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Abstract

We present a scanning method that recovers dense sub-
pixel camera-projector correspondence without requiring
any photometric calibration nor preliminary knowledge of
their relative geometry. Subpixel accuracy is achieved by
considering several zero-crossings defined by the difference
between pairs of unstructured patterns. We use gray-level
band-pass white noise patterns that increase robustness to
indirect lighting and scene discontinuities. Simulated and
experimental results show that our method recovers scene
geometry with high subpixel precision, and that it can han-
dle many challenges of active reconstruction systems. We
compare our results to state of the art methods such as mi-
cro phase shifting and modulated phase shifting.

1. Introduction

Active scanning approaches using a camera and a pro-

jector have gained popularity in various 3D scene recon-

struction systems [15, 14]. One or many known patterns are

projected onto a scene, and a camera observes the defor-

mation of these patterns to calculate surface information.

Camera-projector correspondence is achieved by identify-

ing each projector pixel by a code defined by the projected

patterns.

The resolution of a projector being finite, several meth-

ods attempt to recover subpixel correspondences, thus giv-

ing better reconstruction results. In practice, it is often the

case that a camera pixel observes a mixture of intensities

from two or more projector pixels. The camera pixel in-

tegrates their intensities reflected from the scene, and the

problem is then to estimate the composition of the measured

intensity.

The main contribution of this paper is to present a

method that recovers very high precision subpixel cor-

respondence and is robust to indirect illumination. Our

method uses a sequence of gray level band-pass white noise

patterns to encode each projector pixel uniquely[4]. These

Figure 1. A band-pass gray level pattern projected on a scene (left)

and its 3D reconstruction using our method (right).

are called unstructured patterns because the codes do not

represent projector pixel position directly and a search is

required to find the best correspondence for each camera

pixel [12, 5, 17, 4]. This approach is robust to challenging

difficulties in active systems such as indirect illumination

and scene discontinuities. Our method yields the same ro-

bustness as [4] while using a lot less patterns. Besides, it

produces dense subpixel correspondence whereas the origi-

nal method did not.

The key to achieving both subpixel correspondence and

reducing the number of patterns is to increase the length of

the code generated from the patterns. Instead of using the

signed differences between each pattern and a reference as

in [4], we consider differences between all possible pairs

of blurred gray level unstructured patterns. The resulting

codes are much longer than the number of patterns albeit

with some redundancy. Every sign change between neigh-

boring projector pixels provides a zero-crossing which is

used as a constraint to recover subpixel correspondence. An

example of our patterns is shown in Fig. 1 along with a 3D

reconstruction.

The method we propose uses two-dimensional patterns

and is designed to avoid the need for geometric or pho-

tometric calibration of both the camera and the projector.

While our method could rely on epipolar geometry to allow

using one-dimensional patterns, we argue that they create
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more indirect lighting because of their low frequency in one

direction [9]. Moreover, estimating epipolar geometry can

in some cases be a tedious or impossible task. For example,

it is nowadays quite common to use catadioptric or other

non conformal cameras or projectors in multi-projector sys-

tems [16].

In Sec. 2, we summarize previous works in coded light

systems, in particular to achieve subpixel precision. In

Sec. 3, we introduce our method to increase the amount of

information of unstructured light patterns. In Sec. 4, we

show how to recover subpixel correspondence on synthetic

data. We validate the method on real scenes in Sec. 5 and

compare with results of state of the art methods. We con-

clude and propose future works in Sec. 6.

2. Previous work
The goal of this paper is to achieve a high precision sub-

pixel reconstruction for static scenes in the presence of sev-

eral challenges like indirect illumination, scene discontinu-

ities or projector defocus (see [13] for a list of standard

problems). Many active reconstruction methods can work

at subpixel precision levels (see [15, 14] for extensive re-

views). However, their accuracy is widely affected by their

lack of robustness to the aforementioned difficulties[10, 4].

