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Abstract

The inclusion of shape and appearance priors have
proven useful for obtaining more accurate and plausible
segmentations, especially for complex objects with multi-
ple parts. In this paper, we augment the popular Mumford-
Shah model to incorporate two important geometrical con-
straints, termed containment and detachment, between dif-
ferent regions with a specified minimum distance between
their boundaries. Our method is able to handle multiple in-
stances of multi-part objects defined by these geometrical
constraints using a single labeling function while maintain-
ing global optimality. We demonstrate the utility and advan-
tages of these two constraints and show that the proposed
convex continuous method is superior to other state-of-the-
art methods, including its discrete counterpart, in terms of
memory usage, and metrication errors.

1. Introduction

The piecewise constant Mumford-Shah (MS) model [18]

is one of the most popular models in image segmentation.

In recent years, many efforts have been made to improve

this model in terms of optimizability, by simplifying the

objective function and formulating it as a convex energy

functional [2, 7, 20], and fidelity, by making the objective

function more faithful to the underlying segmentation tasks.

In image segmentation literature, improving objective func-

tion fidelity has taken several forms: (i) adding new en-

ergy terms, e.g. edge, region, and, shape prior terms [1];

(ii) extending binary segmentation methods to multi-label

segmentation [8, 26]; and (iii) incorporating spatial rela-

tionships between labels, objects, or object parts [14]. In

many image labeling tasks, some geometric relationships

are known beforehand, and incorporating this information

into a segmentation algorithm improves results.

In this paper, we focus on segmentation tasks where

two regions must be separated by a third. Specifically, we

focus primarily on the geometric constraint containment,
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Figure 1: The inside vs. outside ambiguity in (a) is resolved by

our containment constraint in (b).

where one region separates a second region from the back-

ground (cf. Fig. 1). Other geometric constraints can also

be enforced using the same framework, such as detach-
ment, where the background separates two regions. This

paper addresses the problem of multi-region segmentation

with these two important geometrical constraints, contain-
ment and detachment with a minimum distance (or thick-
ness) between regions’ boundaries, in a continuous frame-

work while maintaining global optimality. We choose these

two geometrical constraints due to their intuitive definitions,

descriptive power, and ability to help properly segment re-

gions with weak intensity/color appearance models. Using

a continuous framework provides several advantages over

discrete methods: 1) no metrication error; 2) less mem-

ory usage; 3) efficient parallelizability, and 4) allowance for

sub-pixel resolution.

1.1. Previous works

Improving segmentation via encoding spatial relations

between multiple target objects is not new. For example,

some methods encode spatial relationships via relative inter-

object distances [17] while other works have incorporated

fuzzy spatial relationships [9], but those methods do not

handle stricter geometric constraints such as containment.

Another popular approach is to perform atlas-based seg-

mentation, which has been particularly useful in medical

image analysis applications since an atlas encodes the spa-

tial relationships between multiple anatomical structures, or
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Figure 2: Containment vs. similar configurations (h: back-

ground). According to (3), “object i contains object j” in (a) with

Th(Ωh,Ωi,Ωj) ≥ w, but the relationship between i and j in (b)

and (c) is not containment.

organs [10]. However, those methods have been designed

to encode constraints on a single instance of an object in an

image, not multiple instances, spatially-recurring through-

out the image.

A few recent works have focused on tiered segmentation
to encode adjacency relationships [12, 21]. Strekalovskiy

et al. [21] proposed a generalized label ordering constraint

which can enforce many complex geometric constraints

while maintaining convexity. This method requires that

the constraint term obey the triangle inequality, a require-

ment that was later relaxed by introducing a convex relax-

ation method for non-metric priors [22]. Both [21] and [22]

are designed to penalize transitions between adjacent la-

bels, but for meaningful containment and detachment con-

straints, a minimum spatial distance between non-adjacent

labels is required. Other recent works have focused on in-

corporating topological constraints into a segmentation ob-

jective function. In the continuous domain, some methods

incorporate the containment constraint into their segmenta-

tion framework by simultaneously evolving a coupled sur-

faces [19, 23, 25, 28]. However, these works are limited to

objects with two surfaces and also are limited to segmenting

a single instance of each object in an image. In the discrete

domain, Li et al. [16] proposed a method to segment nested

objects, but their method is limited to star-shaped objects.

