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Abstract

Motion blur and rolling shutter deformations both inhibit

visual motion registration, whether it be due to a moving

sensor or a moving target. Whilst both deformations ex-

ist simultaneously, no models have been proposed to han-

dle them together. Furthermore, neither deformation has

been considered previously in the context of monocular full-

image 6 degrees of freedom registration or RGB-D structure

and motion. As will be shown, rolling shutter deformation is

observed when a camera moves faster than a single pixel in

parallax between subsequent scan-lines. Blur is a function

of the pixel exposure time and the motion vector. In this pa-

per a complete dense 3D registration model will be derived

to account for both motion blur and rolling shutter deforma-

tions simultaneously. Various approaches will be compared

with respect to ground truth and live real-time performance

will be demonstrated for complex scenarios where both blur

and shutter deformations are dominant.

1. Introduction

Electronic rolling shutter (RS) cameras have been becoming

increasingly present in a wide number of applications and

devices due to their low cost, low power consumption and

continual read-out properties. In particular they are able to

acquire much higher frequency scene dynamics via their in-

trinsic time-varying intra-image measurements whereas GS

sensors acquire the entire image at the same time instant.

This comes, however, at the cost of a more complex camera

projection model. More specifically, each horizontal scan-

line in a RS sensor is acquired at a different time instant and

the data can be read-out in parallel. Unfortunately RS cam-

eras capture deformed images if the camera is in motion or

objects move in the scene.

On the other hand, image motion blur (MB) affects a large

range of algorithms that deal with moving sensors (i.e. reg-

istration, SFM, camera shake, video analysis,etc.). MB de-

pends directly on each pixel’s exposure period (electronic

shutter interval) and even with small motions some amount

of blur is present. Subsequently if there is enough motion to

produce RS deformations then there is imperatively enough

motion to create MB effects also. In [3] on RS deforma-

tions, the authors note the problem of MB but choose to not

address it. Other papers choose to minimise the effect by

reducing the exposure to a minimum and using artificially

bright lighting or easy to detect markers.

1.1. Rolling Shutter Motion Deformation

Early work that specifically modelled RS deformations was

published in [26]. In this work the authors used an array

of CMOS cameras to create undistorted images by select-

ing the scan-lines from different cameras but which were

acquired at the same time instant. Prior to that there was

some study made on X-slit, crossed-slit, or two-slit non-

central projection cameras [6] and these models are closely

related to the RS model, however, they do not consider

motion between projections. A first study on estimating

structure-and-motion from a RS video sequence is given

in [17]. Here the authors correct image distortion using

temporal optic flow correspondences and the assumption of

a constant fronto-parallel camera velocity. The authors only

validated their model on simulations but in practice the lat-

eral rotational movements, which were assumed zero, are

the most significant image deformation components.

A prominent model for estimating RS deformations is based

on 12 parameters (6 for pose and 6 for velocity) using a

known 3D model. In the seminal publication [1] it was nec-

essary to initialize the pose and also correspondences be-

tween a target 3D model and the image. Later extensions

involved considering 3D line models and regions of inter-

est (ROI), using a high-end RS camera, to increase tracking

frame-rate [5]. Structure of the scene was also estimated

using stereo in [2]. In [14] 6 + N × 6 degrees of free-

dom (dof) are estimated by tracking groups of scan-lines

independently to model non-uniform motion and more re-

cently the same authors proposed a polynomial projection

model. In all of these papers [1, 5, 2, 14], restrictive black

and white markers were used to simplify feature extraction

and avoid modelling low level feature deformations. In [7]

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.252

2016



the approach is very similar to [1] except they model only

rotation or planar scenes and use Harris features with a KLT

tracker but only synthetic results are shown.

Rectifying RS images is another approach whereby motion

estimates are used to re-render the images as though all

the pixels were imaged by a GS. In [3], RS rectification

is modelled via a translational model (an affine model was

also considered). The deformations were treated as an un-

derlying high-frequency jitter of the camera and this high-

frequency motion is estimated using optic-flow point fea-

ture correspondences. The authors also calibrate the time

coefficient between the capture of subsequent rows in the

camera. In [8], the rectification of RS deformations of

videos is achieved based on planar homographies. Lastly,

in [9] RS rectification is simplified to rotation only and the

authors use this to perform structure from motion estimation

and Bundle Adjustment respectively.

