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Abstract

Pedestrian detection is one of the most challenging tasks
in computer vision, and has received a lot of attention in the
last years. Recently, some authors have shown the advan-
tages of using combinations of part/patch-based detectors
in order to cope with the large variability of poses and the
existence of partial occlusions. In this paper, we propose a
pedestrian detection method that efficiently combines mul-
tiple local experts by means of a Random Forest ensemble.
The proposed method works with rich block-based repre-
sentations such as HOG and LBP, in such a way that the
same features are reused by the multiple local experts, so
that no extra computational cost is needed with respect to a
holistic method. Furthermore, we demonstrate how to inte-
grate the proposed approach with a cascaded architecture
in order to achieve not only high accuracy but also an ac-
ceptable efficiency. In particular, the resulting detector op-
erates at five frames per second using a laptop machine.
We tested the proposed method with well-known challeng-
ing datasets such as Caltech, ETH, Daimler, and INRIA.
The method proposed in this work consistently ranks among
the top performers in all the datasets, being either the best
method or having a small difference with the best one.

1. Introduction

Pedestrian detection is an extremely challenging task due
to the large intra-class variability caused by different ar-
ticulated poses and clothing, cluttered backgrounds, abun-
dant partial occlusions and frequent changes in illumina-
tion. The seminal work of Dalal and Triggs [5] showed the
importance of using rich block-based descriptors such as the
Histograms of Oriented Gradients (HOG) representation,
which provides both robustness and distinctiveness. Build-
ing upon this work, other authors have proposed additional
features that enrich the visual representation, including the
use of color through self-similarity features (CSS) [22], tex-
ture through block-based Local Binary Patterns (LBP) [23],
and the design of efficient gradient-based features via inte-
gral channels [8, 7].

All of these approaches are holistic, in the sense that
the whole pedestrian is described by a single feature vec-
tor and is classified at once. Recently, some authors have
proposed successful methods for combining local detec-
tors [13, 4, 25] and integrating the evidence from multiple
local patches [14, 20, 16, 18, 11]. This type of approaches
provides more flexibility in the spatial configuration of the
different parts of the object, which leads to higher adapt-
ability to the different poses of the pedestrian. Further-
more, it provides higher robustness against partial occlu-
sions and atypical part appearances [14]. The most promis-
ing local part-based approach, proposed by Felzenszwalb
et al. [13] has shown state-of-the-art results in several chal-
lenging datasets, being consistently ranked among the top
performers.

Regarding the classification method, most approaches
have made use of linear SVM classifiers [6, 23, 13, 22],
which combine both the strength of the SVM machinery
and the efficiency of a linear computation. AdaBoost is also
a popular classifier for pedestrian detection, typically used
in the presence of large numbers of features [24, 8, 7], or for
speeding up the detection through cascaded layers of Boost-
ing [21, 7, 27, 1].

Recently, Random Forest ensembles [14, 20, 16] have
been proposed as an alternative type of ensemble classifier
for pedestrian detection. However, traditionally based on
simple pixel comparisons, their detection accuracy has re-
mained moderate. In this paper, we propose a novel pedes-
trian detection approach that combines the flexibility of a
part-based model with the fast execution time of a Ran-
dom Forest classifier. In this proposed combination, the
role of the part evaluations is taken over by local expert
evaluations at the nodes of the decision tree. As an im-
age window proceeds down the tree, a variable configura-
tion of local experts is evaluated on its content, depending
on the outcome of previous evaluations. Thus, our pro-
posed approach can flexibly adapt to different pedestrian
viewpoints and body poses. At the same time, by using an
appropriate bootstrapping procedure, different trees of the
forest cover different spatial configurations of parts in the
object. This in turn leads to the implicit emergence of a
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part-based model through the proposed Random Forest of
local experts. In addition to this, the decision tree structure
ensures that only a small number of local experts are evalu-
ated on each detection window, resulting in fast execution.
The proposed detection system was evaluated with a vari-
ety of well-known pedestrian datasets such as Caltech [9],
Daimler [10], ETH [12] and INRIA [5], where it consis-
tently ranks among the top performers. This is on par with
the most successful part-based detection system [13], while
our method presents far less design complexity and higher
computational efficiency.

