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Abstract

We aim to unsupervisedly discover human’s action (mo-
tion) patterns of manipulating various objects in scenarios
such as assisted living. We are motivated by two key ob-
servations. First, large variation exists in motion patterns
associated with various types of objects being manipulated,
thus manually defining motion primitives is infeasible. Sec-
ond, some motion patterns are shared among different ob-
jects being manipulated while others are object specific. We
therefore propose a nonparametric Bayesian method that
adopts a hierarchical Dirichlet process prior to learn rep-
resentative manipulation (motion) patterns in an unsuper-
vised manner. Taking easy-to-obtain object detection score
maps and dense motion trajectories as inputs, the proposed
probabilistic model can discover motion pattern groups as-
sociated with different types of objects being manipulated
with a shared manipulation pattern dictionary. The size
of the learned dictionary is automatically inferred. Com-
prehensive experiments on two assisted living benchmarks
and a cooking motion dataset demonstrate superiority of
our learned manipulation pattern dictionary in represent-
ing manipulation actions for recognition.

1. Introduction

Understanding manipulation actions is attracting in-
creasing interest from the computer vision community
given its promising applications in assisted living, smart
surveillance, human-robot interaction, work-flow optimiza-
tion, etc. The fundamental task is to characterize and model
manipulation action (motion) patterns, i.e., how human in-
teract with different objects. We make several observations.
First, given different objects being manipulated (i.e., object
in use), there exist specific interaction patterns. For exam-
ple, in daily living: dial phone, use silverware, etc. or in
cooking: break egg, mix vegetable, etc., the action (mo-
tion) patterns associated with these object manipulations are
quite distinctive, due to their different functionalities. Sec-
ond, many types of motion patterns are shared among differ-
ent human-object interactions. For example, there is NOT
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Figure 1. Overview of our method. Inputs are paired motion fea-
tures {x𝑖}𝑖=1,⋅⋅⋅ ,𝑁 and the corresponding (i.e., surrounding) ob-
ject association features {a𝑖}𝑖=1,⋅⋅⋅ ,𝑁 . Our contribution is a non-
parametric Bayesian approach (unsupervised) that learns grouped
(according to the type of object being manipulated) and represen-
tative manipulation pattern (i.e., manipulation words) dictionary,
including shared and object specific words. Best view in color.

much perceivable difference between the motions pick up
banana or pick up cup. Last but not least, manipulation
actions have large variations due to the diversity of human
and object and it is general hard to specify in prior how
many types of manipulation patterns are of particular inter-
est (i.e., representative). Therefore, manually defining a set
of manipulation primitives are infeasible for realistic appli-
cations. There exist some previous works on manipulation
action recognition. Yang et al. [20] proposed a concept of
consequences of actions in understanding manipulation ac-
tions. The method monitors the appearance and topologi-
cal structure of the manipulated object and uses a visual se-
mantic graph (VSG) to recognize action consequences. In
both [6] and [7] object classification and action understand-
ing are performed jointly by exploring the mutual context
and interaction between object and action. Similarly, Yao et
al. [21] jointly detect human pose and object in still images.
Moore et al. [11] introduced a hand centric action recogni-
tion framework using HMM by taking positions of the de-
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tected object and hand as observations. Messing et al. [10]
proposed a daily activity (which involves various manipula-
tion actions) recognition method based on velocity history
of tracked key points.

However, limited attention has been paid to how to dis-
cover and characterize representative manipulation action
(motion) patterns associated with different objects from re-
alistic action sequences in an unsupervised manner. On
the one hand, to achieve an action representation, previ-
ous works mostly manually categorize manipulation motion
into a few action primitives. For instance, in [8] manipula-
tion is divided into four types of individual motor primitives
including approach, retreat, push, and rotate; and in [6] hu-
man object interaction is categorized into four classes, i.e.,
object perception, reaching, manipulation and object reac-
tion. Given the large variation and rich content of manip-
ulation actions caused by the diversity of human and ob-
ject, it is not feasible to define manipulation pattern types
manually and thus an unsupervised way to automatically
discover representative manipulation patterns from realis-
tic video sequences (without action labels or annotations) is
demanded. On the other hand, previous methods [11, 6, 7]
use tracked hand trajectories or object detections for repre-
senting actions. However, both hand trajectory and object
detection are difficult to obtain reliably in complex scenar-
ios. False or missing detection and tracking can severely
harm action recognition accuracy. Also, knowing hand po-
sition and pose alone cannot provide very detailed (i.e., fine-
grained) motion information since some important and in-
formative motions and interactions are usually subtle. Thus
these methods are generally incapable of automatically dis-
covering representative manipulation patterns.