Delong and Boykov [11] and Ulén et al. [24] proposed seg-

mentation methods that encode geometric constraints (in-

cluding containment) between distinct regions into a graph

cut framework. Our work can be viewed as a continuous

analogue to these works, providing several advantages, as

noted earlier and as will demonstrated in Section 4.

We represent our segmentation using a single continu-

ous labeling function, assigning each region to an interval

of label values. We perform segmentation via energy min-

imization, and we ensure a globally optimal solution using

a “functional lifting” technique, similar to what is used by

Pock et al. [20], to convexify our data energy term by refor-

mulating the problem in a higher dimensional space. This

approach exhibits several important qualities, such as the

ability to deal with topological changes (e.g. spatially re-

curring instances of an object), and extendibility to higher

dimensional images.

We introduce the containment and detachment con-

straints in Section 2. We show how to encode these two con-

straints in a continuous segmentation framework and show

how our formulation can be convexified by functional lift-

ing in Section 2.1. Section 3 explains how the energy is

optimized. Different examples as well as comparisons with

other popular state-of-the-art methods are given in Section

4, followed by our conclusions in Section 5.

2. Methodology
In this section we explicitly define containment and de-

tachment and show how we encode them in a MS based

model while maintaining global optimality.

We first consider a containment constraint in a 3 region

segmentation. We divide the image domain, Ω ⊂ R
2, into

three non-overlapping parts (Fig. 1(b)): the outside or back-

ground region Ωh, the outer region Ωi, and the contained

region Ωj , where Ω = Ωh ∪ Ωi ∪ Ωj . In many binary seg-

mentation applications that use relaxed labeling functions,

label values below 1/2 correspond to background and val-

ues above 1/2 correspond to foreground. We extend this

definition as follows. Given a label set Γ = [0, 1], we define

our labeling function u : Ω→ Γ, such that

0 ≤ u(x) < 1/3 ⇐⇒ x ∈ Ωh

1/3 ≤ u(x) < 2/3 ⇐⇒ x ∈ Ωi

2/3 ≤ u(x) < 1 ⇐⇒ x ∈ Ωj .

(1)

To precisely define containment, we introduce a function

that measures the thickness of the outer region Ωi:

Th(Ωh,Ωi,Ωj) = min
x1∈Ωj

min
x2∈Ωh

‖x1 − x2‖ . (2)

We define containment for 3 regions as:

Definition 1 (Containment). We say object i contains

object j with thickness w if and only if

Th(Ωh,Ωi,Ωj) ≥ w . (3)

We note that Ω = Ωh ∪ Ωi ∪ Ωj is assumed here.

An example is shown in Fig. 2(a) where the light gray

object, i, contains the dark gray object, j, with a minimum

thickness of w. The related configurations between i and j
seen in Fig. 2(b) and (c) are not containment based on our

definition in (3). However, (b) can be seen as containment

in a 4 region segmentation: i contains the interior white

region, and the interior white region contains j.

Given an input image1 I : Ω ⊂ R
2 → R, for objects

i and j and the background h, let μi, μj and μh be con-

stant approximations of the regional intensities and define

1Our method can be extended to vector valued images, e.g. color im-

ages or tensor fields, by modifying the data terms, as in [6], [27]
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gk(x) = |I(x)− μk|2 for k = {h, i, j}. To segment I such

that i contains j we solve the following energy minimiza-

tion problem:

argmin
u∈D

E(u, g)

= argmin
u∈D

∫
Ω

|∇xu(x)|+ ρ(x, u(x), g)dx , (4)

D =
{
u
∣∣ u(x) = 0 for x ∈ ∂Ω and

Th(Ωh,Ωi,Ωj) ≥ w
}
.

Here ∇x is the gradient in x and y directions, g =
(gh, gi, gj), and ρ(x, u(x), g) : Ω → R

+ is a non-negative

data term that encourages u to satisfy (1), e.g.

