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Abstract

Evaluating visual tracking algorithms, or “trackers” for
short, is of great importance in computer vision. However,
it is hard to “fairly” compare trackers due to many param-
eters need to be tuned in the experimental configurations.
On the other hand, when introducing a new tracker, a re-
cent trend is to validate it by comparing it with several ex-
isting ones. Such an evaluation may have subjective biases
towards the new tracker which typically performs the best.
This is mainly due to the difficulty to optimally tune all its
competitors and sometimes the selected testing sequences.
By contrast, little subjective bias exists towards the “sec-
ond best” ones1 in the contest. This observation inspires
us with a novel perspective towards inhibiting subjective
bias in evaluating trackers by analyzing the results between
the second bests. In particular, we first collect all tracking
papers published in major computer vision venues in re-
cent years. From these papers, after filtering out potential
biases in various aspects, we create a dataset containing
many records of comparison results between various visual
trackers. Using these records, we derive performance rank-
ings of the involved trackers by four different methods. The
first two methods model the dataset as a graph and then
derive the rankings over the graph, one by a rank aggrega-
tion algorithm and the other by a PageRank-like solution.
The other two methods take the records as generated from
sports contests and adopt widely used Elo’s and Glicko’s
rating systems to derive the rankings. The experimental re-
sults are presented and may serve as a reference for related
research.

1. Introduction

As an important topic in computer vision, visual tracking

has been a widely explored area attracting a great amount of

research efforts. Over the decades, dozens of visual tracking

1We treat all trackers other than the “best” as second best ones.

Tracker A B C (‘our previous’) D E (‘ours’)

Seq. 1 17.5 56.7 11.3 10.5 5.0

Seq. 2 7.0 39.2 8.5 39.2 6.1

Table 1. Tracking evaluation results (in terms of average center lo-

cation errors) from a mock paper using two sequences. Tracker E

is newly proposed in the mock paper; C is from the authors’ pre-

vious work; other trackers (A, B and D) were proposed in papers

sharing no co-author with the mock paper.

algorithms, or trackers in short, have been developed and a

great packs of public datasets are available alongside [73].

Evaluation of these algorithms, though of great interest, re-

mains a challenge due to the hardly avoidable biases. These

biases arise from many sources such as tracker parameters

(e.g., number of particles), initialization, sequences used

etc. It is therefore hard to tune many different trackers for a

fair comparison.

Several evaluation frameworks have been proposed and

tested during the last two decades, such as the Interna-
tional Workshop on Visual Surveillance (VS), the Interna-
tional Workshop on Performance Evaluation of Tracking
and Surveillance (PETS) and the VIVID Tracking Evalu-

ation Website [14]. The basic idea is to test the trackers on

a lot of public datasets and evaluate the results using uni-

formed metrics. The trackers are submitted by their authors

and thus by assumption they are tuned optimally to win.

These evaluations are considered fair in general. However,

many state-of-the-art trackers have not been tested this way.

A recent trend when introducing a new tracker is to val-

idate it by comparing with several existing state-of-the-art

trackers. A byproduct of many such papers is the numer-

ous evaluations for various tracking algorithms. However,

such papers often have subjective biases towards their pro-

posed new trackers which typically perform the best in the

evaluation. This is understandable and reasonable. On one

hand, new trackers usually have some advantages that the

authors aim to highlight. On the other hand, it is non-trivial

for the paper authors to optimize all other trackers involved
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in the contest. Nevertheless, we observe that there is lit-

tle such bias towards the second best ones. For example,

Table 1 simulates results in a typical tracking paper, where

the newly proposed tracker E performs the best as expected.

Though there may be bias in favor of E and possibly C as

well, the comparisons between A, B and D are usually trust-

worthy.