The rest of the paper is organized as follows. Section 2
describes key concepts of the standard Random Forest clas-
sifier, section 3 introduces the proposed method, section 4
describes the state-of-the-art approaches related to ours,
section 5 provides results and section 6 summarizes the
work and discusses its contributions.

2. Standard weak learner model

Before discussing the classifier proposed in our work, let
us first introduce the basic concepts and notation of the Ran-
dom Forest ensemble [3]. For lack of space we restrict the
explanation to only the standard weak learner model, and
we refer to [3] for an in-depth description of the Random
Forests (RF) classifier.

Given a tree of the forest, we follow the notation in [3]
and denote as 𝑆𝑗 the set of samples received by the 𝑗-th
internal or split node of this tree. We denote as ℎ(�⃗�; 𝜃𝑗) ∈
{0, 1} the split function associated with this node, where �⃗�
is a feature vector and 𝜃𝑗 is the set of parameters defining
the split function. The split function acts as a weak classifier
that is part of the ensemble defined by the whole tree. At
training time, the 𝑗-th node receives a subset of samples
𝑆𝑗 , and based on this data the classifier ℎ(�⃗�; 𝜃𝑗) is trained.
This is done by finding the optimal parameters 𝜃𝑗 for this
classifier. At test time, the 𝑗-th node receives the feature
vector �⃗�, and this vector is passed to either the left or the
right child depending on the output of ℎ(�⃗�; 𝜃𝑗) ∈ {0, 1}.

Criminisi et al. [3] define a general framework for defin-
ing the split function ℎ(�⃗�; 𝜃𝑗). In this framework, the set
of parameters 𝜃𝑗 is defined as 𝜃𝑗 = (𝜙, 𝜓, 𝜏), where the
parameter 𝜙 is defined as a feature selection function that
allows to disregard the noisy features in �⃗�, the parameter 𝜓
defines a geometric transformation that maps the data to a
space where it is separable, and the parameter 𝜏 is a thresh-
old that permits to classify the points.

In order to clarify the ideas, let us consider a common in-
stantiation of this general framework. The feature selector 𝜙
is defined as the function 𝜙(�⃗�) = �⃗� where �⃗� ∈ ℝ

𝑠 contains
a subset of components of �⃗� ∈ ℝ

𝑑, 𝑠 < 𝑑. The geometric
transformation is parameterized by a vector �⃗� ∈ ℝ

𝑠 defin-

ing a linear projection 𝜙(�⃗�) ⋅ �⃗� over the selected features 1.
Finally, the split function ℎ(�⃗�; 𝜃) is defined as [𝜙(�⃗�)⋅�⃗� < 𝜏 ],
where [] is the indicator function. As a result, the classifica-
tion is performed by first selecting some of the components
of �⃗�, then projecting the resulting vector, and then applying
the threshold 𝜏 .

Let 𝒯 be the search space where the parameters 𝜃𝑗 live.
The optimal parameters 𝜃𝑗 are estimated as follows:

1. Randomly sample a small subset 𝒯𝑗 ⊂ 𝒯 .

2. For each 𝜃 ∈ 𝒯𝑗 do:

(a) Split the set 𝑆𝑗 into two subsets:

𝒮𝐿𝑗 = {�⃗� ∈ 𝒮𝑗 : ℎ(�⃗�; 𝜃) = 0}
𝒮𝑅𝑗 = {�⃗� ∈ 𝒮𝑗 : ℎ(�⃗�; 𝜃) = 1}

(b) Evaluate the goodness of the previous partition
using some measure of purity such as the infor-
mation gain:

𝐼(𝜃) = 𝐻(𝒮𝑗)−
∑

𝑐ℎ𝑖𝑙𝑑∈{𝐿,𝑅}

∣𝒮𝑐ℎ𝑖𝑙𝑑𝑗 ∣
∣𝒮𝑗 ∣ 𝐻(𝒮𝑐ℎ𝑖𝑙𝑑𝑗 )

(1)
where 𝐻(𝒮) is the entropy:

𝐻(𝒮) = −
∑

𝑐∈𝒞
𝑝(𝑐) log(𝑝(𝑐)).