1.2. Motion Blur Deformation

Surprisingly all these previous works have only considered

RS deformation but none have handled motion blur. MB,

in its general form, varies with respect to the full 6 dof

motion of the camera. Ideally one would like to perform

image-deblurring so as to obtain a deconvolved image of the

scene. Some recent work on de-blurring includes [11] who

performs 6dof de-blurring using an intertial sensor or [20]

which models non-blind deblurring with over-exposed pix-

els. An overview of spatially invariant de-blurring is given

in [24]. Previous authors have noticed that real-time 6dof

pose estimation is much more efficient if blurred images

are directly aligned rather than attempting the computation-

ally expensive task of de-blurring. In [12], an inertial sensor

was used to estimate motion and perform pose tracking in

the presence of MB. Later rotations and MB were estimated

using only a single image [13]. In [10] a generative transla-

tional MB model was proposed for a KLT tracker. Addition-

ally they show that de-blurring the current estimate can be

performed in an off-line reconstruction process. In [15], a

homography based MB estimation approach is proposed. In

this case 8 parameters of the SL(3) Lie group are estimated

using 8 dof estimation for the homography parameters plus

either 8 dof for the MB direction or 1 additional dof for

the MB magnitude (limited to high frame-rate). In [21] a

very similar approach to [15] is proposed but an Efficient

Second-order Minimization (ESM) is used. In that paper

only 8 parameters are estimated and the MB velocities are

directly computed between subsequent estimates of the ho-

mography. Recently [18] gave a complete state-of-the-art

on MB rendering for computer graphics. These approaches

are important since they provide rendering techniques to al-

low generating blurred images in real-time.

1.3. Rolling Shutter and Motion Blur

None of the previously cited papers on RS and MB deforma-

tions have, however, attempted to simultaneously correct for

both rolling shutter and blur distortion. The dual problem

that should be considered is to both:

• correct for rolling shutter distortions that are induced

by sensor motion or moving objects,

• correct for image blur induced by integrating moving

light rays during the sensor exposure period.

It is clear that in a RS sensor these two issues are implicitly

coupled. The RS deformation is observable when there is

parallax between two successive scan-lines due to motion.

Underneath this threshold only a small amount of blur will

be observable and it will depend on the pixel exposure time

and the motion observed in the image. In [23] different ana-

log and digital imaging shutter mechanics are presented and

the coupled effect of motion-blur and rolling shutter defor-

mations is discussed. The paper, however, does not look at

removing distortion or estimating unknown parameters.

1.4. Dense vs Feature-based

Another drawback of previous approaches is that they are

mostly ”feature-based”. For RS models, [17, 3] use

2D optic flow to obtain geometric point correspondences.

In [1, 5, 2, 14] markers are used for matching and in [7, 8, 9]

KLT features are used. For MB, [12, 13] used edge features

(edgels). Feature-based approaches inherently use rigid

low-level operators to extract and match features. They are

therefore prone to modelling error and do not work as in-

tended on distorted images unless they are re-designed. On

the other hand dense direct approaches are much more ro-

bust, especially in the case of MB. This can be attested by

the fact that direct approaches still work in the presence of

MB and that most MB approaches [10, 15, 18] consider di-

rect region tracking. Recent approaches in dense localiza-

tion and mapping [4, 19, 25] have shown that dense 3D reg-

istration can be performed in real-time using the full-image.

To our knowledge neither RS nor MB deformation models

have been considered for dense real-time 3D registration.

1.5. Overview

In this paper a unified model is proposed for monocular di-

rect 6 dof pose tracking from a dense 3D model in the pres-

ence of both RS and MB deformations. The same model is

also used to perform real-time structure and motion estima-

tion for an RGB-D sensor. The main contributions are:

• A unified approach for both rolling shutter and motion

blur estimation, via a 6 dof state model that improves

on [1] for RS and [15] for MB.