Some improvements were made possible lately by a careful

redesign of the projected patterns[10, 3, 7, 8].

Several methods are based on the projection of sinu-

soidal patterns which encode the projection position by a

unique phase [18, 19]. The pattern must be shifted sev-

eral times and several frequencies are often needed [11]. A

limited photometric calibration is required since the phase

estimation is directly related to the intensities affected by

the gamma of the projector. Modulated phase shifting [3]

was introduced to generate less indirect illumination and in-

crease the accuracy of the subpixel correspondences. The

method modulates the highest frequency patterns with or-

thogonal high frequency sine waves. The number of pro-

jected patterns needed is very high however since each pat-

tern is itself modulated by several shifted patterns. The

method described in [6] can be used to reduce the required

number of patterns by multiplexing the modulated patterns

together. Due to the periodic nature of the pattern, all

the above methods require a ”phase unwrapping” step to

disambiguate the phase recovered. Phase unwrapping in-

volves lower frequency patterns that can introduce large er-

rors [11], in particular because of indirect lighting [13]. Re-

cently, micro phase shifting was introduced in [10] to un-

wrap the recovered phases using only high frequency pat-

terns. Due to low frequencies in one direction, the projected

patterns still produce some indirect illumination that can af-

fect the results.

Another category of methods [12, 4] use so-called un-

structured light patterns that form temporal codewords to

Figure 2. Bits are recovered by taking intensity differences be-

tween pairs of images. Two quadratic codes are shown for two

adjacent pixels of the image pair (i, j). The labels A and B il-

lustrates the computation of a bit of Ẅ[x, y] and Ẅ[x + 1, y] as

bit(ci[x, y]− cj [x, y]) and bit(ci[x+ 1, y]− cj [x+ 1, y]).

identify each projector pixel uniquely, but require an ex-

plicit search to obtain correspondences. In [4], the patterns

were designed to make constant the amount of indirect il-

lumination, and the method was shown to be very robust.

However, it did not yield subpixel accuracy reconstruction

and required a lot of patterns.

3. From linear to quadratic code length
In [4], a camera pixel recovered a bit from the observed

intensity by looking at the sign of the difference with the

mean intensity over all patterns. The mean was considered

a good reference because it is expected to be near constant

when using a high enough frequency. For N patterns, a

linear codeword Ẇ of N bits is generated by comparing

each captured pattern ci with the average image c̄ for each

pixel p = (x, y). We have

Ẇ[p] = {bit(ci[p]− c̄[p]), 1 ≤ i ≤ N} (1)

where bit(a) has been defined as

bit(a) =

⎧⎪⎨
⎪⎩

0 a < 0

1 a > 0

random 0 or 1 a = 0

. (2)

We propose to increase the codelength by considering all
possible pairs of pattern images as illustrated in Fig. 2. This

provides a codeword Ẅ of quadratic length
(
n
2

)
defined as

Ẅ[p] = {bit(ci[p]− cj [p]), 1 ≤ i ≤ N, i < j ≤ N} . (3)

This quadratic code is very unstable for binary patterns

however, since half the intensity comparisons will yield dif-

ferences of 0. We next explain how to generate our patterns

which alleviate this problem.

3.1. Blurred gray level pattern generation

We propose to use band-pass gray level patterns which

are generated as follows. Similarly to [4], we first apply
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a band-pass filter on white noise in the frequency domain,

keeping only frequencies ranging from f to 2f where f
is the same parameter as in [4]. After taking the inverse

Fourier transform, the pattern is a random gray level sig-

nal composed of a limited range of frequencies. To produce

uniform contrast across the whole pattern, we then binarize

the pattern using a threshold at its average intensity, and

then apply a blur kernel to make the pattern grayscale once

again. The blur deviation should be close to W
6f where W

is the width of the image patterns, which is the average ”ra-

dius” of black and white regions in our pattern (though the

exact value used is not critical, see Sec. 4.4). In the next sec-

tion, we analyse the number of patterns required to match.

