
Latent Multitask Learning for View-Invariant Action Recognition

Behrooz Mahasseni and Sinisa Todorovic
Oregon State University

Corvallis, OR 97331, USA
mahasseb@eecs.oregonstate.edu, sinisa@eecs.oregonstate.edu

Abstract

This paper presents an approach to view-invariant ac-
tion recognition, where human poses and motions exhibit
large variations across different camera viewpoints. When
each viewpoint of a given set of action classes is specified
as a learning task then multitask learning appears suitable
for achieving view invariance in recognition. We extend the
standard multitask learning to allow identifying: (1) latent
groupings of action views (i.e., tasks), and (2) discrimi-
native action parts, along with joint learning of all tasks.
This is because it seems reasonable to expect that certain
distinct views are more correlated than some others, and
thus identifying correlated views could improve recognition.
Also, part-based modeling is expected to improve robust-
ness against self-occlusion when actors are imaged from
different views. Results on the benchmark datasets show
that we outperform standard multitask learning by 21.9%,
and the state-of-the-art alternatives by 4.5–6%.

1. Introduction
This paper considers the problem of view-invariant ac-

tion recognition. Given a video that shows a human ac-

tion (e.g., walking), we want to identify the action class and

camera viewpoint. The videos are captured from different

camera viewpoints, which are taken to be discrete and in-

dexed by the viewpoint identifier, or viewpoint, for short.

Invariance to viewpoint changes is critical for action

recognition, because people’s motion trajectories may take

arbitrary directions relative to the camera viewpoint while

performing an action. In our setting, natural variations of

action instances within a class are augmented by variations

in their appearance across different viewpoints.

One way to achieve view invariance could be to reason

about a 3D layout of the scene, or 3D volume of the human

body, so that the video features can be adapted from one

view to another through geometric transformations [29, 28,

23, 18, 14]. However, this framework critically depends on

accurate detection of the body joints and contour, which are

still open problems in real-world settings. An alternative

way would be to extract view-invariant video features [19,

17, 15, 25, 9, 7]. Some of these methods are limited by

requiring access to mocap data, while others find invariant

features for only a subset of views.

The third group of approaches use knowledge transfer.

They seek to extend knowledge acquired in training from

one or a limited number of views to other target views

where recognition will be performed. They either transform

view-dependent video features to a new view-invariant fea-

ture space [11, 12], or adapt model parameters to the tar-

get views [3, 4, 26]. The transformation is learned on the

co-occurrence statistics of view-dependent features. This is

attractive, because knowledge transfer relaxes the require-

ments for accurate 3D scene and 3D human-body recon-

struction. However, these approaches require access to si-

multaneous multiview observations of the same action in-

stance (except for [11]). In addition, they represent a video

by a bag-of-words (BoW) disregarding the layout of human-

body parts. Accounting for body parts seems important in

our setting, because they are subject to self-occlusion when

imaged from different views.

To approach our problem, we specify that each viewpoint

of a given set of action classes is a learning task. Then, view

invariance in recognition could be achieved by jointly learn-

ing all the tasks using Multitask Learning (MTL) [2]. This

is because MTL would be able to estimate a latent feature

representation shared across all views. While MTL is well

known to vision [20, 13, 16, 31], it has never been used for

view-invariant action recognition.

MTL is based on the assumption that all the tasks consid-

ered (i.e., in our case viewpoints of actions) are correlated.

However, in our setting, this assumption may be too strong.

Human actions may occur in cluttered scenes, and discrim-

inative movements of the human body may not be visible

from all viewpoints. Therefore, MTL is bound to under-

or over-estimate the correlation among all the viewpoints,

due to confusing background and foreground features, and

disregarding self-occlusions of the human body.

To address the above issues, we extend the standard

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.388

3121

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.388

3128

MTL to Latent Multitask Learning (LMTL). Our LMTL

uses a part-based action representation, instead of the stan-

dard BoW. In this way, LMTL is enabled to identify fore-

ground video features which group into discriminative ac-

tion parts, each corresponding to characteristic movements

of a human-body part. In addition, LMTL is enabled to

identify latent groupings of correlated viewpoints of a given

set of action classes. Thus, LMTL learns a new shared fea-

ture space, such that each group of camera viewpoints found

to be correlated are allowed to share features, whereas this

sharing is prohibited between the groups.