This observation inspires us with a novel perspective to-

wards unbiased evaluation of visual trackers – to explore the

unbiased comparison information among the second best

trackers reported by previous tracking papers. With this

idea, we first collect all tracking papers published in ma-

jor computer vision venues in recent years. From these pa-

pers, after filtering out potential biases in various aspects,

we create a dataset containing many records of compari-

son results between various visual trackers. Using these

records, we derive performance rankings of the involved

trackers by four different methods. The first two methods

model the dataset as a graph and then derive the rankings

over the graph, one by a rank aggregation algorithm and

the other by a PageRank-like solution. The other two meth-

ods take the records as generated from sports contests and

adopt widely used Elo’s and Glicko’s rating systems to de-

rive the rankings. The experimental results are presented

and may serve as a reference for researchers interested in

visual tracking.

Our contributions are twofold: First, we propose a sub-

jective bias-resisting tracking evaluation method which has

never been explored to the best of our knowledge. Second,

the evaluation results provide a reference for related appli-

cations.

In the following section, we briefly summarize the re-

lated work. After that, we formulate our task and describe

the data collection in Section 2. Then, the ranking methods

are introduced in Sections 3, 4 and 5. Experimental results

are reported in Section 6, followed by conclusion in Sec-

tion 7.

1.1. Related work

The VS Workshop and the PETS Workshop are among

the earliest ones to put efforts on comparing different track-

ers on public datasets. They provide datasets on different

aspects of tracking scenarios and researchers apply their

trackers on the same datasets, so that people can use cer-

tain metrics or evaluation methods to compare the results.

At the early stage, the workshops focused more on bring-

ing up new evaluation methods and tracking algorithms and

there is no explicit comparison summary in each workshop.

In recent years, PETS has covered many aspects of track-

ing scenarios and now its focus shifts towards multi-target

tracking. But we still have no direct performance compar-

isons on single-target tracking algorithms. Further more,

since the data is given at the first place, it is a temptation to

tune tracking parameters to obtain the best performance on

the specific data, thus the results may not generalize well.

There are also some literatures that evaluate perfor-

mances of trackers, such as [35,67]. Typically, these papers

focus on introduction of new evaluation framework, includ-

ing standard input datasets, initializations, and/or evalua-

tion criteria. Despite the efforts, it is still hard to run var-

ious trackers without biases due to the reason mention in

previous sections. Another type of solutions is to develop

publicly available platforms, e.g., softwares and websites,

for the evaluation. One such example is the VIVID [14].

Unfortunately, most of these attempts ended before long.

Recently, Wu et al. [68] built a large benchmark on visual

tracking and evaluated thoroughly the performances of over

29 trackers. By contrast, our approach performs the evalu-

ation from a totally different perspective and can be treated

as a complementary view for tracking evaluation.

2. Data Preparation
The key in data collection and processing is to inhibit

potential biases as much as possible. Hereafter, we call a

visual tracking algorithm being evaluated as a tracker, a

paper containing comparison results as a contest paper, or

contest for short and a pairwise comparison between two

trackers as a record. In the following we describe each step

in our data preparation.

2.1. Collecting Contest Papers

First of all, we focus on single target tracking algorithms

in this study. So we restrict contests to papers that have the

same focus. We also exclude the papers designed to track

specific models, such as those for eye tracking. Now the

topic is determined, we collect contest papers from major

computer vision journals including PAMI and IJCV, from

2000 to up-to-date issue. We also collect the data from

major computer vision conferences including ICCV, CVPR

and ECCV from 2005 to 2013. Interestingly, we have not

found any contest satisfying all our criteria (see the rest of

this section) before the year 2008 in journals or before 2009

in conferences.

After the initial collection, we need to filter out some

contests to reduce potential biases. This is done according

to the following criteria.

• Conference to journal extension. It is not uncommon

to extend a conference paper to a journal one. Includ-

ing both versions will apparently put more weight on

the results in them. For this reason, we discard all con-

ference papers that have corresponding journal exten-

sions in our initial collection.

• Duplicate experimental results. There are a few con-

tests having their experimental results partly imported
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Figure 1. The conversion example. (a) The record set P1 extracted

using the example in Table 1. (b) The converted record set P2 as

explained in Equation 1. (c) The resulting graph G constructed

from the records.

from other literatures, which could cause unfairness if

included. Such papers are excluded as well.