3. Define the parameters for node 𝑗 as:

𝜃𝑗 = argmax
𝜃∈𝒯𝑗

𝐼(𝜃)

3. Proposed method

In this work we define a novel ensemble of local experts
based on an averaged combination of random decision trees.
We first describe the main differences with respect to the
standard RF framework by using generic pattern recogni-
tion concepts. Afterwards we will introduce the concepts
specific to pedestrian detection, and introduce our ensem-
ble of local experts.

3.1. Weak learner model

The main difference with respect to the standard frame-
work is that in each node the optimization of the parameters
𝜃 is not only based on a maximization of a purity measure
(Eq. 1), but also on a maximum-margin optimizer which
minimizes the classification error over the samples of the

1Using some abuse of notation, we write �⃗� as a vector in order to ex-
press the linear projection 𝜙(�⃗�) ⋅ �⃗�. However, in the general framework of
Criminisi et al. [3] the parameter 𝜓 defines a generic geometric transfor-
mation, and thus should be expressed as a function in the general case.
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node 𝒮𝑗 . In particular, this is done by optimizing the linear
transformation �⃗� based on the linear SVM learning algo-
rithm. Later on we will see that the joint use of this learner
together with and an appropriate feature selector 𝜙(�⃗�) pro-
vides the desired ensemble of local experts.

Keeping the discussion still under generic pattern recog-
nition terms, the optimization process for each node 𝑗 is
composed of the following steps:

1. Randomly generate a subset {𝜙1, . . . , 𝜙𝐾} of 𝐾 fea-
ture selectors 𝜙𝑘(�⃗�). The generation of these𝐾 feature
selectors is explained in section 3.2.

2. For 𝑘 = 1, . . . ,𝐾 do:

(a) Let 𝒮𝜙𝑘

𝑗 be the transformed set of samples:

𝒮𝜙𝑘

𝑗 = {𝜙𝑘(�⃗�) : �⃗� ∈ 𝒮𝑗}.
(b) Obtain a discriminant linear transformation �⃗�𝑘

by learning a linear SVM classifier over the trans-
formed samples 𝒮𝜙𝑘

𝑗 .

(c) Find the threshold 𝜏𝑘 that maximizes the purity
(Eq. 1) of the following partition:

𝒮𝐿𝑗 = {�⃗� ∈ 𝒮𝑗 : �⃗�𝑇
𝑘 ⋅ 𝜙𝑘(�⃗�) ≤ 𝜏𝑘}

𝒮𝑅𝑗 = {�⃗� ∈ 𝒮𝑗 : �⃗�𝑇
𝑘 ⋅ 𝜙𝑘(�⃗�) > 𝜏𝑘}

Note that the projected values �⃗�𝑇
𝑘 ⋅ 𝜙𝑘(�⃗�) are

classification scores provided by the previously
learned linear SVM classifier.

(d) Let 𝑃𝑘 = 𝐼(𝜙𝑘, �⃗�𝑘, 𝜏𝑘) be the maximum purity
value obtained in the previous step.

3. Let 𝑘∗ = argmax𝑘=1,...,𝐾 𝑃𝑘. Define the split func-
tion for node 𝑗 as:

ℎ(�⃗�; 𝜃𝑗) = [�⃗�𝑘∗ ⋅ 𝜙𝑘∗(�⃗�) ≤ 𝜏𝑘∗ ] . (2)

The most important difference between the proposed
weak learner model and the standard one lies in the opti-
mization of the linear transformation in step 2.b. In our case,
this is carried out by a discriminant optimizer such as the
linear SVM learner. This learner obtains a hyperplane that
optimally separates the set of training samples at each node.
In contrast, in the standard weak learner model the opti-
mization consists of randomly generating a few transforma-
tions and then evaluating each transformation together with
the rest of parameters (the feature selector 𝜙 and threshold
𝜏 ) in order to obtain the combination that maximizes the
purity of the resulting partition. While the latter approach
also provides a discriminant classification of the samples,
there is no guarantee that the resulting hyperplane provides
an optimal maximum-margin discrimination. Furthermore,
the use of a discriminant classifier such as the linear SVM,
together with an appropriate definition of the feature selec-
tor 𝜙 (see section 3.2) allows us to train our ensemble of
local experts inside the RF framework.