• Dense minimization of intensity errors across the en-

tire image as [4, 19, 25, 16] instead of using features.
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• Motion blur model is also valid for global-shutter cam-

eras by simply setting the camera readout time to zero.

• Real-time implementation on GPU, with color (RGB)

MB estimation and RS correction.

For the MB model, the proposed approach follows [15, 18],

however, direct estimation is performed on the entire im-

age rather than a single patch and the 6 parameters of the

SE(3) Lie group are estimated rather than the 8 parame-

ters of SL(3). For the RS component, it will be shown that

only 6 velocity parameters are sufficient instead of 12 as

in [5, 2, 14]. In essence, the additional 6 dof corresponds

to estimating the 3D model pose, however, as we show it

can be calibrated only once in the first image. In fact, direct

image-based approaches do not require any initialization if

the first image is taken as the world frame. Both 6 and 12

dof models will be compared and detailed further in the ar-

ticle and the proposed approach will be shown to be valid

for monocular model based registration.

2. Dense image observation model

Live direct 3D model-based tracking will be defined for

monocular cameras using a dense large-scale world model

that has been acquired in real-time by an automatic map-

ping process. The paper will also consider real-time 3D

model acquisition by performing dense structure and mo-

tion (SaM) estimation with RGB-D sensors. The ap-

proach is based on real-time dense tracking and mapping

as in [4, 19, 16, 25]. In the present paper a graph of

RGB-D key-frames is stored to represent the 3D model

within which 6 dof poses are the edges in the graph. All

local key-frames can be transformed into a global world

frame to obtain an equivalent 3D model. In this context

consider a calibrated camera sensor with a colour bright-

ness function I : Ω × R+ → R+; (p) �→ I(p, t), where

Ω = [1, n] × [1,m] ⊂ R2, P = (p1,p2, . . . ,pnm)� ∈
R mathrmmn×2 ⊂ Ω are pixel locations within the image

acquired at time t, and n×m is the dimension of the sensor

image. It is convenient to consider the set of measurements

in vector form such that I(P, t) ∈ R+nm×1.

Now consider a key-frame that has been predicted from the

3D model I∗ = {I∗,D∗} as done in [16], or equally an

image of an RGB-D sensor, I = {I(t),D(t)}, to be the set

containing both intensities and depth measurements. D :
Ω × R+ → R+; (p, t) �→ D(p, t) is the depth function

associated to each pixel of the image. Note that t and P

may be omitted in these functions for clarity.

Consequently V = (v1,v2, . . . ,vnm)� ∈ Rmn×3 is de-

fined as the matrix of 3D vertices related to the image pixels

according to the following point-depth back-projection:

vi = K−1piD(pi), (1)

where K ∈ R3×3 is the intrinsic matrix of the camera and

pi are the homogeneous pixels coordinates.
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Figure 1. Top, RS camera model. Each raw of the sensor is sequen-

tially exposed during a fixed exposure time te. The total readout

time tr is the delay between the readout of the first and the last

row. The frame period tp is the time delay between the readout of

the same raw of the image. Bottom, global shutter mode. All rows

of the image are exposed simultaneously during a fixed exposure

time te.

The objective here is to register a current image I with a ref-

erence image I∗ predicted from the 3D model (e.g. a graph

of key-frames), where I is undergoing a full 3D transfor-

mation T = (R, t) ∈ SE(3) defined between I and I∗.

Throughout, R ∈ SO(3) is a rotation matrix and t ∈ R(3)
a translation vector. A superscript ∗will be used throughout

to designate the predicted reference view variables.