To address above mentioned issues, we propose a prob-
abilistic framework to discover representative manipulation
patterns as follows (illustrated in Figure 1). First, instead of
explicitly tracking hand movement, we extract dense mo-
tion trajectories proposed recently in [15], given that: 1)
dense motion trajectories are easily extracted; and 2) they
describe local motions in more detail than hand position
and pose, which not only include subtle hand motion but
also the movement associated with the object being manipu-
lated and thus richer manipulation patterns can be captured.
Second, to obtain the object in use information, instead of
explicitly detecting (i.e., localizing) the object of interest,
we compute the object detection score maps and augment
each extracted motion trajectory with its surrounding object
detection scores (denoted as object association features).
We can view this combination of motion trajectory and ob-
ject detection as a probabilistic (or soft) association which
is less sensitive to false or missing detection and tracking
of either hand or object being manipulated. Taking this
paired motion and object association features as input, our
key contribution is a nonparametric Bayesian approach to

learn a dictionary (denoted as manipulation dictionary) of
representative object manipulation patterns (denoted as ma-
nipulation words) in an unsupervised manner. Adopting a
hierarchical Dirichlet process (HDP) prior [14], our genera-
tive model can automatically discover and model the shared
manipulation patterns among different objects being ma-
nipulated as well as object specific manipulation patterns.
The size of the manipulation pattern dictionary is also in-
ferred. We then derive a Gibbs sampling scheme for learn-
ing the proposed probabilistic model. The learned manip-
ulation dictionary is utilized for action representation. The
novelty of our HDP model is that it not only performs fea-
ture clustering (HDP) but also performs multi-modal (object
map and motion feature) association/fusion. This results in
local and more detailed object-use words (conveys richer
object-use information) due to the designed geometric rule
for linking motion and object map. Comprehensive experi-
ments in two assisted living benchmarks and a cooking mo-
tion dataset demonstrate that our method possesses the su-
perior capability in representing manipulation patterns for
action recognition.

2. Related Works

Our method is partly inspired by the latent topic models
for action recognition [12]. However, our model aims to
discover object manipulation patterns but [12] only models
motion features, e.g., STIPs [9, 3]. Also, using nonpara-
metric Bayesian can avoid the difficulty in selecting optimal
dictionary size, which is a key parameter in [12] that greatly
affects action recognition accuracy.

Wang et. al [18] used hierarchical nonparametric
Bayesian models for crowd analysis. Atomic activities are
modeled as distributions over low-level visual features and
multi-agent interactions are modeled as distributions over
atomic activities, respectively. While their work only fo-
cuses on traffic (crowd behavior) analysis, we propose to
use nonparametric Bayesian for discovering representative
object manipulation patterns.

Packer et al. [13] presented a system that is able to recog-
nize complex, fine-grained human actions involving the ma-
nipulation of objects in cooking action sequences. However,
Kinect-type depth camera is required for providing very ac-
curate human pose trajectories and performing explicit ob-
ject segmentation and localization, which limits its applica-
tion scenario. On the contrary, inputs into our method are
just object detection maps and dense motion trajectories,
which are very easy to obtain. Moreover, in contrast to the
discriminative approach of [13], our focus is to automat-
ically discover representative manipulation patterns given
unlabeled video sequences. Finally, in [13] the object-use
information is modeled in a very coarse/global way which
only encodes co-occurrence between motion feature and ob-
ject instance, which is not sufficient for fine-grained action.
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3. Our Methodology

As introduced in the previous section, instead of explic-
itly tracking hand position and pose and exactly localizing
the object of interest, we propose to first extract dense mo-
tion trajectories, compute object detection score maps from
the image sequences and then associate both types of fea-
tures in a probabilistic (i.e., generative) framework, for the
purpose of discovering representative object manipulation
action (motion) patterns. The advantages are as follows:
1) it is much easier to extract proposed features than ex-
plicit hand tracking and object detection; 2) dense motion
trajectories capture richer and fine-grained motion infor-
mation than hand trajectory; and 3) using a probabilistic
framework for linking motion and object association fea-
tures can achieve a better representation which is less sensi-
tive to false or missing object detection and inaccurate hand
tracking. We give detailed descriptions as follows.

3.1. Manipulation Feature Extraction

Histogram of oriented gradients (HOG) detector [2] has
been widely used for object and human detection, which we
also adopt in this work. In practice, when the object being
manipulated is of too small size or deformable, HOG based
detector gives degraded detection performance. Therefore,
we also utilize recently proposed hough forest based object
detector [5], which gives better detection accuracy for ob-
jects with small size or partial deformations. We run two
detectors on input video frames and the resulting two detec-
tion score maps are normalized to the range of [−1, 1] and
then fused by weighted sum.

To extract motion features, we adopt the recently devel-
oped dense motion trajectories [15]. Dense motion trajec-
tories are very easy and efficient to extract and they cap-
ture detailed local motion information than hand position
and pose sequence. The study in [15] showed dense mo-
tion trajectories achieve state-of-the-art recognition accura-
cies on several human action benchmarks [15]. As in [15],
we use a motion boundary histogram (MBH) descriptor and
a trajectory-aligned (TA) descriptor (i.e., we drop the less
discriminative HOF and HOG descriptors used in [15]) to
represent a motion trajectory. Trajectory length is fixed to
𝑙 = 15 frames throughout all experiments.