3.2. Feature selector

We define our ensemble of local experts through the def-
inition of an appropriate feature selector 𝜙(�⃗�). Fig. 1(a)
shows an illustration of the idea: given an image window, a
block based descriptor �⃗� such as HOG is extracted by parti-
tioning the window into 𝑁 ×𝑀 blocks 2. Given this block-
based descriptor �⃗�, each feature selector 𝜙𝑘 defines a rect-
angular region formed by contiguous blocks.

In particular, the 𝑘-th feature selector 𝜙𝑘 is generated
by randomly selecting the coordinates (𝑖, 𝑗) of the top-left
block, and randomly generating the width 𝑊 and height 𝐻
of the rectangular area, where 1 ≤𝑊 ≤ 𝐿 and 1 ≤ 𝐻 ≤ 𝐿,
with 𝐿 the predefined maximum size.

Given the previous definition of the feature selector 𝜙𝑘,
the 𝑘-th local expert is defined as 𝐸𝑘(�⃗�) = �⃗�𝑇

𝑘 ⋅ 𝜙𝑘(�⃗�). As
explained in section 3.1, the transformation �⃗�𝑘 is learned
by using a discriminant learner such as linear SVM, using
the transformed samples 𝒮𝜙𝑘

𝑗 as training set. This is equiva-
lent to extracting a local block-based feature vector from the
same rectangular area across the different image windows
introduced into the node, and feeding them to a learner that
obtains a model of this part of the window. In our case,
however, an explicit extraction of local descriptors is not
necessary, making the approach computationally efficient.

Note that there is a very large number of possible feature
selectors 𝜙𝑘 that can be defined over a typical block-based
descriptor such as HOG or HOG-LBP, and not all of them
provide the same discriminatory power. Using the weak
learner defined in Section 3.1, the 𝑗-th node randomly gen-
erates a fixed number 𝐾 of feature selectors 𝜙𝑘, learns the
corresponding local experts 𝐸𝑘 and selects the most dis-
criminant one according to the given data. The selected lo-
cal expert 𝐸𝑘 also complements, in a classification sense,
the ones selected by the other nodes in the same branch of
the tree. This is due to the fact that the data samples re-
ceived by the node 𝑗 depend on the classification provided
by its ancestors. As a result, each tree of the forest provides
an ensemble of local experts which are both discriminant
and complementary.

3.3. Definition of other RF components

The rest of the RF components are defined in a standard
way [3]. This comprises the type of randomness, and the
aggregation rule used for obtaining the final output of the
forest. Regarding the type of randomness, we do not use
bagging in this work, i.e., each tree of the forest receives
the whole training set. This choice is recommended in the
analysis of Criminisi et al. [3] and gave us slightly better
results in preliminary tests.

Regarding the output of the forest, let 𝑝𝑡(𝑐∣�⃗�) be the

2Note that neighbor blocks usually overlap each other, although this is
not illustrated in the Fig. 1(a).
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𝜙1

𝜙2

𝜙3

(a) (b)

Leaves where the majority of the samples are positive

Leaves where the majority of the samples are negative

(c)

Figure 1. (a) Illustration of our feature selector, (b) tree generated by our method (c) leaves of the forest. See main text.

probability that the window �⃗� belongs to class 𝑐, com-
puted by the 𝑡-th tree of the forest. This probability is
obtained during the training stage. Every leaf stores the
class distribution of the training samples that reach it, and
then each leaf probability is set according to this distribu-
tion. Given this, we use the average as aggregation rule
in order to compute the probability for the whole forest:
𝑝ℱ (𝑐∣�⃗�) = 1

𝑇

∑𝑇
𝑡=1 𝑝𝑡(𝑐∣�⃗�), where 𝑇 represents the num-

ber of trees in the RF ℱ .
Fig. 1(b) shows an example of tree generated with the

proposed method, where for each internal node we show
the patch of the window selected, and for each leaf we
show, overlapped, all the patches selected from the root to
this leaf. In Fig. 1(c) we show the typical combination of
patches selected for positive and negative samples.