2.1. Global shutter

With a global shutter camera, all the pixels of the sensor

are simultaneously exposed during the acquisition period tp
(see Figure 1). Under the assumption of brightness consis-

tency and assuming that the exposure time of the sensor te
is infinitesimally small, if the true pose T̃ is known (∼ will

denote true values throughout) then the warped image in-

tensity at pixel p∗ is equal to the reference image intensity:

I∗(p∗) = I

(
w(T̃;K,v∗)

)
, (2)

where the warping function w(T̃,K,v∗) warps a vertex v∗,

associated with the back-projected pixel p∗ from (1), with

the rigid transformation T̃ onto the normalized image plane:

pw = KΠT̃v∗, (3)

where the matrix Π = [I3×3,0] ∈ R
3×4 projects 4 vectors

onto 3 space. An overline will be used to indicate homo-

geneous coordinates normalized w.r.t. the last component.

Since the projected pixel pw may not correspond to inte-

ger coordinates, a bilinear interpolation is used to obtain

the corresponding intensities. Note that the intrinsic matrix

K is assumed constant over time and may be omitted in the

warping functions for clarity.
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2.2. Rolling shutter

Now considering that the current image I has been acquired

with a RS camera, under constant linear and angular veloc-

ities xv = (υ,ω) ∈ R6. As depicted in Figure 1, each

row of a RS sensor is exposed sequentially with a time de-

lay tΔ = tr
n

, where tr is the total readout time and n is the

number of rows in the image. The value of tr is assumed

constant for the camera and can be obtained from a calibra-

tion procedure as described in [22]. T̃ will be the pose of

the last exposed row of the image at time ti with respect to

the last exposed row of the image at time ti−1.

The warping function that transfers a current image intensity

onto the reference frame is then defined such that:

I∗(p∗) = I

(
w2

(
T(τ x̃v)

−1, w1(T̃,v∗)
))

, (4)

where the first warping w1(·) is the standard global shutter

warping of equation (3). The second warping w2(·) trans-

fers the warped pixel from the GS space to the RS space.

The scalar value τ is the time constant for a particular scan-

line but since the reference pixels have been warped with a

6dof transformation, their coordinates no longer have a in-

teger correspondence with a scan-line in the current image

and they are scattered. It is therefore necessary to compute

the scan-line constant for each pixel by:

τ = tΔe
�
2 p

w, (5)

where pw is the warped pixel resulting from the first warp-

ing w1(·), which applies the motion, and e2 = (0, 1)� ex-

tracts only the vertical coordinate of each pixel.

The matrix T(·) = e[.]∧ is the integral of a constant velocity

over τ , obtained by the exponential matrix of x̃v,

T(τ x̃v) = eτ [x̃v]∧ =

τ∫
0

x̃vdt ∈ SE(3), (6)

with the operator [.]∧ as:

[x̃v]∧ =

[
[ω]× υ

0 0

]
∈ se(3),

where [.]× represents the skew symmetric matrix operator.

Due to the associative properties of the warping functions,

the rolling shutter projection can be denoted as

I∗(p∗) = I

(
wrs(T(τ x̃v)

−1T̃,v∗)
)
. (7)

2.3. Motion blur

The blurring model detailed in this section is based on [15]

for planar homography patches parametrized on SL(3).
Here this idea is extended to use the entire image and to

base transformations on SE(3).

Reconsidering the case of a global shutter camera and fo-

cusing on an image I corrupted by motion blur. Let Iu be

the un-blurred version of that image (which is usually not

available). Given the true 6 dof velocity x̃v and an exposure

time of te, the blurred intensity can be generated at pixel p

from the un-blurred image by the following model:

I(p) =
1

te

ti∫
ti−te

Iu (w(T(−tx̃v),v)) dt, (8)

where v is the vertex corresponding to the pixel p.

In image-based tracking the reference frame is usually main-

tained untouched to avoid corrupting the measurements and

the aim is to transform and de-blur the current image such

that it is equal to the reference as in equation (2):

I∗(p∗) = Iu
(
w(T̃,v∗)

)
, (9)

however, as has been shown in [10], de-blurring the cur-

rent image I to obtain Iu from (8) is expensive and ill-

conditioned.