The final contest set has 45 contests, including [5–8, 10,

11, 16, 17, 23, 28, 29, 33, 34, 38–52, 54, 58, 59, 61, 64, 65, 69,

71, 72, 74–81].

2.2. Extracting Records

The key to extract records from contest papers is again

to inhibit potential biases. For each contest, we remove

the results which contain the trackers proposed by the au-

thors of this very contest, including both the newly proposed

one and possibly the trackers in the authors’ previous study.

This step eliminates potential biases that favor the authors’

own work.

After the above filtering, what left in a contest paper is

the evaluation of several trackers on several sequences. For

example, only trackers A, B and D remains from Table 1.

We will then have two representations for the data. The

ranking representation contains the rankings from each se-

quence. For example, from Table 1 we will extract π1 :
(D < A < B) and π2 : (A < B = D). From now on

πi will be named partial rankings following the notations

in [2] and this representation will be mainly used in the al-

gorithm described in Section 3. The other representation is

the pairwise representation. In particular, for every pair of

trackers in the partial ranking, say A and B, we will gen-

erate a record as follows: If A performs better than or as

good as B, we generate a record as (A,B, label), such that

label = ′win′ if A is better or ′draw′ otherwise. In this way,

we convert results from a contest into a set of records. Fig-

ure 1(a) lists all records extracted from the mock paper in

Table 1.

Following the above procedure, we obtain a set of

records involving 48 trackers. Each tracker appears in 193.4

records on average. To further reduce the chance of bi-

ases, we remove any trackers who appear in less than 10

records or in only one contest. After all the cleaning, we

have 15 trackers, 664 partial rankings, and 6280 records

among which there are 151 records of ′draw′. We denote

the tracker sets as T = {t1, ..., tn}, n = 15, and the record

sets as

P1 =
{
< tl, tr, l >

(i): tl, tr ∈ T,

l ∈ {′win′, ′draw′}, i = 1, . . . , n1 = 6280
}
,(1)

P2 =
{
< tl, tr, a >(i): tl, tr ∈ T,

αi ∈ {0.5, 1}, i = 1, . . . , n2 = 6431
}
, (2)

where P1 is the raw record set and P2 is derived from P1,

such that every raw ′win′ record gains a value α = 1 and

every raw ′draw′ record (A,B, ′draw′) is split into two

records each with α = 0.5, i.e. (A,B, 0.5) and (B,A, 0.5).
An example is shown in Figure 1(b).

The 15 trackers are Meanshift [15], ColorPF [55],

IVT [57], Ensemble [4], OFS [13], FragT [1], OBT [25],

SemiBoost [26], MIL [5], L1T [51], BOBT [60], TLD [34],

VTD [37], Struck [27] and MTT [76].

An illustrative figure is presented in Figure 2. For a di-

rected edge from A to B, the color and thickness are pro-

portional to the number of records that agree on “A is better

than B”.

It is worth noting there are some factors ignored in the

above data preparation, such as the degree of challenges of

different sequences or the extent to which one tracker out-

performs another one, all of which could potentially affect

the ranking results. It is unrealistic to model these factors

given the huge amount of data needed. That said, given

the diversity of the current dataset, the proposed approaches

can produce significant results at least for the top ranked

trackers, as shown in the consistency in the results of differ-

ent rankings (Section 6). More discussions can be found in

Section 6.3. It is also worth noting that there are many im-

portant tracking papers that do not follow the above evalua-

tion paradigms for either trackers or contests. These papers,

such as recent studies in [9, 12, 21, 30, 31, 56, 63, 66, 70] to

name a few, are therefore not included.