3.4. Bootstrapping procedure

We use bootstrapping at training time in order to select a
subset of negative windows from the large pool of possible
negatives. For this purpose, we propose to use an efficient
procedure that consists of the following steps:

1. Set the initial training set as 𝒮 = 𝒫 ∪ 𝒩 , where 𝒫 is
the set of cropped pedestrians, and 𝒩 is an initial set
of negative windows that are randomly sampled.

2. Set the initial forest as ℱ = ∅
3. For 𝑖 = 1, . . . , 𝑁𝑏𝑜𝑜𝑡 do:

(a) Train 𝑀 new trees using the training set 𝒮 . Add
the trees to the current forest ℱ .

(b) Use the current forest ℱ for detecting false posi-
tives in the training images. Consider these false
positives as negative samples and add them to the
training set 𝒮 .

(c) Use the new training set 𝒮 for updating the leaf
probabilities 𝑝(𝑐∣�⃗�) for all the trees in ℱ .

Our strategy, when compared with [20], allows to reduce the
number of hard negatives obtained at each iteration. This
is mainly due to the fact that at each iteration more trees
are responsible for classifying, and that all the probabilities
𝑝(𝑐∣�⃗�) stored at the leaf nodes are updated using the entire
training set (which slightly increments their discriminative
ability). Moreover, it is worth mentioning that the training
time is reduced thanks to the smaller number of negative
samples introduced at each iteration.

3.5. Soft Cascade

In order to speed up the detection of objects, we pro-
pose to use a Soft Cascade (SC) architecture [2]. Let 𝑇 be
the total number of trees in the forest, 𝑀 be the number of
trees used in an initial layer, 𝜂 be the rejection threshold (see
Section 5.1), and �⃗� be the block-based representation of the
current window. We propose the following SC algorithm:

1. 𝑠𝑐𝑜𝑟𝑒← 1
𝑀

∑𝑀
𝑡=1 𝑝𝑡(𝑐 = 1∣�⃗�)

2. 𝑡←𝑀

3. While 𝑠𝑐𝑜𝑟𝑒 > 𝜂 and 𝑡 < 𝑇 do:

(a) 𝑠𝑐𝑜𝑟𝑒← 1
𝑡+1 (𝑠𝑐𝑜𝑟𝑒 ⋅ 𝑡+ 𝑝𝑡+1(𝑐 = 1∣�⃗�))

(b) 𝑡← 𝑡+ 1

4. If 𝑠𝑐𝑜𝑟𝑒 < 𝜂 reject window �⃗�, otherwise output 𝑠𝑐𝑜𝑟𝑒.

The cascade works by first gathering enough evidence for
the window �⃗�, through the use of 𝑀 trees in the initial layer
(step 1). After this initialization, a new tree is added at each
layer of the cascade (step 3.a) and the score is updated. The
process continues until all the trees have been added or the
score is lower than 𝜂. In this case the window is rejected
and the evaluation stops.

As we will see in the results section, the SC provides a
significantly faster detection. This is due to the fact that a
large majority of windows are rejected at early stages of the
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cascade, and thus there is no need to compute the probabil-
ity for all the trees of the forest on these windows.

4. Related work

Closely related to our work, there are recent patch-based
methods that make use of a specific type of RF called Hough
Forests (HF) [14, 20, 16]. The HF approach takes up the
idea of the standard RF, but applies it on a patch level. Here,
the leaf nodes take up the role of visual words, and each of
them stores a vote distribution for the relative position of
the object center. The votes from activated leaf nodes are
combined in a Hough Voting space, and object locations are
determined as local maxima of the vote distribution.

While HF is used for classifying the individual local
patches, our RF is used for classifying the entire object at
once. For this purpose, at training time each node of the tree
receives a subset of window samples containing the entire
object and decides which local patch is most discriminant
based on the given data. As a result, each tree of the forest
provides an ensemble of local experts, where each expert is
specialized in a different local patch of the object.

Another important difference with respect to [14, 20, 16]
is that in these approaches the collection of local patches is
sampled beforehand from the window and introduced into
the tree. Therefore, each node of the tree is forced to learn
each patch of the collection, regardless of whether or not
this patch is discriminant for classifying the whole object.
In contrast, in the proposed method each node of the tree
automatically selects the local patch that is found to be the
most discriminant one, based on the subset of samples re-
ceived. Furthermore, by using the RF machinery the local
patch selected by each node complements, in a discrimi-
native sense, the local patches selected by its ancestors in
the tree, obtaining a strong ensemble of local experts. At
the end of the process each tree of the forest has selected
a different collection of discriminant local patches, increas-
ing the robustness and generalization capability of the final
classifier.