We use the latent large-margin framework [30] to for-

mulate LMTL, wherein we incorporate the mixed integer

programming of [10] for grouping the viewpoints. This ex-

tends the work of [10], which does not account for latent

parts. Within each group of viewpoints, a shared feature

representation is estimated and used for learning parame-

ters of a part-based action model, subject to the trace-norm

regularization. Fig. 1 shows an overview of our approach.

In the sequel, Sec. 2 gives a more formal overview of our

approach, Sec. 3 reviews the standard MTL, Sec. 4 formu-

lates our LMTL, Sec. 5 specifies inference, Sec. 6 describes

video features, and Sec. 7 presents our results.

2. Overview of Our Approach
Our LMTL framework leverages a deformable parts

model (DPM) [5]. DPM has K nodes representing K ac-

tion parts, connected in a star structure. An action part is

a discriminative space-time window in the video volume.

Thus, each node of DPM can be characterized by spatiotem-

poral features extracted from the corresponding space-time

window. The nodes are connected to the root, where the

graph edges encode space-time deformations of the action

parts. DPM parameters represent weights associated with

nodes and edges. The weights can be learned within the

latent large-margin framework [30], aimed at jointly dis-

covering the K latent parts, and estimating their weights so

as to maximize the discriminativeness of DPM across a set

of action classes. Below, we give an overview of how to

ground action parts onto raw pixels, and how to perform

view-invariant action recognition.

Access to action parts is provided by representing a

video by a large set of overlapping space-time windows

of different sizes and shapes, V = {V1, ...,VN}. When

an action occurs in the video, it occupies only a subset of

K � N windows, A = {Vk : Vk ∈ V, k = 1, ...,K},
corresponding to the K action parts. Video features ex-

tracted from A, and spatiotemporal displacements of the

windows in A can be represented by a d-dimensional vec-

tor, φ(x, y,h), where x denotes the features; y is the action

class; and h denotes the space-time locations of the win-

dows in A. For a set of M action classes, we learn a mul-

ticlass DPM by using an augmented D-dimensional feature

����������	�
���

�����������
������������������������
���������������������������
�

�����������	��
�������	�

�����	���

max
y,v,h

wT
yvU

TΦ(x, y,h)

{{wv,y}, U}

{ŷ, v̂}

������

����������	�
��� ����������	�
���

Figure 1: For a given video, we estimate the action class ŷ
and viewpoint v̂ using Latent Multitask Learning (LMTL).

LMTL identifies action parts, h, and groups of correlated

camera viewpoints. LMTL learns a linear transformation

U to map input view-dependent features to a new feature

space, partitioned into subspaces which are shared by view-

points within the same group.

vector, Φ(x, y,h), where D = d·M . Φ(x, y,h) is a sparse

vector, whose all elements are set to zero, except in the yth

segment of d elements copied from φ(x, y,h).
Our LMTL is aimed at transforming the input view-

dependent Φ(x, y,h) to a new, view-invariant feature

space. We use a linear transform, U�Φ(x, y,h), where

U ∈ R
D×D is an orthogonal square matrix. For recogni-

tion, we define the multiclass discriminant function F as

Fy,v,h(x) = w�v U
�Φ(x, y,h), (1)

where v is the viewpoint, and wv ∈ R
D are the multiclass

DPM parameters. Given a video, the action class and view-

point are estimated via localizing latent action parts as

(ŷ, v̂) = argmax
y,v,h

Fy,v,h(x). (2)

We learn wv using LMTL. In the following section, we

briefly review the standard MTL, and defer the specification

of LMTL to Sec. 4.