It is therefore more efficient to introduce motion blur into

the reference image so as to maintain this equality in the

presence of blur. To create the same blur as observed in the

current image, it is necessary to first transform the reference

image to the current image (using the 3D model), then in-

tegrate the blurred set of intensities according to the motion

vector and finally re-transform the new image back to the

reference image (again using the 3D model). The current

blurred image must still be warped to the reference accord-

ing to equation (2). Finally, the equality can be written as:

I

(
w(T̃,v∗)

)
=

1

te

ti∫
ti−te

I∗
(
w(T̃−1T(−tx̃v)T̃,v∗)

)
dt.

(10)

In practice, the integral term of equation (10) is approxi-

mated with a discrete sum over M samples. This blur gen-

eration technique correspond to warping M images and av-

eraging their values into a single image and is valid for con-

stant velocity and under brightness consistency assumption.

2.4. Unified model

Now considering that the current image I is acquired with

a RS camera, under the exposure period te, the following

equality is obtained by combining equations (4) and (10):

I

(
wrs(T(τ x̃v)

−1T̃,v∗)
)
=

ti∫
ti−te

I∗
(
w(T̃−1T(−tx̃v)T̃,v∗)

)
dt

This models consists in simultaneously warping the current

image with RS distortions to a virtually blurred reference
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frame. Global shutter sensors are also handled, by simply

setting the total readout time tr = 0, as well as non-blurred

images by setting the exposure time to an infinitesimally

small value te = ε.

3. Non-linear pose estimation

Now supposing that only close approximations T̂ and x̂v of

the true pose T̃ and the true velocity x̃v are available. The

aim is to estimate respectively the pose and velocity incre-

mental transformations {xp,xv} of the true values {x̃p, x̃v}
which satisfy

T̃ = T̂T(xp) and x̃v = x̂v + xv . (11)

The 12 dof state vector is therefore x = {xp,xv} and it can

be estimated by minimizing the following objective func-

tion in a non-linear least-squares procedure:

x̂ = argmin
x

∑
p∗∈P∗

ρ
(
Iw(x,p

∗)− I∗b (x, te,p
∗)
)
,

(12)

where Iw is the current (naturally blurred) warped image

with RS distortions given by (7) and I∗b is the reference (vir-

tually blurred) image of equation (10). ρ is a robust M-

estimator based on Huber’s influence function which rejects

un-modelled data such as self occlusions and local illumi-

nation changes.

The derivation of the 12 dof state RS model as it was first

proposed by [1] assumes that the pose and the velocity are

not coupled. This generic model allows to estimate the ini-

tial pose between a 3D model and the image along with the

velocity. In a live tracking framework, the pose increment

T(x) at time ti is usually initialized with the last estimated

pose at time ti−1. If the time constant between ti−1 and

ti is known, then the true velocity can be obtained from

the instantaneous velocity twist that parametrizes the pose.

Therefore the state vector can be reduced to only 6 dof by

assuming a constant velocity during the frame period tp,

leading to x̃v = 1
tp
x̃p.

The unknown x is then obtained using a standard re-

weighted Gauss-Newton approach:

x = −(JTWJ)−1JTW(Iw − I∗b ), (13)

where the nm× 6 Jacobian matrix J is evaluated at x = 0,

and where W is a diagonal weighting matrix of dimensions

nm× nm obtained by M-estimation.

The pose estimate T̂ is finally homogeneously updated by

T̂← T̂T(x), (14)

and the minimization is iterated until the increment x is suf-

ficiently small: ‖x‖ < ε.

4. Structure and Motion

Whilst most classic RS or MB approaches perform model-

based pose estimation using a monocular camera, it is also

possible to consider the RS and MB model proposed in Sec-

tion 2.4 for real-time structure and motion estimation us-

ing an RGB-D sensor (projective light, stereo or other). It

is assumed that both the colour image and the depth im-

age have synchronised rolling shutter cameras so that the

same 6 velocity parameters can be used to rectify both im-

ages. The colour and 3D structure is estimated by fusing

corrected RGB-D image over time as published in [16]. In

that case the RS function of (4) is used to correct for dis-

tortion before fusion. As the real-time MB model of (10) is

generative, this results in integrating blurred images into the

3D model. For the moment it is possible to perform compu-

tationally expensive de-blurring of the key-frames as a post

process as for example in [20]. Future research will look at

optimising these approaches for real-time de-blurring.