3.2. Number of required patterns

Using these gray-level patterns, the quadratic code Ẅ
now contains more information for each pixel than its lin-

ear counterpart Ẇ but also some redundancy. The entropy

of Ẇ is clearly N bits. Since the entropy of N pairwise

distincts elements is log2(N !) bits, out of the N2−N
2 bits

of Ẅ , only log2(N !) actually provide information. As an

example, 50 images will provide a quadratic code of length

1275 bits which effectively contains 214 bits of informa-

tion. So a quadratic code from only 50 images is equivalent

to a linear code of 214 images.

A minimum of 24 patterns is needed to uniquely encode

each pixel of a 800×600 projector. This number could be

slightly decreased if one allows the use of median filtering

on the correspondence map (we do not advise this however,

see our results in Sec. 5.2). The number of patterns is also

expected to be lower when the epipolar geometry is known.

Note that, in our experiments, we chose to use more than

the minimal number of patterns to remove the number of

images as a source of errors and better assess the remaining

reconstructions errors.

4. Achieving subpixel accuracy

As is the case with [4], the non-subpixel correspondence

of a camera pixel is found using the LSH algorithm[2] that

finds a match between the pixels of the camera and the pro-

jector, identified by the quadratic codes {Ẅc} and {Ẅp}
respectively (using Eq. 3).

Assuming a camera-projector pixel ratio near 1, the cam-

era pixel will generally see a mixture of four neighboring

projector pixels. This mixture can be described by two pa-

rameters (λ̂x, λ̂y) where 0 ≤ λ̂x, λ̂y ≤ 1 which represent

the subpixel matching disparity between camera pixel p̂ and

projector pixel p.

Consider that a camera pixel p̂ = (x̂, ŷ) has been

matched to a projector pixel p = (x, y), using the LSH

algorithm. To estimate (λ̂x, λ̂y), we first need to find which

quadrant represented by four projector pixels {(x, y), (x +

Figure 3. The red and cyan points corresponds to intensities of pi
and pj respectively, for a quadrant out of four. The black curves

represents the zero-crossing Sij(x, y, δx, δy, λx, λy) = 0. Each

pair (i, j) generates a 2D zero-crossing that provides constraints

that are used to estimate the true subpixel position.

δ̂x, y), (x, y+ δ̂y), (x+ δ̂x, y+ δ̂y)} adjacent to p out of the

four possible, contains the sub-pixel match for p̂.

4.1. Selecting the right quadrant

There are four quadrants each composed of three projec-

tor pixels located around the matched projector pixel. The

correct quadrant is selected as the pair (δ̂x, δ̂y) for which

the difference between the camera and projector codes is

minimal :

δ̂x, δ̂y = arg min
δx,δy∈{−1,1}

(∣∣∣Ẅc(x, y)− Ẅp(x+ δx, y)
∣∣∣+

∣∣∣Ẅc(x, y)− Ẅp(x, y + δy)
∣∣∣+

∣∣∣Ẅc(x, y)− Ẅp(x+ δx, y + δy)
∣∣∣
)
.

4.2. Estimating the subpixel position
For a projector pattern pi, we model the interpolation of

the intensities of the four neighboring projector pixels of a
quadrant as a function of λx and λy using a bilinear plane:

Ki(x, y, δ̂x, δ̂y,λx, λy) =

λy

(
λxpi[x, y] + (1− λx)pi[x+ δ̂x, y]

)

+(1− λy)
(
λxpi[x, y + δ̂y] + (1− λx)pi[x+ δ̂x, y + δ̂y]

)
.