3. A Brief Review of Multitask Learning
The model parameters wv , defined in Sec. 2, can be

learned using MTL, where each task v represents recog-

nition of one of M action classes imaged from the given

view v. This section, first, specifies a learning paradigm

where the tasks are learned independently, referred to as

Baseline 1. Then, we present the standard MTL, referred to

as Baseline 2. Finally, we review the recent task-grouping

MTL of [10], referred to as Baseline 3. These baselines are

used in our experiments for comparison (Sec. 7).

Baseline 1: Let W be a matrix whose columns are

wv , indexed by viewpoints v = 1, ..., V . Also, let

31223129

Δ(y, ŷ(wv,x)) denote a loss function of recognizing ac-

tion class ŷ when the true class is y in the vth task. For

this baseline, we assume that all tasks use the same fea-

ture space, with feature vectors x. Given training data

Dv = {(xi, yi) : i = 1, 2, ...}, the tasks can be learned

independently as

min
W

∑V
v=1

∑
(xi,yi)∈Dv

Δ(yi, ŷ(wv,xi)) + γ‖W‖2F , (3)

where ‖W‖2F =
∑

v ‖wv‖22 is the Frobenius norm of W .

Baseline 2 = MTL: MTL extends Baseline 1 by finding

a common feature subspace on which all the tasks perform

well. We use a linear transformation U of the original fea-

tures, U�x, to find a lower-dimensional subspace. As in

[10], we regularize MTL learning of every wv by using the

(2,1)-norm of W , ‖W‖2,1 =
∑D

i=1

√∑
v w

2
i,v , as

min
W,U

∑V
v=1

∑
(xi,yi)∈Dv

Δ(yi, ŷ(wv, U
�xi)) + γ‖W‖22,1.

(4)

The regularization of W in (4) enforces row-sparseness of

W , i.e., maximizes the number of zero rows in W .

Note that the loss in (4) is not convex with respect to both

W and U ; but it is convex with respect to each of them sep-

arately. For solving (4), we use the approach of [1], where a

similar optimization problem is addressed by removing the

non-convex dependency of the loss function on two vari-

ables. To this end, we introduce the following notation:

(Θ, Ω) = (UW, Udiag(λ)U�), (5)

where λ = [‖W1‖2
‖W‖2,1 , ...,

‖Wi‖2
‖W‖2,1 ,,

‖WD‖2
‖W‖2,1] and Wi is the

ith row of W . The columns of matrix Θ are denoted as {θv :
v = 1, ..., V }. Using this new notation, the minimization

problem of (4) can be expressed as (see the proof in [1]):

min
Θ,Ω

∑
v

∑
(xi,yi)∈Dv

Δ(yi, ŷ(θv,xi)) + γ
∑
v

θ�v Ω
−1θv. (6)

From (1) and (2), our inference requires the computation of

the product Θ = UW , rather than using the matrices U and

W individually. Therefore, instead of learning U and W , it

suffices to learn Θ, and then directly use Θ in (2). Next, we

describe an algorithm for estimating Θ and Ω from (6).

The following two-step iterative algorithm, presented in

[1], can be used for solving the optimization problem of (6):

1. Given Θ, find Ω from (6). By theorem 4.1 in [1], there

is a closed-form solution Ω= (ΘΘ�)
1
2

Trace((ΘΘ�)
1
2)

.

2. Given Ω, find Θ from (6). Substituting the

closed-form solution of Ω from step 1 in (6), we

get min
Θ

∑
v

∑
(xi,yi)∈Dv

Δ(yi, ŷ(θv, xi)) + γ‖Θ‖2∗,
where ‖ · ‖∗ is the trace norm.

Baseline 3 = Task-grouping MTL: In [10], the standard

MTL is extended by grouping tasks and finding feature sub-

spaces for different groups. As mentioned in Sec. 1, the

approach of [10] is agnostic of parts, and thus is our Base-

line 3. The task grouping can be achieved by separating the

regularization of Θ over distinct task groups in (6) as

min
Θ,Ω

∑
v

∑
i

Δ(yi, ŷ(θv,xi)) + γ
∑
g

∑
vg

θ�vg
Ω−1θvg , (7)

where vg denotes viewpoints that belong to group g. Note

that a solution of (7) needs to resolve the latent assignment

of viewpoints to groups, in addition to finding Θ and Ω.