5. Experimental Results

A real-time implementation of the proposed approach was

developed on the GPU using OpenCL. The SaM algorithm

runs at 30 Hz with input images of size 640 × 480 pix-

els, on a Nvidia GTX 670 GPU. For more details on the

real-time optimisation please refer to [16]. In the following

experiments, the motion blur generation of equation (10)

is performed with M = 20 samples, which appears to be

sufficient to minimize aliasing and allows real-time com-

putation. A more efficient strategy would be to adjust the

number of samples with the camera velocity and exposure.

5.1. Simulated results

The algorithm has been tested on synthetic sequences of im-

ages with ground truth, generated from the Sponza atrium

model (http://www.crytek.com). The rendering engine was

designed using OpenGL with ambient illumination. Mo-

tion blur is obtained by invoking the rendering pipeline M

times during the exposure time te, and the resulting images

are averaged into a single image. In order to generate real-

istic motion blur and to avoid aliasing effects, 100 samples

are used. RS effects are generated using equation (4) by

re-projecting the rendered image into a new frame.

Three sequences of 445 images were generated using the

same input trajectory computed from 6 dof velocity incre-

ments integrated over the frame period te = 0.033s. The

first sequence simulates a global shutter camera with motion

blur (te = 0.025s, tr = 0.0s). The second sequence simu-

lates a non-blurred rolling shutter camera (te = 0.0s, tr =
0.026s), and the third sequence simulates a rolling shutter

camera with motion blur (te = 0.025s, tr = 0.026s). Fig-

ure 2 shows the image no369 of each sequence and illus-

trates the distortions induced by each camera model.
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(a) Global shutter, without blur (b) Global shutter with blur (c) Rolling shutter without blur (d) Rolling shutter with blur

Figure 2. Synthetic scene observed with a constant velocity from the same viewpoint using different camera models. (a) is a perfect global

shutter camera, (b) is a global shutter camera with motion blur, (c) is a rolling shutter camera without motion blur and (d) is a rolling shutter

camera with motion blur.
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Figure 3. Simulation results for the 3 sequences. First row: Angular pose error with respect to the angular velocity. Second row: Re-

projection error (RMSE) with respect to the angular velocity.

For each scenario, a single static reference frame I
∗ =

{I∗,D∗} has been taken and is used as a reference for all

trials. Figures 3(a),(b),(c) report the absolute angular error

with respect to the absolute angular velocity of the cam-

era. Figures 3(d),(e),(f) report the root mean squared error

of the objective function (12) with respect to the absolute

angular velocity of the camera. For each sequence, sev-

eral registration models where considered: global shutter

without motion blur (GS), global shutter with motion blur

(GS+MB), rolling shutter without motion blur (RS), rolling

shutter with motion blur (RS+MB) and rolling shutter with

motion blur using 12 parameters (RS+MB 12 dof).

For the first sequence (only corrupted by motion

blur) (a),(d), it can be seen that modelling motion

blur (GS+MB) considerably improves the accuracy of the

pose estimation compared to the standard model (GS). In

the second sequence (only corrupted by rolling shutter

perturbation) (b),(e) the same analysis can be made,

modelling rolling shutter (RS) also improves the accuracy

of the pose estimation compared to the standard model

(GS). In the third sequence containing both motion blur

and rolling shutter effects (c),(f), it appears that only

modelling motion blur (GS+MB) or only modelling rolling

shutter effects (RS) do not improve the accuracy even if

the image re-projection error (RMSE) is smaller than the

standard model (GS). This emphasizes the correlation

between rolling shutter and motion blur effects in the

image projection subsequently creating a false minimum.

When blur and rolling shutter effects are simultaneously

estimated, pose estimation remains accurate even with high

velocities. The 12 dof model gives similar results to 6 dof

but requires inverting a larger Jacobian and takes longer

to converge. In Figure 3, only the rotational error w.r.t.

ground truth has been provided since both translational

and rotational components behave similarly and rotational

movements produce much larger image velocities unless a

high speed vehicle is used.

