. The final visualization

result can effectively deliver the visual and semantic content

of the current space. The detailed algorithm of visualizing

the VSCN is omitted here due to space limitation. 3

3The algorithm details and a video demonstration of our browsing

scheme can be found on our project page.

(a )UI1 (b) UI2 (c) UI3
Figure 9. User interfaces compared in the user study.

(a) Users’ effort (b) Search time
Figure 10. Results of user study.

6.2. User Study
We evaluate our browsing scheme by comparing it with

three existing browsing schemes (interfaces): the traditional

ranked-list interface, the interface of presenting images

based on visual similarity [13], and the semantic cluster-

based interface [23], as shown in Figure 9. We refer to the

three interfaces as UI1 to UI3, respectively, and ours as UI4.

Data and Subjects. We recruit 12 subjects with image

search experience to take part in the user study. We sample a

subset of 20 query keywords from the VSCN. Four of them

are used as examples to teach subjects how to use the four

schemes. The other 16 queries are used in the task below.

Tasks. Users are asked to perform multiple rounds of

search with each of the four schemes. In each round, users

are first shown an image randomly sampled from the dataset

and then asked to find the target image or one that they be-

lieve is close enough. Users will start from a random one

of the 16 queries, and the target image is sampled from an-

other query that is different from, yet related to the starting

query. This task is designed to mimic the common scenario

in which a user may not know the exact query keyword

for an object and starts from another related keyword that

he/she is familiar with. We allow users to reformulate query

keywords as they need. The user starts/ends the search by

clicking the Start/Found button, and all of the operations in

between, including mouse clicks, mouse movements, and

scrolling, are recorded for later analysis. Each user com-

pletes all the 16 queries with four queries assigned to each

scheme. The testing order of the four interfaces is rotated

for different users to reduce any possible biases.

6.3. Results
Two objective measures, i.e. users’ effort and time con-

sumption, are computed and analyzed using ANOVA [9].

Users’ effort is measured using the average number of

users’ operations in the searching process, including going

to next/previous page, dragging slide bars, entering/leaving

clusters, switching views, and changing query keywords.

Figure 10 (a) shows the average number of operations us-

ing the four schemes. It indicates that our scheme (UI4) re-
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Local concept space of 
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Figure 11. Browsing across query spaces and local concept spaces. Two browsing paths connecting the query spaces of apple and palm are highlighted.

When users click apple iphone in the query space of apple, the local concept space is shown, with two more neighboring concepts, namely htc diamond and

palm pixi. Exemplar images and visual transitions (indicated by red dashed lines) are also displayed. Users can further enter the query space of palm by

clicking on the concept of palm pixi. The case is similar if users click apple tree.

quires the least amout of users’ effort out of all the schemes.

ANOVA test shows that the advantage of our scheme is sta-

tistically significant, F (3, 212) = 15.9, p < 0.0014.

Average search time is a direct measure of the efficiency

of the four schemes. Figure 10 (b) shows that our scheme

takes the least search time, F (3, 212) = 18.3, p < 0.001.

7. Conclusions
This paper has proposed a novel visual semantic com-

plex network to model the complex structures of a web

image collection. We studied multiple fundamental struc-

tures of complex networks, which reveal some interesting

facts about the VSCN. They not only help us understand

the huge web image collection at a macroscopic level, but

are also valuable in practical applications. Two exemplar

applications show that exploiting structural information of

the VSCN not only substantially improves the precisions of

CBIR, but also greatly enhances the user experience in web

image search and browsing. Many more applications of the

VSCN are to be studied in future work.
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