As for Baseline 2, we can use the above two-step iter-

ative algorithm for solving (7). For given Θ, the first step

finds the closed-form solution Ω= (ΘΘ�)
1
2

Trace((ΘΘ�)
1
2)

. Then, in

the second step, we substitute this closed-form solution for

Ω into (7), and obtain the following simpler problem:

min
Θ

∑
v

∑
i Δ(yi, ŷ(θv, xi)) + γ

∑
g ‖Θg‖2∗. (8)

where Θg is a matrix whose columns are parameters θvg
of

the viewpoints in group g.

Mixture integer programming can be used in (8) to iden-

tify the latent assignment of viewpoints to groups. Let Qg ∈
R

V×V denote the diagonal assignment matrices for group-

ing the viewpoints into their respective groups g. Thus, (8)

can be conveniently expressed as

min
Θ,{Qg}

∑
v

∑
i Δ(yi, ŷ(θv, xi)) + γ

∑
g ‖ΘQg‖2∗

s.t.
∑

g Qg = I,
(9)

where I is the identity matrix. Note that when the maximum

g = 1, Baseline 3 is equivalent to Baseline 2.

4. Latent Multitask Learning
This section specifies our LMTL. We extend the task-

grouping MTL of [10] (i.e., Baseline 3) to additionally iden-

tify discriminative action parts. The goal of LMTL is to

learn Θ and Ω, defined in (5), and the viewpoint grouping

matrices {Qg}, defined in (9), and use them for inference

in (2). Below, we first specify how to estimate Ω, then for-

mulate a new optimization problem for estimating Θ, and

{Qg}, and finally present an iterative algorithm for learning

all LMTL parameters Θ, Ω, and {Qg} on training data.

As in Baselines 2 and 3, we can readily estimate Ω, given

Θ, using the closed-form solution Ω= (ΘΘ�)
1
2

Trace((ΘΘ�)
1
2)

.

New Optimization Problem. For learning Θ, and

{Qg}, we introduce a new loss function, and substitute it in

(9). Let h∗vi = h∗(θv,xi) denote the estimates of vth task

for latent action parts in a training video, (xi, yi) ∈ Dv ,

given its true action class yi. Also, let ĥvi = ĥ(θv,xi)

31233130

denote the estimates of vth task for latent action parts in

the same training video, (xi, yi) ∈ Dv , without the knowl-

edge of its true action class, but given some estimate ŷvi =
ŷ(θv,xi). Then, as in [5, 30], we define a loss function,

Δ(yi,h
∗
vi, ŷvi, ĥvi), in terms of both action class labels and

latent variables, and substitute it in (9). Thus, we obtain the

following new optimization problem:

min
Θ,{Qg}

∑
v

∑
i Δ(yi,h

∗
vi, ŷvi, ĥvi) + γ

∑
g ‖ΘQg‖2∗

s.t.
∑

g Qg = I,
(10)

The above loss function Δ(yi,h
∗
vi, ŷvi, ĥvi) is not convex.

As discussed in [30, 5], defining a loss function based on h∗

is difficult. Following the derivation in [30, 5], we approx-

imate Δ(yi,h
∗
vi, ŷvi, ĥvi) with the upper-bound loss func-

tion, Δ(yi,h
∗
vi, ŷvi, ĥvi) ≤ Δub(yi, ŷvi, ĥvi), where

Δub(yi, ŷvi, ĥvi) =max
ŷ,ĥ

[θv
�U�Φ(xi, ŷ, ĥ) + Δ01(yi, ŷ)]

−max
h

[θv
�U�Φ(xi, yi,h)],

(11)

where Δ01(yi, ŷ) is defined as the standard zero-one loss,

taking value 1 when yi �= ŷ, and 0, otherwise. We substitute

Δub in (10), which gives our final formulation for learning

Θ and Qg parameters:

min
Θ,{Qg}

∑
v

∑
i Δub(yi, ŷvi, ĥvi) + γ

∑
g ‖ΘQg‖2∗

s.t.
∑

g Qg = I.
(12)

Iterative Algorithm. Given training data, Dv =
{(xi, yi)}, v = 1, ..., V , the parameters of LTML, Θ, Ω
and {Qg}, are learned using an iterative algorithm, where

each iteration consists of the following three steps.