ρ(x, u(x), g) =

⎧⎨
⎩

gh(x) if 0 ≤ u(x) < 1/3
gi(x) if 1/3 ≤ u(x) < 2/3
gj(x) if 2/3 ≤ u(x) < 1

. (5)

For convenience, we often let ρ be a function of g implicitly,

and write ρ(x, u(x)).
Constraining u to D, E(u, g) ensures that object j and

object h have no shared boundaries, resulting in j being

contained in i. In other words, the segmentation corre-

sponding to u cannot abruptly change from object j to ob-

ject h, and thus the value of u cannot change from u ≥ 2/3
to u ≤ 1/3 in a distance less than w.

This leads us to the fact that the constraint

Th(Ωh,Ωi,Ωj) ≥ w can be replaced by the more

convenient constraint |∇xu| ≤ 1
3w , which limits the rate

that u can change spatially. This lets us rewrite D as

D =

{
u

∣∣∣∣ u(x) = 0 for x ∈ ∂Ω, |∇xu| ≤ 1

3w

}
, (6)

To better understand the equivalence of these constraints,

let’s consider the example shown in Fig. 3. Here, a black

and white image is segmented into three regions, with μh

corresponding to black pixels, μi corresponding to (non-

existent) gray pixels, and μj corresponding to white pixels.

Fig. 3(b) illustrates the labeling function u corresponding to

the segmentation in Fig. 3(a), with no thickness constraint.

Here, u becomes discontinuous (unbounded |∇xu|) in or-

der to avoid assigning any pixels to the exterior object i.
By enforcing the restriction |∇xu| ≤ 1

3w , u is not able to

jump from < 1/3 (background) to ≥ 2/3 (white object) in

less than distance w (Fig. 3(d)). By restricting u, we force

the white object to be contained by an intermediate region

of thickness of w (cf. Fig. 3(c)). We note that if w is large

enough, the energy increase from hallucinating the interme-

diate region in Fig. 3(c) will become greater than the energy

increase from not segmenting the inner white region, and

the result will be u = 0 across the image.

Using a similar formulation to containment, we can

incorporate a constraint ensuring two regions are detached.

(a) Unconstrained

segmentation

u=1/3

u=2/3

(b) u corresponding to (a)

(c) Constrained seg-

mentation

u=2/3

w

u=1/3

1/3

(d) u corresponding to (c),

|∇xu| ≤ 1/3w

Figure 3: Constrained vs. unconstrained labeling function u. In

(a), the 3-region labeling function u, as defined in (1), is used to

segment the white object from the black background, while the

intermediate region has zero thickness. In (b), we see the u cor-

responding to (a). Without a thickness constraint, u is allowed to

become discontinuous, skipping over the interval corresponding to

the intermediate region, i.e. Ωi in (1). In (c), we see how the seg-

mentation changes when the thickness constraint (3) is enforced,

with the intermediate region being hallucinated around the white

object. In (d), we see the u corresponding to (c). By bounding the

rate of change of u, a band of thickness w must be assigned to the

intermediate region.

Definition 3 (Detachment). Object i and object j are

detached with thickness w if and only if

Th(Ωi,Ωh,Ωj) ≥ w. (7)

In other words, object j does not share a boundary with

object i, thereby ensuring a separation between i and j by

enforcing the labeling function u to pass through the back-

ground, h, as it travels from i to j. To encode detachment,

we simply swap gh and gi in (4).

Now, we note that the data term (5) is not convex, mak-

ing standard gradient descent based optimization schemes

prone to local minima. In the next section, we discuss how

to convexify (4) and thus find a globally minimizing seg-

mentation.

2.1. Function convexification

We use a “functional lifting” technique similar to the one

proposed by Pock et al. [20] (motivated by Ishikawa’s work

in the discrete Markov random field setting [15]) to transfer

our energy functional to a higher dimensional space, where

it becomes convex. The objective is to solve the following

minimization problem

argmin
u∈D

{∫
Ω

|∇xu(x)|dx+
∫
Ω

ρ(x, u(x))dx

}
. (8)
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The first term is a convex total variation (TV) term, but the

second term ρ(x, u(x)) can be non-convex. To lift the orig-

inal energy to a higher dimensional space, we represent u in

terms of its super level set, ϕ : Ω× Γ→ {0, 1} by

ϕ(x, γ) = 1{u≥γ}(x) =
{

1 if u(x) ≥ γ
0 otherwise

. (9)

u can be recovered from ϕ via the layer-cake formula

u(x) =

∫
Γ

ϕ(x, γ)dγ. (10)