To associate a motion trajectory 𝑖 to 𝑗-th type of ob-
ject being manipulated, we do as follows. For each point
along an extracted motion trajectory 𝑖, we calculate the av-
erage object detection score of the neighborhood patch cen-
tered at this point (i.e., within a radius of 10 pixels) in
the corresponding detection score map. We then average
these values over all points along trajectory to value 𝑎𝑖𝑗 ,
which indicates the strength of the association of motion
trajectory 𝑖 to the 𝑗-th type of object. Assume we have
𝑀 types of objects of interest, then for motion trajectory
𝑖, we can denote its object association feature vector as
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Figure 2. Diagram of computing object association features for a
motion trajectory of length 𝑙 = 3. Best view in color.

a𝑖 = (𝑎𝑖1, 𝑎𝑖2, ⋅ ⋅ ⋅ , 𝑎𝑖𝑀 )𝑇 , i.e., a concatenation of the ob-
ject association values for all𝑀 types of objects. Figure 2
illustrates this motion trajectory and object in use (i.e., be-
ing manipulated) association scheme. We denote the motion
feature vector for trajectory 𝑖 as x𝑖 (e.g., a 𝐷-dimensional
vector composed of MBH and TA descriptors). We further
denote the pair (x𝑖,a𝑖) as the 𝑖-th observed object manip-
ulation feature.

3.2. Unsupervised Manipulation Pattern Discovery

Assume that from training video set, we obtain 𝑁 ob-
ject manipulation features (pairs) 𝒳 = {(x𝑖,a𝑖)}𝑖=1,⋅⋅⋅ ,𝑁 ,
i.e., observation data. Our task is to learn a dictionary of
representative manipulation patterns (manipulation words)
which are capable of describing various manipulation ac-
tions. We have the following observations. Some manip-
ulation motions are general (i.e., object independent) such
as pick up/put down object and thus the learned manipula-
tion words associated with these motions should be shared
among different types of object being manipulated. Other
manipulation motions are object specific such as cutting on
the chopping board, phone to ear etc. Also, it is in general
unknown how many manipulation words are sufficient for
well describing various actions. These observations moti-
vate us to utilize hierarchical Dirichlet process (HDP) mix-
ture models [14]. HDP mixture models consider input of
groups of data and learn a dictionary of words (mixture
components) that are shared among groups. In our case,
a group can be naturally considered as manipulation pat-
terns associated with a type of object being manipulated.
HDP specifies different distributions over the mixture pro-
portions for different groups, and this well matches our
problem: some manipulation words (i.e., mixture compo-
nents) are shared by different object (being manipulated)
groups while others are only possessed by a specific group.
Also, the merit of HDP (and other nonparametric Bayesian
approaches) is that the dictionary size can be automatically
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inferred.
We use HDP mixture models as our prior distribution

for motion features {x𝑖}𝑖=1,⋅⋅⋅ ,𝑁 . Object association fea-
tures {a𝑖}𝑖=1,⋅⋅⋅ ,𝑁 are considered as another evidence for
grouping motion features. We introduce a set of variables
𝒮 = [𝑠𝑖𝑗 ]𝑖=1,⋅⋅⋅ ,𝑁 ;𝑗=1,⋅⋅⋅ ,𝑀 to indicate the group assign-
ment, namely, 𝑠𝑖𝑗 = 1 means that motion feature x𝑖 is
associated with object group 𝑗. Note that one motion fea-
ture can be simultaneously assigned to more than one object
group. This is natural as a manipulation motion sometimes
involves several objects. We propose a probabilistic model
to utilize motion features and the corresponding object asso-
ciation features in a collaborative way for manipulation dic-
tionary learning. The graphical representation of our prob-
abilistic model is illustrated in 3(a). The generative process
of this model is described as follows.

1. Sample the global random probability measure 𝐺0

from the Dirichlet process: 𝐺0 ∼ 𝐷𝑃 (𝛾,𝐻). The
base distribution 𝐻 is a 𝐷-dimensional (i.e., dimen-
sionality of motion feature x) Gaussian with zero mean
and covariance Σ0, i.e., ℎ(x) = 𝒩 (x∣0,Σ0). In this
paper, we use upper case alphabet to denote probabil-
ity distribution, e.g.,𝐻(.) and the corresponding lower
case to denote its density function, e.g., ℎ(.). The
scalar 𝛾 is the concentration parameter.

2. For each (object) group 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑀 , sample a ran-
dom probability measure 𝐺𝑗 from the Dirichlet pro-
cess: 𝐺𝑗 ∼ 𝐷𝑃 (𝛼,𝐺0), by taking 𝐺0 as the base dis-
tribution. The scalar 𝛼 is the concentration parameter.

3. For each input motion feature x𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 and
for each object association score 𝑎𝑖𝑗 , 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑀 ,
sample the corresponding group assignment indicator
𝑠𝑖𝑗 from the binomial distribution: 𝑠𝑖𝑗 ∼ (𝑃 (𝑠𝑖𝑗 =
1∣𝑎𝑖𝑗), 𝑃 (𝑠𝑖𝑗 = 0∣𝑎𝑖𝑗)). Here 𝑃 (𝑠𝑖𝑗 = 1∣𝑎𝑖𝑗) is de-
fined as a sigmoid function:

𝑃 (𝑠𝑖𝑗 = 1∣𝑎𝑖𝑗) = 1

1 + exp(−𝑎𝑖𝑗) . (1)

(a) If 𝑠𝑖𝑗 = 0 (i.e., x𝑖 belongs to background
motion), sample x𝑖 according to a universal
background motion distribution (UBM) [19]:
x𝑖 ∼ 𝑝(x𝑖∣𝑠𝑖𝑗 = 0). Similar as in [19], we
use Gaussian mixture models (GMM) to define
the UBM. The GMM parameters (mixture
weights, means, covariances) are denoted as 𝝃 =
{{𝑤𝑑}𝑑=1,⋅⋅⋅ ,𝑈 ; {𝝁𝑑}𝑑=1,⋅⋅⋅ ,𝑈 ; {𝜎𝑑}𝑑=1,⋅⋅⋅ ,𝑈},
i.e., the number of mixtures is 𝑈 = 1000. We
assume independent and isotropic variances for
all feature dimensions. We off-line train the
UBM parameter set 𝝃 on all training motion
features {x𝑖}𝑖=1,⋅⋅⋅ ,𝑁 using EM algorithm.