Recently, Menze et al. [17] proposed a new RF classifier
based on ridge regression for obtaining discriminant linear
splits at the node level. This work resembles our proposal
in the sense that we also make use of linear discriminant
learners at split nodes. The main difference is that, rather
than using a linear regression model, we make use of linear
SVMs which are better adapted to our classification task.
This is combined with a patch-selection strategy in such a
way that each split node determines a local expert of the en-
semble. More similar to our work is [26], where each split
node selects a rectangular patch and applies a linear SVM
onto it. The main difference is that [26] requires to extract
many complex region-based descriptors (one bag-of-words
histogram for each node visited in the forest), while we only
need to extract a single descriptor (in particular, we extract

either the HOG or the HOG-LBP descriptor, see section 5)
for the whole forest, which is much more efficient.

5. Results

The INRIA dataset [5] is currently being used in the lit-
erature as a training-validating dataset. Then, once the best
parameters are found during the validation, authors usually
report additional results on other challenging datasets. We
followed a similar procedure.

Due to the large number of parameters, most of them
were estimated by testing just a few reasonable values. The
selected values are described in Section 5.1. There were
two parameters, however, that were exhaustively optimized
using a validation set (i.e. the INRIA testing dataset). In
Section 5.2, we describe the corresponding experiments. In
Section 5.3, we provide a comparison against the best state-
of-the-art methods on these other datasets. Finally, Sec-
tion 5.4 provides an evaluation of the computational cost
obtained with different alternatives.

5.1. Experimental setup

In this work, we evaluated the use of both HOG [5] and
HOG-LBP [23]. Some modifications were introduced into
the HOG-LBP descriptor: i) we used the same spatial par-
tition as in HOG for LPB, resulting in 105 spatial blocks;
ii) we did not interpolate the pixels around the compared
central one, in order to prevent the texture information from
being distorted; iii) in order to add robustness against noise,
we used an offset when comparing the central pixel with its
neighbours; and iv) we only used the luminance channel.
Altogether, these changes permitted us to reduce the com-
putational cost while maintaining an accuracy similar to the
one of the original definition [23].

Regarding the computation of the sliding window, we
used a step size of eight pixels, which allows to reuse over-
lapping blocks. For the multi-resolution pyramid we set the
scale stride to 1.05. During the Random Forest construc-
tion we used the following stopping criterion. A node is
no longer split if either of the following conditions occurs:
a) its depth is larger than 6 levels3; b) the subset of sam-
ples contains less than 10 samples; or c) the percentage of
samples from the same class is above 99%. This type of
stopping criterion is standard [3], and the specific values
were observed to provide good results on the INRIA testing
dataset. We used a fixed threshold 𝜂 = 0.1 in the SC (sec-
tion 3.5). In the Bootstrapping procedure (section 3.4) the
hard negatives are defined as those negative samples whose
classification confidence is larger than 0.25. We performed
the standard per-image evaluation used in pedestrian detec-

3In preliminary experiments we saw that the performance was no
longer improving when increasing the number of levels. Therefore, we
decided to fix its value for the rest of the validation stage.
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tion [15, 9, 10]. In order to quantify the performance we
used the well-known Caltech pedestrian toolbox [9].

In the Caltech dataset, we added a so-called Candidate
Generation Pruning (CGP) step to our system, in order to
obtain a fair comparison with the best performer in this
dataset [19]. The CGP step makes use of three assump-
tions that are accomplished for the mentioned dataset: i)
the frames are automatically aligned with the horizon line,
ii) the pedestrians are standing on the floor, and iii) the floor
is flat. Assuming these conditions and making use of pro-
jective geometry [19], the CGP algorithm removes all the
candidate windows whose relationship vertical position vs
scale is not physically plausible. This permits us to both
accelerate the detection of pedestrians (as fewer windows
are evaluated by the classifier), and remove false positives
standing on non-plausible locations of the scale-space pyra-
mid, thus improving the resulting accuracy. Sections 5.3
and 5.4 show the performance of our system both including
a CGP step and not including it.