The TV term in (8) can be re-written with respect to ϕ using

the generalized co-area formula [13]:

∫
Ω

|∇xu(x)|dx =

∫
Ω

∫
Γ

|∇xϕ(x, γ)|dγdx. (11)

By observing that δ(u(x)− γ) ≡ |∂γϕ(x, γ)|2, where δ(·)
is the Dirac delta function, the data term in (8) can then be

re-written as [20]:

ρ(x, u(x)) =

∫
Γ

ρ(x, γ)δ(u(x)− γ)dγ

=

∫
Γ

ρ(x, γ)|∂γφ(x, γ)|dγ.
(12)

Now, using (11) and (12), the equivalent form of (8) is

argmin
{ϕ|u∈D}

∫
Ω

∫
Γ

|∇xϕ(x, γ)|+ ρ(x, γ)|∂γϕ(x, γ)|dγdx.
(13)

Note that the non-convex function ρ does not depend on

ϕ any more and (13) is convex in ϕ. As the last stage of

convexification, ϕ, (9), is relaxed so it varies continuously

between zero and one, i.e. ϕ ∈ Ω× Γ→ [0, 1]. To recover

u, we threshold ϕ and apply (10).

Now, it is not immediately clear what form the constraint

{ϕ|u ∈ D} will take. If we ignore the thickness constraint

from D, we could use ϕ ∈ D1 where

D1 =
{
ϕ
∣∣ϕ(x, 0) = 1, ϕ(x, 1) = 0, ∂γϕ ≤ 0

}
. (14)

It is evident from (9) that every ϕ constructed from the super

level sets of some u are in D1.

We now present a theorem describing how to enforce the

thickness constraint in ϕ. Let ∇3ϕ be the gradient of ϕ in

all components, i.e. ∇3ϕ = (∂xϕ, ∂yϕ, ∂γϕ).
Theorem 1. If

|∇xϕ|
|∂γϕ| ≤

1

3w
, (15)

2From (9), it is observed that the derivative of ϕ with respect to γ is

zero everywhere except where ϕ changes, i.e. u(x) = γ.

then constraint |∇xu| ≤ 1
3w is satisfied by any u con-

structed by thresholding ϕ at some value and applying (10).
Proof: The gradient of ∇3ϕ at point (x, y, γ) is perpendic-

ular to its level set surface at that point. That is, if we let

Lν to be the ν-level surface of ϕ, let v1 be tangent to Lν at

(x, y, γ), and let v2 = ∇3ϕ(x, y, γ), then 〈v1, v2〉 = 0.

Based on (9), u is a level set of ϕ no matter where ϕ
is thresholded. The standard technique for finding a vector

tangent to the surface defined by u is to choose a unit vector

in x and y and set the γ component equal to the rate of

change of u in the chosen direction. Specifically, this means

v =

(
∂xu

|∇xu| ,
∂yu

|∇xu| , |∇xu|
)

(16)

is tangent to the surface u, and thus is orthogonal to∇3ϕ at

any point (x, y, u(x, y)). Thus

0 = 〈v,∇3ϕ〉 (17)

=
〈∇xu,∇xϕ〉
|∇xu| + ∂γϕ|∇xu| (18)

|∇xu| = −〈∇xu,∇xϕ〉
|∇xu| · 1

∂γϕ
(19)

|∇xu| ≤ |∇xϕ|
|∂γϕ| ≤

1

3w
, (20)

where the last step uses
〈a,b〉
|a| ≤ |b|. �

The objective now is to solve:

argmin
ϕ∈D2

∫
Ω

∫
Γ

|∇xϕ|+ ρ|∂γϕ|dγdx, (21)

D2 =
{
ϕ ∈ D1

∣∣∣∣|∇xϕ| ≤ |∂γϕ|
3w

}
. (22)

3. Optimization

Due to the discontinuity in the Euler-Lagrange equa-

tion of (21), we use a primal-dual algorithm, [4, 5], to ob-

tain the global solution. Defining the dual variable p =
(p1, p2, p3)