(4)

The 2D intersection of the two bilinear planes defined

by projector patterns pi and pj is obtained by solving

14431443



Ki(x, y, δ̂x, δ̂y, λx, λy) = Kj(x, y, δ̂x, δ̂y, λx, λy). We de-

fine :

Sij(x, y, δ̂x, δ̂y, λx, λy) = Ki(x, y, δ̂x, δ̂y, λx, λy)−
Kj(x, y, δ̂x, δ̂y, λx, λy)

= A+Bλx + Cλy +Dλxλy

(5)

where

A = pj [x, y]− pi[x, y]

B = pj [x+ δ̂x, y]− pi[x+ δ̂x, y]−A

C = pj [x, y + δ̂y]− pi[x, y + δ̂y]−A

D = pj [x+ δ̂x, y + δ̂y]− pi[x+ δ̂x, y + δ̂y]− C −B +A.
(6)

Equation 5 defines a polynomial which can be evaluated

at any position (λx, λy) inside the region defined by the

quadrant. The sign of the value gives the side of the curve

Sij(x, y, δ̂x, δ̂y, λx, λy) = 0 on which this point lies (see

Fig. 3).

For each pair of patterns (pi, pj), the pair is discarded if

the two planes do not intersect. Otherwise, if bit(ci[p̂] −
cj [p̂]) = bit(pi[p] − pj [p]), then the subpixel position

should be located on the side of the curve towards p. Con-

versely, if the bits are different, then it should be located

on the other side of the curve. Thus, each pair (pi, pj) for

which the planes intersect effectively provides a constraint

on the value of the true subpixel location (λ̂x, λ̂y). To ac-

count for the noise in camera codes, one cannot directly ap-

ply each constraint. In practice, (λ̂x, λ̂y) should be voted as

the value that satisfy the most constraints. In the next sec-

tion, we present a hierarchical approach to efficiently solve

this problem.

4.3. Hierarchical voting

The true subpixel position (λ̂x, λ̂y) is the one satisfying

the most constraints. It is found using a hierarchical voting

scheme. At the highest level, the quadrant is divided into

4 equal square bins for 0 ≤ λx, λy ≤ 0.5. Note that once

the correct quadrant has been selected, the true subpixel lo-

cation cannot be greater than 0.5 (otherwise the adjacent

quadrant should have been selected). For each useful con-

straint, a bin gets voted if at least one of its corners is on

the correct side of the curve. The process is then repeated

recursively by dividing the winning square bin in four, un-

til the desired amount of precision is reached. Note that if

the two planes defined by a pair (pi, pj) do not intersect at

some level, this constraint can be safely ignored at the next

levels for more efficiency. For the experiments presented in

this paper, we used 7 levels.

However, in practice, camera bits can have errors due to

image noise, changes in surface albedo α and the gamma

Figure 4. RMS subpixel error as a function of the standard devia-

tions of the blur in pixels and the Gaussian intensity noise level.

(a) (b)
Figure 5. For our synthetic experiment, the estimated subpixel lo-

cation (a) is only slightly affected by the gamma nonlinearity of

the camera. (b) is improved by increasing the number of patterns.

factor γp of the projector. We evaluate their effects in the

next section.

4.4. Effects of noise and gamma

Image noise and several other factors lead to misleading

constraints on (λ̂x, λ̂y). We ignore in this paper the effects

of scene albedo as we assume that it is constant within the

field of view of a single camera pixel. Fig. 4 plots the RMS

subpixel error for different standard deviations of the blur

in pixels and noise level. Synthetic subpixel positions were

created by shifting 50 patterns of f = 64 cycles per frame

and a 800× 600 resolution. One can see that the exact blur

deviation is not critical as there is a range going from 2 pix-

els to about 4 pixels that produce low error. In our experi-

ments, we used a blur standard deviation of 800
6∗64 ≈ 2 (see

Sec. 3.1). As for the gamma factor γp, Fig. 5(a) shows that

its effect is very small when using 50 patterns. Finally, we

also tested synthetically the error evolution when varying

the number of patterns. Fig. 5(b) shows how the error de-

creases with the number of patterns. Note that, for all tests,

we did not observe that the actual subpixel position has any

effect on the RMSE (data not shown).