5.2. Real data

For the experiments, a calibrated Asus Xtion Pro Live RGB-

D camera was used as RGB-D for SFM and as a monocular

camera for model-based registration. The readout time tr
of the rolling shutter which was calibrated in [22] was used

for the purposes of the following experiments.
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(a) SaM with GS (b) SaM with RS

Figure 4. Structure and motion results. 3D point clouds obtained with the GS model (a) and with the RS model (b). The RS model allows

to correctly handle image deformations.

(a) Reference image (b) Current image (c) 3D textured model and trajectory

(d) Reference with virtual blur (e) Current image undistorted
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Figure 5. Images extracted from a real sequence. (a) is the virtual reference frame used for registration generated from the dense 3D model

shown in (c). (b) is the current image undergoing rolling shutter and motion blur distortions. (d) is the virtual image after applying the

estimated blur. (e) is the current image after rolling shutter effect removal. The completely dark regions in the images correspond to regions

where no information is available. (f) shows the RMSE for 200 images of the sequence.

In order to build a dense 3D model the real-time SaM ap-

proach proposed in [16] was used with the proposed rolling

shutter and motion blur deformation model as introduced in

Section 4. A first sequence was acquired by a user running

down a corridor with a hand-held RGB-D camera. The im-

ages of figure 4 show a portion of the point clouds obtained

using the GS model and the proposed RS model. For the

GS point cloud 4(a), it can be seen that the posters on the

wall are not correctly aligned due to the RS deformation.

One the other hand, the RS model was able to correct the

distortions 4(b), since the posters are well aligned.

A second set of monocular registration experiments were

carried out in an office containing a desk, books and clut-

ter using the 3D model acquired from the SaM step. The

reconstructed model is composed of 6 key-frames shown in

Figure 5(c). The camera was waved around the environ-

ment with very fast movements in each of the 6 dof and

the estimated trajectory is also shown. In Figure 5 several

images of the real sequence are shown. Due to computa-

tional constraints, it is not possible to iteratively generate

a dense key-frame from the 3D model during registration.

As such, some small occlusions are considered as outliers

in the registration process (see the contour of the screen in

Figure 5(d)). Figure 5(f) shows the root mean square im-

age re-projection error. For visualization purposes only 200

images of a 1100 images sequence are given. The five dif-

ferent techniques are again compared. It can be seen that

the RS+MB model performs the best and maintains a low

RMSE across the entire sequence. The worst case is the

standard GS model. It can be seen that GS+MB maintains

an RMSE error which is also quite low but still slightly

worse than the RS+MB. As was observed in the simulations

with ground truth this model minimizes the error well but

the pose estimate is not accurate. In the RS case the RMSE

is quite poor most likely due to its inability to handle the

motion blur. In practice for the same camera velocity, expo-
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sure value and read-out constants, the motion blur for this

setup gives a much larger deformation than the rolling shut-

ter effects. Finally, the 12 dof RS+MB only model gives

average performance and high noise sensitivity characteris-

tics are present. This could be explained by the fact that the

model is over parametrized and so the estimate varies with

noise in the image.

Many more results are provided in the associated video in-

cluding large scale SaM and robust tracking for both simu-

lated and real results.

6. Conclusions

This paper has addressed the problem of model-based 6 dof

motion estimation using a consumer-level rolling shutter

camera undergoing fast movements within large scenes. A

unified solution for simultaneously estimating both motion

blur and rolling shutter deformations was proposed within

a direct dense registration framework that does not require

feature extraction and matching. The same model was also

used for live SaM using an RGB-D sensor. Results have

shown the superior performance of the approach with re-

spect to competing approaches using both sequences with

ground truth and also via a live demonstrator that runs in

real-time. It has been shown that it is only necessary to

estimate the velocity twist of the camera motion to esti-

mate rolling shutter, motion blur and camera pose informa-

tion. This is an improvement over previous rolling shutter

approaches because none handle motion blur nor do they

parametrise the system with 6 dof therefore improving pre-

cision, robustness and computational efficiency.
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