T , we can write the total variation part of (21) as

|∇xφ(x, γ)| = max
|p′|≤1

〈p′(x, γ),∇xφ(x, γ)〉 , (23)

where p′ = (p1, p2). In (21), recalling that −1 ≤ ∂γφ ≤ 0,

it can be easily shown

ρ(x, γ)|∂γφ(x, γ)| = max
−p3≤ρ

p3(x, γ)∂γϕ(x, γ). (24)
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Using these dual variables, the optimization problem of (21)

becomes a min-max problem

argmin
ϕ∈D2

{∫
Ω

∫
Γ

(
max
|p′|≤1

〈p′(x, γ),∇xφ(x, γ)〉+

max
−p3≤ρ

p3(x, γ)∂γϕ(x, γ)

)
dγdx

}
(25)

= argmin
ϕ∈D2

{∫
Ω

∫
Γ

max
p∈C

〈∇3ϕ,p〉
}
, (26)

Combining the constraints in (23) and (24) gives [20]

C = C1 =
{
p ∈ R

3

∣∣∣∣
√

p21 + p22 ≤ 1, p3 ≥ −ρ
}

, (27)

a cylinder with radius one, open on one end (cf. Fig. 4(a)).

Recalling that ∂γϕ ≤ 0, p3 that maximizes (26) is always

as negative as possible, i.e. p3 = −ρ. Thus for C = C1,

the maximizing p is always on the circle at the base of the

cylinder, highlighted in red in Fig. 4(a).

Unfortunately, while minimizing ϕ over D1 can be done

efficiently, the gradient magnitude constraint D2 imposes

(in order to enforce the thickness constraint) makes the min-

imization of (26) for ϕ difficult.

We will show that by moving the burden of enforcing

the thickness constraint to the dual space, the optimization

problem becomes much easier. Specifically, we will con-

strain ϕ to D1, and introduce a new space for the dual vari-

ables, C2, satisfying the following properties:

1. C2 is convex;

2. if ϕ satisfies (15) then

max
p∈C2

〈∇3ϕ,p〉 = max
p∈C1

〈∇3ϕ,p〉 ; (28)

3. if ϕ does not satisfy (15) then (26) becomes arbitrarily

large and that choice of ϕ will be disallowed:

max
p∈C2

〈∇3ϕ,p〉 =∞ . (29)

Note that since (15) must be enforced at each spatial lo-

cation, conditions 2 and 3 must also hold at each spatial

location, thus the integrals are dropped from (26).

Theorem 2. A set that satisfies the three above conditions
is the truncated cone defined by

C2 =
{

p
∣∣∣∣
√
p21 + p22 ≤ 3w(p3 + ρ) + 1, p3 ≥ −ρ

}
. (30)

Proof. As a truncated cone, C2 is convex, so condition 1 is

satisfied. To show 2 and 3 are satisfied, we will determine,

for a given ∇3ϕ, the value of

max
p∈C2

〈∇3ϕ,p〉 . (31)

(a) (b) (c)

Figure 4: Valid sets for dual variables p. (a) Set C1 [20] (without

any geometrical constraint). (b-c) Set C2; the truncated cone that

impose our constraint (15). (b) When (15) is not satisfies p be-

comes ∞. (c) When (15) is satisfied we obtain the same solution

as (a).

We first note that the circle at the base of the truncated cone

is the same as the circle at the base of the cylinder defined

by C1. Thus, if the p maximizing (31) lies on this circle (the

red set in Fig. 4(c)), then (28) is satisfied. We now simplify

this problem by reducing the possible forms for∇3ϕ and p.

Since the condition (15) and C2 are rotationally symmet-

ric with respect to the first two components, we can as-

sume the second component of ∇3ϕ is 0, i.e. rotating ∇3ϕ
does not change (31). Further, if ∇3ϕ is scaled by some

constant, the maximizing p is not changed. Thus, we let

∇3ϕ = (	, 0, a), where 	 = |∇xϕ| is held constant and

∂γϕ = a ≤ 0 is the only free parameter.

The maximizing p is always on the boundary of C2, since

scaling p until it is on the boundary increases (31). Further,

the first two components of the maximizing p must align

with the first two components of∇3ϕ, so p2 = 0.