5.2. Estimation of parameters

Two parameters were exhaustively optimized using the
test set of the INRIA dataset. The first one is the maximum
patch size 𝐿 selected by each local expert (see section 3.2).
This parameter represents the compromise between having
an expert that is based on local (i.e. small) regions and the
use of distinctive (i.e. large) regions. In Fig. 2(a) we can
see that the accuracy increases as we increase the maximum
patch size, until it reaches 3 × 3 blocks. Permitting larger
patches leads to lower accuracy.

The second parameter is the number of bootstrapping it-
erations 𝑁𝑏𝑜𝑜𝑡. This parameter is important due to the high
computational cost of each bootstrapping iteration, which
makes it necessary to estimate the minimum number of it-
erations that provide an accuracy converging to the maxi-
mum. In Fig. 2(b) we can see that the accuracy saturates
with 20 iterations (we also tried 25 and 30 iterations, but
the accuracy was no longer increasing). The results using
HOG features were analogous to the HOG-LBP ones.

Respecting the SVM parameters, in order to speed up
the training computation, these were fixed during the entire
learning procedure.

5.3. Comparison with the state-of-the-art

Our final detector was evaluated using three well-
known, challenging datasets: Caltech [9], Daimler [10] and
ETH [12]. Results are shown in Fig. 3, where we also in-
clude results on INRIA for completeness, and where we
compare the accuracy of our approach against the state-of-
the-art. Regarding the Caltech dataset, most of the works in
the literature only use the so-called “Reasonable” subset, so
that we use this subset as reference. However, we also show
results on the rest of the subsets of Caltech [9] for com-

pleteness. We only use our CGP approach in the Caltech
testing dataset (where we used the Caltech training data for
estimating the CGP parameters).

Our method matches or outperforms the state-of-the-art
methods in all three datasets. Only in the Caltech “Rea-
sonable” subset three methods outperform our approach (if
we do not include the CGP component), although the third
best performer has a similar accuracy to the one of our
method. If we use CGP, the accuracy increases. In this case,
our method matches the second best performer (MultiFtr-
Motion [22]) and it is outperformed by only one method
(MultiResC (CGP) [19]) in the reasonable evaluation sub-
set. It is worth mentioning that these methods make use of
additional sources of information (multi-resolution in Mul-
tiResC (CGP) [19] and motion in MultiFtr-Motion [22]).
Both [22] and [19] make use of block-based representations
in order to include these sources of information, so that they
can be integrated in our framework with moderate changes.
This would further increase the accuracy of our method.

Regarding the rest of the other Caltech evaluation sub-
sets, we show results for the two most difficult cases:
partial-occlusions and medium-scale (where the size of the
pedestrian is fairly small). Our method suffers in both cases
(Fig. 4 shows detection examples). For partial-occlusions,
however, it ranks the first. This is consistent with the
fact that local-patch based methods are usually more robust
against partial occlusions than the holistic ones. For small
pedestrians, it suffers more than the MultiResC method. In-
tegrating multi-resolution in our method would help to han-
dle better different sizes of the pedestrian, resulting in im-
proved performance in this dataset. The overall and near-
scale data-set are not included for lack of space. In the over-
all subset, our method ranks second (with miss rate 82.8%,
1.6 points worse than the first). In the near-scale, it ranks
third (with miss rate 29.6%, 8.4 points worse than the first).
Again, using multi-resolution would be beneficial here, for
describing the fine details of close pedestrians.

5.4. Testing speed

In order to evaluate the computational cost, we used a
laptop machine with a i7-2860QM CPU at 2,50GHz. Fur-
thermore, we parallelized our code in order to compute sev-
eral scales of the pyramid at the same time, and in order
to compute several trees of the forest at the same time (this
last parallelization was only performed for our baseline and
it was not performed when using the SC component).