5. Experiments
In this section we describe the experimental setup we

used to assess the quality of the reconstruction obtained
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Figure 6. The robot was first scanned alone on a table (left), then

a plastic board was added to the scene to create indirect lighting

(right).

with our method. We first present quantitative results with

respect to an object for which the ground truth was acquired

using an Arius3D laser scanner. We then show various 3D

reconstructions of a challenging scene and evaluate their

quality by visual inspection. We compare our method to

several other subpixel methods : the original phase shift-

ing (PS) method of [19], modulated phase shifting (ModPS)

presented in [3] and micro phase shifting (MicroPS) [10].

In all our experiments, we used a Samsung SP-400B pro-

jector with a resolution of 800×600 pixels and a Prosilica

GC-450C camera with a resolution of 659×493. If needed

by the method, a gamma correction was applied to the pro-

jected patterns. Each device was weakly calibrated inde-

pendently and their final intrinsic parameters and relative

geometry were found by a bundle adjustment[1] for the pur-

pose of 3D visualization. The set of points used for the bun-

dle minimization is the intersection of the correspondences

estimated by each method so as to not introduce any bias

toward a specific method in the subsequent 3D error mea-

surements.

5.1. A simple scene with a ground truth : the robot

As shown in Fig. 1, a robot model was used in our ex-

periments. To obtain a ground truth, it was scanned by Ar-

ius3D1 at a very high resolution (0.1mm sampling, 10 mi-

cron RMS error).

In order to measure the sensibility of each reconstruc-

tion method to interreflection, we reconstructed the robot,

with and without interreflections from a nearby plane (see

Fig. 6). Fig. 7 illustrates how each method performed on a

section of the robot model not affected by interreflections.

Each method performed equally well, and the precision of

the reconstruction is quite good. For fair comparison, ev-

ery method used a budget of approximately 50 patterns to

perform the scan. In order to do so, PS used 8 frequen-

cies from 1/8 to 1/1024, 3 shifts per frequency for each

direction (horizontal and vertical) for a total of 48 projected

patterns. ModPS used 4 frequencies from 1/16 to 1/1024 :

the highest frequency was modulated by 6 shifted versions

of an orthogonal sinus wave of frequency 1/16 and each

1http://www.arius3d.com

UQS�200

PS�400

ModPS

PS

MicroPS

UQS

UQ

�760 �740 �720 �700

�370

�360

�350

�340

�330

Figure 7. X-Z projection of reconstructed robot models for various

methods. Units are in mm. The green curve is the reference scan.

The portion of the robot which is reconstructed is illustrated in the

cropped image at the top of the curves.

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

UQS
MicroPS
ModPS
PS

distance (mm)
Figure 8. Histogram of reconstruction variations for the robot

scene featuring strong interreflections.

frequency used 3 shifts. The unwrapping used the method

of [11] and 9 patterns per direction, so ModPS used a to-

tal of 54 patterns. Finally, we slightly modified the original

MicroPS method to use more than 3 shifted version of the

highest frequency used to compute the wrapped phase. In

[10], only 7 images were used. Since we wanted to use 50

patterns for all methods, 14 images were dedicated to un-

wrapping the phase in each direction (we used the frequen-

cies recommended by the authors in the data available on

their webpage2) and 11 shifted versions of a high frequency

sine wave were used to compute the phase for a total of 50

patterns. We also added the results of UQ [4] which is not

a subpixel reconstruction but provides a scale to appreciate

how well all the subpixel algorithms perform. PS-400 is the

result of PS using 25 patterns per frequency (as opposed to

3 which is the minimum). UQS-200 is our method using

200 patterns.

We then evaluated the difference between 3D reconstruc-

tions and the ground truth in the area affected by interreflec-

2http://www.cs.columbia.edu/CAVE/projects/MicroPhaseShifting
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Figure 9. A complex scene featuring (1) translucency, (2) sharp

discontinuities, (3) subsurface scattering and (4) interreflections.

tions. The histogram of variations is illustrated in Fig. 8.