If p is on the circle at the base of the cone, it would take

the form p = (b, 0,−ρ), where 0 ≤ b ≤ 1 is a free variable,

and (31) becomes

max
p
〈p,∇3ϕ〉 = max

b
(b	− aρ) , (32)

which is maximized for b = 1, i.e. a p on the edge of the

circle (the red set in Fig. 4(c)), so no maximizing p is on

the inner part of the circle.

If p is on the surface of the cone, it would take the form

p = (3w(b + ρ) + 1, 0, b) (from (30)), where b ≥ −ρ is a

free variable. This gives

max
p
〈p,∇3ϕ〉 = max

b
(	(3wb+ 3wρ+ 1) + ab) (33)

= max
b

(b(3w	+ a) + 3wρ	+ 	). (34)

If (3w	 + a) ≤ 0, (34) is maximized by minimizing b, i.e.

b = −ρ. This corresponds to p on the edge of the circle

(the red set in Fig. 4(c)), which implies (28) is satisfied. If

(3w	+a) > 0, (34) is maximized by b→∞, and (31) gets

arbitrarily large, satisfying (29) (cf. Fig. 4(b)).

To complete the proof, we note that (3w	 + a) ≤ 0 is
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equivalent to the thickness constraint (15):

(3w	+ a) ≤ 0

3w|∇xϕ| ≤ −∇γϕ (35)

|∇xϕ| ≤ |∇γϕ|
3w

. (36)

�
To find the optimal solution for ϕ ∈ D1 and p ∈ C2, we

perform the following primal and dual steps [3]:

Primal step Find the minimum ϕ for a fixed p:

ϕk+1 = argmin
ϕ∈D1

∫
Ω×Γ

〈∇3ϕ,p
k〉+ (ϕ− ϕk)2

2tϕ
. (37)

Dual step Find the maximum p for a fixed ϕ:

pk+1 = argmax
p∈C2

∫
Ω×Γ

〈∇3ϕ
k+1,p〉+ (p− pk)2

2tp
. (38)

tϕ and tp are the step sizes of the primal and dual up-

date equations (here we used tϕ = 0.01 and tp = 5).

The solutions of (37) and (38) are derived from the Euler-

Lagrange equations and projecting the obtained solutions to

their valid sets (cf. Algorithm 1 in Appendix A).

After finding the global solution for the relaxed opti-

mization problem, the labeling function u is recovered by

thresholding ϕ at 0.5 and applying (10). It can be proven

that thresholded minimizers of the relaxed problem are the

minimizers of the binary problem (13) (cf. Appendix B).

We note that our framework can be extended to multiple

nested regions by dividing Γ into more than 3 intervals in

(1). The thickness constraint between consecutive regions

can be set by adjusting w and the interval length for each

region in (1).

4. Experiments and discussion
In this section, we demonstrate advantages of our work

over popular state-of-the-art segmentation methods and

compare our framework with the analogous discrete work

of Delong and Boykov (DB) [11].

4.1. Synthetic data

In our first experiment, we compare our method with DB

in terms of memory usage and metrication error on a simple

synthetic example.

Metrication error is defined as the artifacts which ap-

pear in graph-based segmentation methods due to penaliz-

ing region boundaries only across axis aligned edges. In

Fig. 5, the goal is to segment the three-region object from

the background. Fig. 5(b-d) resulted from DB’s method for

4, 8 and 16 graph connectivity. Note the metrication arti-

facts in Fig. 5(b-c). Increasing the graph connectivity re-

duces metrication error, but also increases memory usage.

(a) Original image (b) GC: 4-connected

(c) GC: 8-connected (d) GC: 16-connected (e) Our result
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(f) Metrication error vs. memory usage

Figure 5: Synthetic three-region object+background segmenta-

tion. (b-d) DB graph cuts based method [11] with different con-

nectivities. (e) Our segmentation results. (f) Metrication error vs.

memory usage: red curve: GC-based method; green circle: our

method.

Memory usage of our method and the graph-based

methods is seen in Fig. 5(f). The red curve in Fig. 5(f)

illustrates the metrication error (1 - Dice similarity coef-

ficient(DSC)) vs. memory usage of [11] for 4, 8 and 16

connectivity, while the green circle represents our method.