Table 1 shows the runtime of the proposed approach, in-
cluding the baseline without any speed-up, the use of SC
and the use of both SC and CGP. If we consider pedestrians
with a minimum height of 96 pixels, the system operates at
4 fps with HOG, and 3 fps with HOG-LBP. This can be fur-
ther sped up if we use some hardware optimization. For this
purpose, we used AVX instructions in order to implement

2597



10
−2

10
−1

10
0

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

RandForest−HOGLBP: Maximum patch size L

 

 

L = 1, 25.6 ±2.0%
L = 2, 19.9 ±1.7%
L = 3, 18.9 ±1.6%
L = 4, 20.6 ±1.0%

10
−2

10
−1

10
0

.05

.10

.20

.30

.40

.50

.64

.80

1  

false positives per image

m
is

s 
ra

te

RandForest−HOGLBP: # Bootstrapping iterations

 

 

  5−iterations   (30 trees) 18.9 ±1.6%
10−iterations   (55 trees) 16.4 ±1.3%
15−iterations   (80 trees) 15.7 ±1.5%
20−iterations (105 trees) 15.4 ±1.2%

(a) (b)
Figure 2. (a) Performance as a function of maximum patch size 𝐿, (b) performance as a function of the number of bootstrapping rounds.
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22.2% ChnFtrs
21.3% RandForest−HOG
20.0% LatSvm−V2
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50.9% LatSvm−V2
48.1% RandForest−HOG
45.0% RandForest−HOGLBP
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Daimler pedestrian dataset
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38.0% LatSvm−V2
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29.2% MultiFtr+Motion
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Caltech testing dataset: Medium scale

 

 

85.5% LatSvm−V2
82.1% MultiFtr+CSS
80.1% MultiFtr+Motion
78.6% RandForest−HOGLBP−CGP
77.4% ChnFtrs
73.2% MultiResC (CGP)

Figure 3. Miss rate versus false positive per image curves in the INRIA, Daimler, ETH and Caltech testing. For the Caltech testing dataset
we show results under three different conditions: reasonable, partial occlusion and medium-scale(please refer to [9] for further details).

the dot product involved in the SVM classification. In this
case, we reached 5.9 fps with HOG and 4.6 fps with HOG-
LBP. These times make the resulting system fairly fast in
comparison with the state-of-the-art, as evaluated in [9]. As
an example, the two fastest detectors evaluated in that sur-
vey operate at 1.2 fps and 6.5 fps, while the proposed ap-
proach operates at 2.5 fps without any optimization (using
only the SoftCascade and excluding the CGP step) and at
4.6 fps if we use both AVX instructions and the CGP step.
At the same time, the proposed approach ranks in the top
positions in terms of accuracy, as shown in this section.

≥ 50 pixels ≥ 96 pixels
HOG HOG-LBP HOG HOG-LBP

RandForest 0.15 0.09 0.75 0.53
SoftCascade 0.60 0.45 2.51 1.88
SoftCascade + CGP 1.23 0.93 4.01 3.17

Table 1. Detection times in frames per second (fps) in the Caltech
dataset. The second and third columns show, respectively, the fps
when the minimum pedestrian height is 50 and 96 pixels.

6. Conclusions

We presented a novel approach for estimating ensembles
of local experts through the RF framework. The proposed
approach works with rich block-based descriptors which are
reused by the different experts of the ensemble in such a
way that each expert selects the most discriminant local
patch based on this descriptor. Making use of the RF frame-
work, the patches selected by each tree are both discrimi-
nant and complementary, and at the end of the process the
forest estimates a diverse collection of ensembles providing
both robustness and generalization capabilities. As part of
the work, we show how to integrate the proposed RF clas-
sifier with both a SC architecture and a simple yet effective
CGP algorithm, which permit to significantly speed up the
detection, as shown in the results. We also showed that the
proposed CGP algorithm increases the accuracy by avoid-
ing false positives in unexpected areas of the image.

Altogether the proposed work provides an interesting
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Figure 4. Examples with small pedestrians and occlusions. Green and red boxes symbolize true positives and false negatives respectively.

framework that permit to match the best approaches in
terms of accuracy, as measured across several challeng-
ing datasets, without including additional sources of infor-
mation such as motion, multi-resolution or colour. These
sources can be easily integrated in the future in order to fur-
ther increase accuracy. At the same time, we showed that
the proposed architecture provides a quasi real-time perfor-
mance on pair with some of the fastest approaches. This is
due to the integration of the SC component, and the use of
the CGP algorithm proposed in this work.
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