3. Rank Aggregation Algorithm
Rank aggregation has been widely used in webpage

ranking and other fields [2, 3, 18]. Given a universe set

T = {t1, t2, ..., tn} and a set of partial rankings π =
{π1, π2, ..., πm}, where πi = [ti1 ≥ ti2 ≥ ... ≥ tid ], id ≤
n and tik ∈ T for some ordering relationship ≥. The task

is to find a full ranking π′, i.e., a permutation of set T that

satisfies some objective function. A normally chosen objec-

tive function is the generalized Kendall-τ distance which is

considered to have many advantages [2,18]. It is defined as

d(πa, πb) = |{(i, j)|i < j, πa(i) < πa(j), πb(i) > πb(j)}|,
where πa(i) is the element in πa at position i etc. This mea-

sures the number of disagreements between two rankings

πa and πb. The rank aggregation model has an equivalent
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Figure 2. The weighted directed graph constructed from the collection of records. The color and thickness indicate the number of records

agree on each edge. The name correspondences are listed at the end of Section 2.2.

weighted graph G = (V,A), where V = T is the same uni-

verse set and any wij ∈ A is the fraction of inputs ranking

i before j.

Our ranking representation can be naturally fit into the

rank aggregation model. To construct the weighted graph

G, it is more convenient to use the pairwise representa-

tion. We will first construct an unnormalized version G′ =
(V,A′), where w′ij ∈ A′ is the number of (i, j, 1) in the pair

representation set P2. Then we have

wij =
w′ij

w′ij + w′ji
. (3)

An example graph corresponding to the record set in Fig-

ure 1(a) is shown in Figure 1(c). An unnormalized graph

example of our total collected data is shown in Figure 2.

Kemeny optimization is a widely used method to solve

this problem. However, the problem itself is proved to be

NP-hard, thus many approximation algorithms have been

proposed [2, 3, 18]. We will adopt the LpKwikSorth al-

gorithm described in [2]. Given the weighted graph G =
(V,A) and a predefined piecewise-linear function h, the al-

gorithm will output a full ranking that is proved to be within

3/2 of the true optimal value. Due to the page limitation, we

encourage the reader to refer to [2] for details.

4. Ranking by a PageRank-like Algorithm
The graph model shares a lot of similarities with the

widely known and used PageRank algorithm [53]. We con-

sider the tracker nodes as website nodes and the edges as

hyperlinks except they have weights. However, we also

need to reverse the direction of the edges, which can be in-

terpreted as the ′lose′ tracker has a hyperlink to the ′win′

tracker. Then we can ask the question who has the highest

authority power in the graph.

It is well-known that Pagerank is closely related to the

Markov chain, thus we will first construct the transition ma-

trix Mt in the following steps:

1. For all i �= j, if i and j are never compared, i.e. wij =
0 where wij ∈ A, then tij = tji = 0.5. Otherwise,

tij = wij and tji = wji.

2. Divide Mt by |V | the number of nodes, then set tii =
1− ∑

i�=j

tij .

3. Make Mt ergodic by multiplying Mt by 1− ε then add

ε/|V |, where ε is set empirically to 0.15.

4. Transpose Mt, so that the column sum is 1 for every

column.

Then the next step is to find the eigenvector correspond-

ing to the eigenvalue of 1. The ranking result will then be

in the descending order of the eigenvector scores.

5. Sports Ranking Algorithms
Ranking is an essential problem in competitive sports

which share many similarities with our problem. If we view

the collected recordsP1 as competition results between sev-

eral trackers, then our problem naturally simulates a sport

game and each tracker naturally an athlete. There are in

fact a bunch of sports that share the similar settings as in

our problem, such as Chess [22], Go [19], Electronic sports

and many others. We borrow ideas from the well-known

ranking systems used for them.

5.1. Elo’s Rating

One of the most successful ranking methods is the Elo’s

rating [20]. The core idea is that the ranking score is a scal-

ing rating, so that the score difference between two nodes

determines an estimation of expected outcomes. Given the

ranking scores Ri and Rj for two trackers i and j, the ex-

pectation is estimated as:

Eij =
1

1 + 10(Rj−Ri)/400
. (4)

An expectation Eij = 0.80 means the chance for i to win

over j is 80%. Notice that Eij + Eji = 1 is always held.