Here, removing the metrication error in the graph-based

method requires 16 connectivity, even for these smooth

objects. This requires ∼10 times more memory than our

method (0.80 vs. 7.92 MB).

4.2. Microscopy/Histology cell segmentation

We applied our method to a set of 20 different histol-

ogy and microscopy images consist of multiple instances

of multi-region cells. In these experiments, we show how

containment and detachment with thickness constraints are

useful for cell segmentation and compare our method with

DB [11] in terms of memory usage and metrication error.

Fig. 6 shows a typical microscopy image with multi-

ple cells, where nuclei are typically contained inside a cell

membrane. Fig. 6(b) and (c) show the segmentation re-

sults with a thickness of w = 2 pixels for DB (with 4-

connectivity) and our method, respectively. Metrication er-

ror can be clearly seen in Fig. 6(b). Our method also re-

quires less memory (7.91 MB vs. 33.90 MB).

Changing the thickness of the containing region allows
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(a) (b) (c) (d) (e)

Figure 6: Cell segmentation in a microscopy imagery. (a) Original image, 250×395 pixels. Arrows show abnormal cells. (b) Result of [11],

33.90 MB. (c) Our result (thickness= 2 pixels, 7.91 MB) . (d) Our result to segment only normal looking (elliptical) cells (thisckness=10

pixels, 7.91 MB). Note that [11] needs ∼ 313.41 MB extra memory (347.31 MB in total) to impose thickness of 10 pixels while the

memory usage of our method is independent of thickness constraint. (e) Segmenting isolated nuclei by imposing detachment constraint

(7).

Table 1: DSC and memory usage comparison (20 images).

Method DSC Memory (MB)
No containment [20] 0.6478± 0.06 8.9± 7.2

DB [11] 0.9065± 0.08 180.0± 204.7
Ours 0.9158± 0.07 8.9± 7.2

us to control which objects are segmented. In Fig. 6(a), to

exclude the abnormal cells (arrows) from the segmentation,

we increase the thickness of the outer region (membrane)

from 2 to 10 pixels, resulting in Fig. 6(d). In DB, increasing

the thickness requires more edges be added to the underly-

ing graph, and increasing the thickness from 2 to 10 pixels

requires an extra ∼313.41 MB memory, an almost 10-fold

increase. Thickness can be increased in our method by sim-

ply changing the value of w.

Fig. 6 (e) demonstrates the usage of a detachment con-

straint (cf. (7)), identifying nuclei that are not surrounded

by a cell membrane.

Fig. 8 shows results for 7 other images, comparing seg-

mentations generated using a continuous method without a

containment constraint [20], DB with 4 connectivity, and

our method. These results illustrate the importance of a

containment constraint (first column) and also show the ef-

fects of metrication error (second column). Table 1 summa-

rizes the mean accuracy and memory usage of the 3 meth-

ods across all 20 images, and Fig. 7 compares the memory

usage vs. image size of our method and DB across all 20 im-

ages. We note that some of the images (e.g. the bottom two

rows in Fig. 8) have 4 regions segmented, and Fig. 7 shows

that the memory usage in graph-based methods tends to in-

crease proportionally more than our continuous method in

these cases.

On average, our method converges after 200 iterations

for a 256 × 256 image. Using non-optimized MATLAB

code on a standard 2.3 GHz CPU with 6GB RAM, the graph

cuts-based method [11] tends to run 2-3 times faster than

our method but with more memory usage.
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Figure 7: Memory efficiency: DB (in red) vs. ours (in green). ©:

3-region segmentation; Δ: 4-region segmentation. Memory usage

ratio (DB/ours) for 3 regions: 14.63 ± 4.52 and for 4 regions:

32.40± 8.35.

5. Conclusion
We introduced a variational framework to augment the

conventional MS model for segmenting multi-region ob-
jects. We proposed a labeling function that allows us to
enforce useful geometric constraints such as containment
and detachment. By using this framework, a user can eas-
ily apply high level intuitive geometric constraints to im-
prove segmentation results without the need for a deep un-
derstanding of how the method works. Our method com-
pares favorably with analogous graph cuts-based methods
in terms of metrication error and memory efficiency.
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