Our method (UQS) is the least affected, followed by Mi-

croPS, ModPS and finally PS. It was expected that PS would

be the worst performer since it does not feature robustness

to interreflections. Overall, our results and those of Mi-

croPS are very similar. They will be compared further on

a more challenging scene in the following section.

5.2. Comparison with Micro Phase Shifting on a
complex scene

In this experiment, we scanned a scene composed of sev-

eral objects which feature different materials and properties

(see Fig. 9).

The 3D reconstructions we obtained with both methods

is shown in Fig. 10. The top row shows the reconstruction

using 50 patterns for UQS, and 50 patterns for MicroPS.

The bottom row shows the same reconstruction using 200

projected patterns for each method (for MicroPS, 86 pat-

terns were used in each direction to estimate the phase). The

reconstructions are similar for both methods at 50 patterns,

even though some errors can be spotted in the reconstruc-

tion of slanted surfaces by MicroPS. It is however clear that

UQS produces better results using 200 patterns. In partic-

ular, reconstruction was successful on a large region of the

transparent Christmas ball, whereas MicroPS did not im-

prove its results using 200 patterns, as shown in Fig. 11.

Note that the MicroPS method uses 1D high frequency

patterns to unwrap and compute the phase. These generate

more interreflections than our 2D patterns. This is espe-

cially visible in the corner at the back of the scene, where

two bumps are falsely reconstructed as a result of some in-

direct lighting bouncing of each wall, as seen in Fig. 12.

Discontinuities can also be problematic for MicroPS. For

instance, correspondences are erroneous on sharp edges or

at the border of a discontinuity, as seen on Fig. 13. When

(a) (b)
Figure 11. Reconstruction of the translucent Christmas ball with

(a) UQS (b) MicroPS. A larger portion of the ball is reconstructed

using UQS.

(a) (b)
Figure 12. Reconstruction of the corner between the two walls with

(a) UQS (b) MicroPS. Two bumps on each side of the corner are

falsely reconstructed using MicroPS due to the indirect illumina-

tion generated by its 1D patterns.

using only 7 patterns as presented in [10], a median filter is

applied to correct unwrapping errors and noisy phase esti-

mates due to low signal to noise ratio. Since we used a lot

more images, we found that the median filter was overall no

longer necessary. However, when applied, the median fil-

ter does correct some errors (pixels on the edge of the ball

for instance), but also removes the correspondences found

on small objects like the screwdriver as shown in Fig. 13.

MicroPS suffers from a trade-off between correspondence

errors in discontinuities and the lack of correspondences on

small objects. On the other hand, since our method does not

rely on the use of a median filtering and naturally performs

well in discontinuities, it does not feature this limitation.

6. Conclusion
We proposed a method to produce highly accurate sub-

pixel correspondence using a projector and a camera. It re-

lies on the principles of unstructured light scanning meth-

ods that are robust to common and challenging difficulties

arising in active scanning systems. We use continuous gray

scale patterns produced in the frequency domain. Subpixel

position is estimated by comparing every pair of images and

considering the location of zero-crossings. Each pair of im-

ages contributes a bit in quadratic codes that increase the in-

formation used in the subpixel estimation but also decreases

the number of patterns needed to match. The method shown
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(a) (b)
Figure 10. Reconstruction of a complex scene with (a) UQS (b) MicroPS. The number of patterns used was 50 (top row) and 200 (bottom

row).

does not require knowledge of the epipolar geometry nor

any photometric calibration. Reconstructions produced by

our method were in general comparable to the ones pro-

duced by state of the art phase shifting methods, but showed

increased robustness to indirect illumination and depth dis-

continuities.
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(a)

(b)

(c)
Figure 13. Correspondence maps of the screwdriver and hanger

using (a) UQS (b) MicroPS without median filtering (c) MicroPS

with 5x5 median filtering. Errors on the edges (dashed arrows) are

present without median filtering, but sharp edges on small objects

(plain arrow) disappear when applied.
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