Now we denote an actual outcome of the competition as Sij

Sij =

⎧⎨
⎩

1, if i win over j
0.5, draw

0, if i lose to j
(5)
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Then, the difference between the expected outcome and the

actual outcome will be used to update the ranking score:

RNew
i = ROld

i +K(Sij − Eij) (6)

where K is the updating rate. When K is large, the score

changes very fast or in other word is very sensitive to the

results. Usually larger values are used for K at beginning

and small values are used when sufficient information has

been accumulated.

One of the interesting and desired properties of this

model is that the ranking score does not necessarily increase

when a winning is observed. If the expectation of winning

is 1 and we observe a ′win′ record, in Equation 6, we will

have Sij −Eij = 0, thus the score will not be increased. In

contrast, if we observe a ′lose′ record, the score will have a

relative big decrease, because Sij −Eij = −1 is the largest

negative value it could be. Intuitively speaking, if the strong

one wins, there is no surprise and we believe our ranking

scores properly model the strengths between the two ath-

letes. But if the strong one loses, we will reconsider our

scores as inaccurately reflect the strengths, thus need large

changes. Another good property is that if we have a con-

stant number of athletes, the sum of all the scores in the

system remains constant at every step. Because after an up-

date, the winning one gains the amount of score exactly the

same as the losing one loses.

The above method depends on the order of the input

records since the ranking scores are updated in a sequential

manner: at each step the result will be updated according to

the actual outcome of Sij and the expected outcome of Eij .

To address this issue, we use the average ranking position

in many uniformly generated random runs.

5.2. Glicko’s rating

Glicko’s rating [24] is a generalized version of Elo’s rat-

ing. It uses two parameters to model the rating: Ri is the

expected rating score for node i and Di measures its con-

fidence. More precisely, we are 95% confident that the

true rating of the i-th tracker ranges between Ri − 2Di to

Ri+2Di. This method also introduces a time variable. The

model will be updated after each time period. The more

results we have for one tracker during one time period, the

more we are confident about its estimated ranking, so Di

will decrease after the update. In contrast, if we have a small

number of results or none for that tracker, we are less con-

fident and thus the Di will increase. Another difference is

that the final rating score will be the lower 95% confidence

score which is Ri − 2Di.

The update formulas are:

Dnew
i = min(

√
(Dold

i )2 + c2t, 350) ,

Rnew
i = Rold

i +
q

D−2
i + d−2

i

m∑
j=1

g(Dj)(sji−E(s|Ri, Rj , Dj)),

where

q = ln 10/400 , g(Dj) =
1√

1 + 3q2D2
j/π

2
,

E(s|Ri, Rj , Dj) =
1

1 + 10−g(Dj)(Ri−Rj)/400
,

d2i =
1

q2
m∑
j=1

g2(Dj)E(s|Ri, Rj , Dj)(1−E(s|Ri, Rj , Dj))
,

and c is a decay coefficient which is set to
√
12000 in our

study, meaning that after 10 rounds it will take D = 50 back

to D = 350.

6. Experimental Results

6.1. Results

The ranking results using the above four algorithms are

shown in Table 2. The LpKwikSorth algorithm is a random-

ized algorithm, so we run it over 10 million trials and took

the one with the smallest overall score as our result shown

in Table 2(a). We constructed the Pagerank-like transition

matrix as described in Section 4 using the pairwise repre-

sentation. Table 2(b) is the result. The “score” subcolumn

is the eigenvector associated with the eigenvalue of 1. As

described in Section 5.1, the order of the input will affect

the output of Elo’s rating. We used the total 6280 records

as the original pool and uniformly generated a random se-

quence of 200,000 – a sufficiently large amount of records

to run the algorithm. We used the traditional setting [20]

of the parameters, each tracker is assigned an initial value

of 1500 and update rate K is set to 30. We measured the

means and standard deviations of the ranking positions for

each tracker over 100 different runs as shown in Table 2(c).