(b) If 𝑠𝑖𝑗 = 1 (i.e., x𝑖 associates with (object)
group 𝑗), sample a 𝐷-dimensional factor (i.e.,
manipulation word) 𝜽𝑖𝑗 according to distribution
𝐺𝑗 . Then sample the motion feature observation
x𝑖 according to the likelihood x𝑖 ∼ 𝑝(x𝑖∣𝜽𝑖𝑗),
which is a Gaussian 𝑝(x𝑖∣𝜽𝑖𝑗) = 𝒩 (x𝑖∣𝜽𝑖𝑗 ,Σ)
centered at 𝜽𝑖𝑗 with covariance Σ.
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Figure 3. Graphical models of our manipulation dictionary learn-
ing method. (a) our model based on HDP mixture models; and (b)
the equivalent model based on infinite mixture models. Observed
data in gray.

To facilitate model learning, we derive an equivalent in-
finite mixture based model (i.e., 𝐿 mixture components and
𝐿 → ∞) as shown in Figure 3(b). A mixture component
corresponds to a manipulation word. We use 𝐾 to denote
the effective dictionary size, i.e., the number of mixture
components with associated observations from training data
{x𝑖}1,⋅⋅⋅ ,𝑁 . The remaining 𝐿−𝐾 components have no ob-
servation associated to them. We introduce a set of variables
𝒵 = [𝑧𝑖𝑗 ]𝑖=1,⋅⋅⋅ ,𝑁 ;𝑗=1,⋅⋅⋅ ,𝑀 to indicate the mixture compo-
nent index associated with each observed feature x𝑖, i.e.,
𝑧𝑖𝑗 = 𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐿means x𝑖 is assigned to 𝑘-th mixture
component. We explain various terms as follows (probabil-
ity terms with the same definitions explained in the gener-
ative process are omitted). We denote 𝜷 as the global vec-
tor of mixing proportions shared by 𝑀 groups (i.e., object
types) which follows the Dirichlet distribution:

𝑃 (𝜷∣𝛾) = 𝐷𝑖𝑟(𝜷∣𝛾, 𝐿) = 𝐷𝑖𝑟( 𝛾
𝐿
, ⋅ ⋅ ⋅ , 𝛾

𝐿
). (2)

We can also write 𝜷 = (𝛽1, ⋅ ⋅ ⋅ , 𝛽𝐾 , 𝛽𝑢), namely, the first
𝐾 values correspond to the mixture components with ob-
servations, and 𝛽𝑢 denotes the sum of mixture proportions
without any observed data, i.e., 𝛽𝑢 =

∑𝐿
𝑘=𝐾+1 𝛽𝑘. We de-

fine 𝝅𝑗 as the 𝑗-th (𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 ) object group specific
vector of mixing proportions that is sampled from the global
Dirichlet distribution parameterized by 𝜷:

𝑃 (𝝅𝑗 ∣𝛼,𝜷) = 𝐷𝑖𝑟(𝝅𝑗 ∣𝛼,𝜷) = 𝐷𝑖𝑟(𝛼𝛽1, ⋅ ⋅ ⋅ , 𝛼𝛽𝐿).
(3)

Π = {𝝅𝑗}𝑗=1,⋅⋅⋅ ,𝑀 . If data x𝑖 is assigned to 𝑗-th group,
i.e., 𝑠𝑖𝑗 = 1, we sample a mixture component index 𝑧𝑖𝑗
according to the multinomial distribution parameterized by
𝝅𝑗 (i.e., for 𝑗-th object group):

𝑃 (𝑧𝑖𝑗 ∣𝝅𝑗 , 𝑠𝑖𝑗 = 1) =𝑀𝑢𝑙𝑡𝑖(𝑧𝑖𝑗 ∣𝝅𝑗). (4)
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The set of mixture components (i.e., dictionary of manipu-
lation words) are denoted as Φ = {𝝓1, ⋅ ⋅ ⋅ ,𝝓𝐾}, which
are sampled from base distribution 𝐻 , i.e., the Gaussian
with density function 𝑝(𝝓) = ℎ(𝝓) = 𝒩 (𝝓∣0,Σ0). The
likelihood of x𝑖 given 𝑧𝑖𝑗 and the dictionary Φ is:

𝑝(x𝑖∣𝑧𝑖𝑗 ,Φ) = 𝑓(x𝑖∣𝝓𝑧𝑖𝑗 ) = 𝒩 (x𝑖∣𝝓𝑧𝑖𝑗 ,Σ). (5)

The full joint probability of this infinite mixture based
model can be expressed as:

𝑝(𝒳 ,Φ, 𝝃,Π,𝒵,𝒮,𝜷, 𝛾, 𝛼)

= 𝑃 (𝜷∣𝛾)×
𝑀∏
𝑗

𝑃 (𝝅𝑗 ∣𝛼,𝜷)×
𝐿∏
𝑘

𝑝(𝝓𝑘)

×
𝑁,𝑀∏
𝑖,𝑗

{𝑃 (𝑠𝑖𝑗 = 1∣𝑎𝑖𝑗)𝑃 (𝑧𝑖𝑗 ∣𝝅𝑗 , 𝑠𝑖𝑗 = 1)𝑝(x𝑖∣𝑧𝑖𝑗 ,Φ)}𝑠𝑖𝑗

×
𝑁,𝑀∏
𝑖,𝑗

{𝑃 (𝑠𝑖𝑗 = 0∣𝑎𝑖𝑗)𝑝(x𝑖∣𝑠𝑖𝑗 = 0)}(1−𝑠𝑖𝑗). (6)

Similar as in [14], it can be easily shown that the limit (i.e.,
𝐿→∞) of the above model is equivalent to the aforemen-
tioned HDP mixture based model.

We derive a Gibbs sampling procedure to learn the above
model (i.e., posterior sampling 𝒮 , 𝒵 , Φ and 𝜷 given obser-
vations 𝒳 = {(x𝑖,a𝑖)}𝑖=1,⋅⋅⋅ ,𝑁 ) by marginalizing out Π
and setting 𝐿 → ∞. Each time, we sample one variable in
{𝑠𝑖𝑗}, {𝑧𝑖𝑗}, {𝝓𝑘} and 𝜷 alternatively, with the reminder of
the variables fixed to their old values. We first give the no-
tations of counts maintained throughout the sampling pro-
cedure. We denote 𝑁𝑗 as the number of observed data x𝑖

assigned to 𝑗-th object group, i,e.,𝑁𝑗 =
∑

𝑖 𝑠𝑖𝑗 . We denote
𝑛𝑗,𝑘 as the number of observed data assigned to 𝑗-th object
group while it corresponds to 𝑘-th mixture component (ma-
nipulation word), i.e. 𝑛𝑗,𝑘 =

∑
𝑖:𝑧𝑖𝑗=𝑘 𝑠𝑖𝑗 . We denote 𝑚𝑘

as the number of observed data associated to 𝑘-th mixture
component for all groups, i.e.,𝑚𝑘 =

∑
𝑗 𝑛𝑗,𝑘. When a sub-

script is attached to a notation, it means that the variable to
the superscripted index is removed from the set or from the
calculation of the count, e.g., 𝒮(−𝑖𝑗) denotes the set 𝒮 with
𝑠𝑖𝑗 removed and 𝑁 (−𝑖𝑗)

𝑗 means when counting 𝑁𝑗 , the ob-
served data x𝑖 is removed. For the following derived prob-
abilities, constant normalization factors are omitted where
applicable, for notational simplicity.

Sampling 𝑠𝑖𝑗 . The posterior distribution of 𝑠𝑖𝑗 given the
reminder of the variables is as follows:

𝑃 (𝑠𝑖𝑗 ∣𝑎𝑖𝑗 ,x𝑖,Φ, 𝝃,𝒵(−𝑖𝑗),𝒮(−𝑖𝑗),𝜷, 𝛼)

∼
{
𝑃 (𝑠𝑖𝑗 = 0∣𝑎𝑖𝑗)𝑝(x𝑖∣𝑠𝑖𝑗 = 0), 𝑠𝑖𝑗 = 0;

𝑃 (𝑠𝑖𝑗 = 1∣𝑎𝑖𝑗)
∑

𝑘 𝑟
(−𝑖𝑗)
𝑗,𝑘 𝑞𝑘(x𝑖), 𝑠𝑖𝑗 = 1.

(7)

Here 𝑟(−𝑖𝑗)
𝑗,𝑘 is defined as:

𝑟
(−𝑖𝑗)
𝑗,𝑘 =

⎧⎨⎩
𝛼𝛽𝑘+𝑛

(−𝑖𝑗)
𝑗,𝑘

𝛼+𝑁
(−𝑖𝑗)
𝑗

, 𝑘 ≤ 𝐾;
𝛼𝛽𝑢

𝛼+𝑁
(−𝑖𝑗)
𝑗

, 𝑘 = 𝑘𝑛𝑒𝑤.
(8)

and 𝑞𝑘(x𝑖) is defined as:

𝑞𝑘(x𝑖) =

{
𝑓(x𝑖∣𝝓𝑘), 𝑘 ≤ 𝐾;∫
𝑓(x𝑖∣𝝓)ℎ(𝝓)𝑑𝝓, 𝑘 = 𝑘𝑛𝑒𝑤.