The result is ranked by their mean ranking positions. Sim-

ilar to Elo’s rating, we used a random sequence of 200,000

records for Glicko’s rating. But this time we uniformly gen-

erated 10,000 records for one round, run the algorithm for

20 rounds and report the results. According to [24], the ini-

tial score Ri is set to 1500 and Di is set to 350 for each

tracker. The result is shown in Table 2(d) and is ranked by

the mean ranking positions over 100 runs.
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Rank aggregation PageRank-like Elo’s rating Glicko’s rating

rank name name score name score name score

1 Struck [27] Struck [27] 0.1069 Struck [27] 1.05 ± 0.22 Struck [27] 1.00 ± 0.00

2 MTT [77] MIL [5] 0.0880 ColorPF [55] 3.81 ± 2.10 MIL [5] 2.00 ± 0.00

3 ColorPF [55] ColorPF [55] 0.0822 MIL [5] 4.43 ± 2.02 VTD [37] 3.00 ± 0.00

4 TLD [34] OFS [13] 0.0710 TLD [34] 5.32 ± 2.74 TLD [34] 4.00 ± 0.00

5 VTD [37] TLD [34] 0.0656 VTD [37] 5.33 ± 2.50 OBT [25] 5.45 ± 0.59

6 MIL [5] BOBT [60] 0.0636 MTT [77] 6.16 ± 2.72 FragT [1] 5.71 ± 0.62

7 OBT [25] MTT [77] 0.0634 BOBT [60] 7.77 ± 2.95 L1T [51] 6.85 ± 0.44

8 SemiBoost [26] SemiBoost [26] 0.0633 SemiBoost [26] 8.96 ± 2.61 ColorPF [55] 8.47 ± 0.64

9 L1T [51] VTD [37] 0.0628 OBT [25] 9.06 ± 2.88 IVT [57] 8.93 ± 0.73

10 FragT [1] OBT [25] 0.0589 OFS [13] 9.42 ± 3.01 MTT [77] 9.59 ± 0.68

11 OFS [13] Ensemble [4] 0.0567 FragT [1] 9.56 ± 3.03 SemiBoost [26] 11.00 ± 0.00

12 IVT [57] Meanshift [15] 0.0552 L1T [51] 9.77 ± 2.68 BOBT [60] 12.00 ± 0.00

13 BOBT [60] FragT [1] 0.0542 IVT [57] 10.43 ± 2.41 OFS [13] 13.00 ± 0.00

14 Meanshift [15] IVT [57] 0.0542 Ensemble [4] 14.21 ± 0.50 Ensemble [4] 14.00 ± 0.00

15 Ensemble [4] L1T [51] 0.0540 Meanshift [15] 14.72 ± 0.53 Meanshift [15] 15.00 ± 0.00

(a) (b) (c) (d)

Table 2. The ranking results generated by the four ranking algorithms. The trackers are ranked from top to bottom. Rank aggregation

minimize an overall score, thus it has no individual score as shown in (a). The scores for Pagerank-like algorithm are shown in (b). For the

latter two algorithms, we show both their average ranking positions and their standard deviations over 100 runs in (c) and (d) as described

in Section 5.

6.2. Discussion

It can be seen that these four algorithms agree with each

other in a broad sense. That is, the top few trackers are al-

ways top and the bottom trackers are often bottom. Also in

sports ranking algorithms, we could see they form cliques in

terms of their score distances. For example, TLD and VTD

in Elo’s, OBT and FragT in Glicko’s. The average distance

between different cliques is much larger than the distance

within cliques. This suggests that in different runs, trackers

will have different ranking positions within the clique, but

the relative ranking positions of different cliques are mostly

preserved.

Since we set transition probability 0.5 to those never

compared pairs, Pagerank-like algorithm sometimes will

overestimate or underestimate trackers. For example OFS,

Ensemble and Meanshift have compared to only 4 other

trackers within the set, compared to an average number of

8.07. In addition to these 3 trackers, ColorPF and BOBT

also have quite low number of records compared with the

average. So they tend to be estimated inaccurately. Among

the four algorithms, only Glicko’s rating considers such

problem so that it introduces the confidence. For these less

compared trackers, it will use a permissive score to rank it

lower. Thus is the reason Glicko’s rating has a much lower

variance than Elo’s rating, in other word, it is much stabler.