(9)

We can regard 𝑞(x𝑖∣𝑠𝑖𝑗 = 1) =
∑

𝑘 𝑟
(−𝑖𝑗)
𝑗,𝑘 𝑞𝑘(x𝑖) as a fore-

ground probability density since it’s a weighted sum (ex-
pectation) of the likelihood value that x𝑖 is either assigned
to mixture component 𝑘 < 𝐾, or not assigned to any exist-
ing mixture component, i.e., 𝑘 = 𝑘𝑛𝑒𝑤. Thus the posterior
is composed by two parts. The first part is 𝑃 (𝑠𝑖𝑗 ∣𝑎𝑖𝑗) which
can be considered as the evidence for motion feature group-
ing provided by 𝑎𝑖𝑗 ; the second part corresponds to either
the UBM 𝑝(x𝑖∣𝑠𝑖𝑗 = 0) or the foreground probability den-
sity 𝑞(x𝑖∣𝑠𝑖𝑗 = 1), which can be considered as the evidence
for grouping provided by x𝑖. This is an elegant point of
our model since a motion feature x𝑖 is linked with an ob-
ject group in a probabilistic way, by taking consideration of
information coming from both x𝑖 and a𝑖.

Sampling 𝑧𝑖𝑗 . If 𝑠𝑖𝑗 = 1, we then sample an associated
mixture component index 𝑧𝑖𝑗 according to the posterior dis-
tribution as follows:

𝑃 (𝑧𝑖𝑗 = 𝑘∣x𝑖, 𝑠𝑖𝑗 = 1,Φ,𝒵(−𝑖𝑗),𝒮(−𝑖𝑗),𝜷, 𝛼)

∼

⎧⎨⎩
𝛼𝛽𝑘+𝑛

(−𝑖𝑗)
𝑗,𝑘

𝛼+𝑁
(−𝑖𝑗)
𝑗

𝑓(x𝑖∣𝝓𝑘), 𝑘 ≤ 𝐾;
𝛼𝛽𝑢

𝛼0+𝑁
(−𝑖𝑗)
𝑗

∫
𝑓(x𝑖∣𝝓)ℎ(𝝓)𝑑𝝓, 𝑘 = 𝑘𝑛𝑒𝑤.

(10)

If the generated 𝑧𝑖𝑗 is associated to a newly issued compo-
nent 𝑘𝑛𝑒𝑤, we then draw a new mixture component 𝝓𝑘 and
add it to the set Φ according to:

𝑝(𝝓𝑘∣𝑧𝑖𝑗 = 𝑘𝑛𝑒𝑤,x𝑖) ∼ 𝑓(x𝑖∣𝝓𝑘)ℎ(𝝓𝑘), (11)

and we let𝐾 = 𝐾 + 1.
Sampling 𝝓𝑘. The posterior probability density for

𝝓𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 is given as:

𝑝(𝝓𝑘∣𝒳 ,𝒵,𝒮) ∼ ℎ(𝝓𝑘)
∏

𝑖𝑗:𝑧𝑖𝑗=𝑘
⋀

𝑠𝑖𝑗=1

𝑓(x𝑖∣𝝓𝑘). (12)

Sampling 𝜷. The posterior distribution of 𝜷 =
(𝛽1, ⋅ ⋅ ⋅ , 𝛽𝐾 , 𝛽𝑢)𝑇 is given as:

𝑝(𝛽1, ⋅ ⋅ ⋅ , 𝛽𝐾 , 𝛽𝑢∣𝒵,𝒮, 𝛾) ∼ 𝐷𝑖𝑟(𝑚1,𝑚2, ⋅ ⋅ ⋅ ,𝑚𝐾 , 𝛾).
(13)

Note that although the hyper parameters 𝛼, 𝛾 can also be
learned by sampling, for the trade-off between effectiveness
and efficiency, we fix their values as 100 in all experiments.
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3.3. Manipulation Action Sequence Representation

Our learned dictionary can be represented as the es-
timated parameter sets Φ̂ = {𝝓𝑘}𝑘=1,⋅⋅⋅ ,�̂� , �̂�, �̂� and

the estimated values for hidden variable sets 𝒮 and 𝒵 .
The inferred effective number of mixture components
(manipulation words) is �̂�. For simplicity, we denote
Ω̂ = {Φ̂, �̂�, �̂�,𝒮,𝒵}. Given a testing video sequence,
i.e., with a set of extracted object manipulation features
(i.e., motion and object association feature pairs) 𝒳𝑡 =
{(x𝑖,a𝑖)}𝑖=1,⋅⋅⋅ ,𝑡, the task of action sequence representa-
tion is to map the feature set 𝒳𝑡 onto a video sequence level
representation vector, which can be input into the subse-
quent action classifier. Towards this end, we consider the
joint conditional probability 𝑝(𝑠𝑖𝑗 = 1, 𝑧𝑖𝑗 = 𝑘∣x𝑖,a𝑖),
which represents the probability of assigning the observed
manipulation feature (x𝑖,a𝑖) to object group 𝑗 and manipu-
lation word 𝑘. Given the observations 𝒳𝑡 and the trained
dictionary Ω̂, we therefore estimate joint posterior prob-
abilities for 𝜓(𝑗, 𝑘) = 𝑝(𝑠𝑖𝑗 = 1, 𝑧𝑖𝑗 = 𝑘∣𝒳𝑡, Ω̂), 𝑗 =

1, ⋅ ⋅ ⋅ ,𝑀, 𝑘 = 1, ⋅ ⋅ ⋅ , �̂� and concatenate them to form a
𝑀 × �̂�-dimensional representation vector 𝝍. An estima-
tion of 𝜓(𝑗, 𝑘) can be derived as:

ˆ𝜓(𝑗, 𝑘) =
1

𝑡

𝑡∑
𝑖=1

𝑝(𝑠𝑖𝑗 = 1∣x𝑖, 𝑎𝑖𝑗 , Ω̂)𝑝(𝑧𝑖𝑗 = 𝑘∣x𝑖, 𝑠𝑖𝑗 = 1, Ω̂).

(14)
where the calculation of 𝑝(𝑠𝑖𝑗 = 1∣x𝑖, 𝑎𝑖𝑗 , Ω̂) and 𝑝(𝑧𝑖𝑗 =

𝑘∣x𝑖, 𝑠𝑖𝑗 = 1, Ω̂) follow directly from Eqn. 7 and Eqn. 10,
respectively. In the meantime, background motions (i.e.,
𝑠𝑖𝑗 = 0) also provide useful information of the whole
body movement, we thus represent them into another rep-
resentation vector 𝜼 = (𝜂1, ⋅ ⋅ ⋅ , 𝜂𝑈 )𝑇 to complement the
manipulation action representation 𝝍, where each 𝜂𝑑, 𝑑 =
1, ⋅ ⋅ ⋅ , 𝑈 can be estimated as:

𝜂𝑑 =
1

𝑡𝑀

𝑡∑
𝑖=1

𝑀∑
𝑗=1

𝑝(𝑠𝑖𝑗 = 0∣𝑎𝑖𝑗)𝑤𝑑𝒩 (x𝑖∣𝝁𝑑, 𝜎𝑑𝐼). (15)

The final representation of an action video sequence is de-
noted as (𝝍𝑇 ,𝜼𝑇 )𝑇 . We use linear SVM, i.e., liblinear [4]
for action classification. The penalty parameter 𝒞 for SVM
is set as 1000 in all experiments.

4. Experiments

4.1. Manipulation Action Recognition in Assisted
Living

We apply our method for manipulation action recog-
nition on two assisted daily living benchmarks including:
the University of Rochester Assisted Daily Living dataset
(URADL) [10] and the Microsoft Research Daily Activity
3D dataset (MSRDA3D) [17]. Both datasets contains very

rich object manipulation actions. For URADL the objects
of interest (for which we compute the detection maps) are
phone, cup, phonebook, snack, plate and silverware, ba-
nana, chopping board, i.e., 𝑀 = 7; for MSRDA3D are
cup, phone, laptop, book, game controller, vacuum cleaner,
guitar, snack, i.e.,𝑀 = 8, respectively. The learned effec-
tive number of mixture components𝐾 (i.e., dictionary size)
for both datasets are 398 and 466, respectively. Figure 4
illustrates the learned posterior distributions of 𝑧𝑖𝑗 for dif-
ferent object groups. Also, we show some example frames
with manipulation patterns according to different manipula-
tion words. From Figure 4, we can observe that some ma-
nipulation words are shared among different object groups
and others are object specific, which demonstrates our basic
idea.

To demonstrate our method’s capability in representing
manipulation actions, we compare our method with the fol-
lowing methods in terms of action classification accuracy.

1. BOW + DT: the bag-of-words method based on dense
trajectory features proposed in [15]. We use the implemen-
tation provided by the author [15] and follow the settings
in [15]. The size of the visual word dictionary is 1000,
which achieves the best accuracy in experiment.

2. pLSA + DT: the probabilistic latent semantic analysis
(pLSA) based method proposed in [12]. Instead of using
STIPs [3], we use dense trajectory features (MBH + TA) to
train the dictionary, because our off-line result has shown
that dense trajectories significantly outperform STIPs. The
superiority of dense trajectory based features was also well
demonstrated in [15].

3. Obj + DT: to demonstrate the superiority of our
method in terms of motion and object association, we com-
pare with a naive combination of dense trajectory features
and object detection features. Namely, we calculate the
histogram of different object detection scores over the se-
quence and augment this histogram with the aforemen-
tioned BOW + DT feature representation. SVM is used
for classification with the same kernel as in [15].

4. Obj + Hand: to demonstrate our method’s advantages
in terms of 1) the richer motion information encoded by the
learned manipulation pattern dictionary and 2) the proba-
bilistic framework of motion and object association, we also
compare with the simultaneous action and object detection
method proposed by Kjellström et al. [7]. In [7], hand is
detected explicitly and only its 2𝐷 position and pose infor-
mation are extracted, and objects are deterministically asso-
ciated to the hand based on spatial distance.

For all comparing algorithms, their corresponding pa-
rameters (e.g., dictionary size, SVM parameters etc.) are
set optimally based on the validation on a subset of the
training data, if not otherwise specified. Leave-one-person-
out classification accuracies are shown in Table 1. For
MSRDA3D, some action classes do not contain manipula-
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Figure 4. Examples of posterior distributions on 𝑧𝑖𝑗 (i.e., mixture proportions) on URADL for different object groups (right most column,
due to limited space, we only show distributions of the first 50 manipulation words. Horizontal and vertical axes correspond to word index
and probability, respectively). Example frames with motion trajectories according to different manipulation words (in different colors) are
shown, in terms of both group shared words (left most column) and object specific words (middle four rows). Best view in color.