We have selected 15 out of 48 trackers to be compared

according to our criteria. Below we list some explanations

why many of them did not pass those criteria.

Some of the early trackers have been integrated into

other trackers, such as the particle filter [32], [36]. The idea

is widely used in the state-of-the-art trackers, but it is rarely

compared as an individual tracker. Except for [55] which is

used in several contests, thus is included in our tracker list.

Some other early trackers have been considered as the base-

line tracker, such as the Meanshift tracker [15]. Such track-

ers are mostly used to compare with the author’s methods

in their papers before 2009. However, since most of such

papers compared only two trackers and one is their owns,

we can not extract anything from these papers based on our

criteria described in Section 2.2. Many other trackers in-

cluding most recently published ones have no open-source

codes. It is always hard to fully implement them, thus

are rarely compared in the contests. Although some of the

trackers are compared in their own authors’ new work, ac-

cording to our criteria, they are not included as well. There

are also some newly developed trackers. Due to the limit in

time, they are not yet widely tested by others.

6.3. Limitations

Nearly all the evaluation efforts in the existing literatures

contain some kinds of biases. Our goal is to provide a novel

perspective to look at this problem and be as unbiased as

possible. However, we may not be able to avoid the system-

atic biases. Although we have several thousands of records,

it is still quite insufficient to solve the problem. That is also

why we have to bootstrap our data in the Elo’s rating and

Glicko’s rating. By bootstrapping, we inevitably use a bi-

ased population based on our observations.

Another potential problem is some trackers are sensitive

to initialization or parameter tuning, but we have not taken

them into consideration. It may introduce biases if we do

not have sufficient amount of data. But if we assume all the
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experiments in contests are conducted independently, such

problem can be neglected as we have more contests. Many

of this kind of biases can be alleviated as we accumulate

more and more data, so that we could give a better, i.e.,

more unbiased evaluation.

We also make the assumption that all the sequences are

independent, even when the same sequence appears in dif-

ferent contests. Because we have no idea about their im-

plementation details, parameter tunings or initialization as

mentioned above.

It is possible that different trackers have different spe-

cializations, for example, some trackers may be good at

dealing with occlusion, illumination variation, re-identify

the missing target and so on. In our paper, we only consider

their abilities in overall scenarios so far. In the future if

we can categorize the dataset into different scenarios when

more records are available, we may be able to provide more

specialized rankings.

We would also like to point out that the records we ex-

tracted from contests are possibly biased themselves, be-

cause some sequences are more popular than others and

compared more often. Thus, the whole datasets do not nec-

essarily reflect the real world. Another issue is that many

sequences are shot intentionally to address the difficulties

in tracking scenario, such as occlusion etc. Some of them

are shot in constrained environment. So the argument is

similar to [62], the whole datasets the tracking community

shares may not be a good representation of the real world,

thus the ranking results we have may only partially reflect

their performances in the real world.

In summary, it is unrealistic to perform a rigorous un-

biased evaluation for tracking algorithms. That said, the

proposed approach provides a novel and effective way to-

wards reducing the biases in the evaluation. In addition,

most of the issues listed above will be mitigated when more

and more data becomes available.

7. Conclusion
In this paper, we have proposed a novel method to com-

pare trackers performances and rank them using four dif-

ferent algorithms. Following the trend in tracking papers,

we are able to collect a dataset of comparisons of the “sec-

ond best” ones. There is little subjective bias towards these

comparison results, thus we may conduct an unbiased eval-

uation of the trackers. After filtering out potential biases in

various aspects, we construct a dataset containing 15 track-

ers and 6280 records. We use four different methods to

evaluate them. Rank aggregation is to use the partial rank-

ings find a full ranking that optimize some objective func-

tion. Pagerank-like algorithm is an analogue to the webpage

ranking. The latter two take the records as generated from

sports contests and adopt widely used Elo’s and Glicko’s

rating systems to derive the rankings. The results are pre-

sented and we have a few discussion on several issues.
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