Table 1. Recognition accuracy comparison for URADL and
MSRDA3D datasets. For MSRDA3D, we report accuracies on
the whole dataset and on the subset including 8 classes of manip-
ulation actions (i.e., in the bracket).

Method URADL MSRDA3D (subset)
BOW + DT 87.3% 79.4% (81.3%)
pLSA + DT 85.3% 77.5% (80.0%)
Obj + DT 92.7% 80.6% (87.5%)

Obj + Hand 82.7% 74.4% (85.0%)
Our Method 98.0% 86.9% (96.9%)

tion actions. Therefore, besides reporting accuracies on the
whole dataset, we also report accuracies on the subset which
only contains 8 classes of manipulation actions including
drink, eat, read book, call cellphone, use laptop, use vac-
uum cleaner, play game and play guitar. From Table 1,
we can observe: 1) dense trajectory feature based meth-
ods generally outperform hand trajectory based method be-
cause missing or false detection and tracking of hand and
object degrades recognition performance and subtle local
manipulation motion patterns cannot be captured by hand
movement; 2) using object detection scores to complement
motion features improves classification accuracy, which is
NOT a surprise since objects provide important contextual
information; however, our proposed method significantly
outperforms this naive combination. The reason is that our
derived probabilistic model provides a much better motion
and object association scheme and our method can automat-
ically discover representative common and object specific
manipulation patterns thus achieving higher discriminative
capability; and 3) in URADL, when a subject is manipu-
lating an object (e.g., phone), other objects (e.g., phone-
book, cup, banana) are also in the scene, therefore the per-

Table 2. Recognition accuracy comparison for URADL and
MSRDA3D datasets.

URADL
Messing et al. [10] Wang et al. [16] Our Method

89% 96% 98.0%

MSRDA3D
Wang et al. [17] Our Method Our Method + Joints

85.8% 86.9% 91.3%

formance of directly augmenting motion features with his-
tograms of object detection scores is degraded by the pres-
ence of these not-in-use objects. However, our method takes
the paired motion and object association features, and not-
in-use objects cannot affect our method as their association
scores with any motions are low.

We also compare the state-of-the-art recognition accura-
cies on both datasets in Table 2. For all comparing methods,
as the experimental settings (train/test partition) are exactly
the same, we directly cite the reported accuracies in their
respective publications. For URADL, the comparing meth-
ods include: 1) Messing et al. [10] which uses velocity his-
tories of tracked keypoints for recognition; and 2) Wang
et al. [16] which utilizes multi-scale spatio-temporal con-
texts. For MSRDA3D, we compare the method by Wang
et al. [17] which is based on the mined actionlets. This
method heavily relies on 3D body joints information ex-
tracted by depth camera (a strong feature), and therefore for
fair comparison, we also test our method by augmenting the
only joint position features in [17] with our representation
to boost the performance. Results shown in Table 2 demon-
strate the superior performances of our method.
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Table 3. Recognition performance (mean F-score for all classes) comparison for KSCGR dataset.
Method BOW + DT pLSA + DT Obj + DT Obj + Hand Doman and Kuai [1] Packer et al. [13] Our Method

Mean F-score 0.61 0.55 0.64 0.59 0.74 0.71 0.79
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Figure 5. Example frames with motion trajectories according to
different manipulation words (in different colors). Both group
shared words and object specific words examples are shown.

4.2. Cooking Motion Recognition

We also apply our method on cooking motion recogni-
tion which contains rich and fine-grained object manipula-
tions. We use the ICPR 2012 Kitchen Scene Context based
Gesture Recognition (KSCGR) contest dataset [1], which
contains pre-partitioned training and testing set. There are
five candidate cooking menus cooked by five different ac-
tors. The task is to recognize eight types of cooking mo-
tions including: baking, boiling, breaking, cutting, mixing,
peeling, seasoning, and turning. The objects of interest are
pan, oil bottle, salt bottle, bowl, knife, spoon, chopping
board, egg, ham, i.e., 𝑀 = 9. Examples of learned ma-
nipulation words are illustrated in Figure 5 and the inferred
𝐾 = 538. As defined in the contest, the evaluation met-
ric is the mean recognition 𝐹 -score over all motion cate-
gories. Besides aforementioned methods, we also compare
our method to the best reported result in the contest by Do-
man and Kuai [1] and state-of-the-art cooking action recog-
nition method developed in [13]. As human skeleton data
(3D pose) is not available, to implement [13], we instead
use a standard skin color based hand detector to estimation
hand position. The list of objects to recognize is the same
as in our method. The results are summarized in Table 3.
Note that as most not-in-use objects are in the kitchen table,
the method based on naive combination of motion trajectory
features and object detection score histogram is severely af-
fected. Also, unreliable detection of hand or objects and
incapability in encoding fine-grained motions degrade per-
formances of both Obj + hand and [13]. In contrast, our
method can well models representative manipulation pat-
terns and therefore it achieves the best performance.

5. Conclusion
We propose an unsupervised learning framework for dis-

covering representative object manipulation patterns based
on nonparametric Bayesian. The learned manipulation pat-
tern dictionary is used for action representation on two
assisted daily living benchmarks and a cooking motion
dataset. The superiority of our method in representing ma-
nipulation action sequence for recognition is demonstrated.
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