Step 1: Given Ω and {Qg}, find Θ from (12). The

key ideas is that for given {Qg}, the optimization prob-

lem of (12) is separable, i.e., the columns of Θ, {θv :
v = 1, ..., V }, can be independently estimated. This fol-

lows from
∑

g ‖ΘQg‖2∗ =
∑

g ‖Θg‖2∗ =
∑

g

∑
v∈g ‖θv‖22,

where v ∈ g means that the latter sum is only over those

viewpoints in the group g. From (11) and (12), we derive

the following V optimization problems for finding Θ:

min
θv

[1
2
‖θv‖2 + C

n∑
i∈Dv

max
ŷ,ĥ

[θvΦ(xi, ŷ, ĥ) + Δ01(yi, ŷ)]

−C
n∑

i∈Dv

max
h

[θvΦ(xi, yi,h)]
]
,

(13)

Note that (13) is the standard latent structured SVM formu-

lation [5, 30], and can be efficiently solved using the CCCP

algorithm, as in [5, 30].

Step 2: Given {Qg} and Θ, compute Ω using the closed-

form solution, Ω = (ΘΘ�)
1
2

Trace((ΘΘ�)
1
2)

.

Step 3: Given Θ and Ω, find {Qg}. In this step, we use

the gradient descent, following the derivation presented in

[10]. The gradient decent of the Lagrangian function of (12)

is made possible in [10] by relaxing the integer regulariza-

tion in (12) to
∑

g ‖Θ
√
Qg‖2∗. For binary solutions of Qg

the relaxed regularization is equivalent to the original one.

5. Inference
Given a set of space-time windows of a new video, V =

{V1, ...,VN}, inference consists of two steps.

In the first step, we infer latent variables, ĥ, i.e., identify

K action parts in V, using the distance transform accom-

modated for 2D+time volumes [5]. From (1), this uniquely

specifies the augmented feature vector Φ(x, y, ĥ) that is

used for computing the multiclass discriminant function:

Fy,v,ĥ(x) = w�v U
�Φ(x, y, ĥ) = θ�v Φ(x, y, ĥ). (14)

In the second step, from (2) and (14), we recognize the

action class and viewpoint of the new video as

(ŷ, v̂) = argmax
y,v

θ�v Φ(x, y, ĥ). (15)

6. Features
This section describes our feature vectors x and

φ(x, y, ĥ).
A video is represented by a large set of overlapping

space-time (2D+t) windows of different sizes. Each 2D+t

window is characterized by the standard BoW with 2000

codewords. For extracting the codewords, we use dense

trajectories [22], which have shown promise for view-

invariant action recognition [26]. The dense trajectories

are described by a concatenation of the following descrip-

tors: trajectory(30), HOG(108), HOF(96), MBHx(96), and

MBHy(96)). For extracting the dense trajectories, and com-

puting their descriptors, we use the software implementa-

tion from [21]. Given the set of feature descriptors from all

videos in training data, we use K-means to find the 2000

codewords, and thus produce the BoW descriptions of all

space-time windows in the video.

φ(x, y, ĥ) is formed by concatenating unary and pair-

wise potentials of action parts. The unary potential is a

BoW associated with the corresponding space-time win-

dow. The pairwise potential is defined as the Euclidean dis-

tance between the two closest corners of the 2D+t windows

corresponding to the root and the action part.

7. Results
Datasets. We evaluate our approach on three benchmark

datasets including: the IXMAS dataset [25], the newer ver-

sion of IXMAS dataset [24] referred to as IXMAS(new),

and the i3DPost multiview human action dataset [6]. IX-

MAS has 12 different actions performed by 11 actors three

31243131

Figure 2: Our average recognition accuracy on i3DPost

videos for different input parameters K and g.

times. These actions have been recorded in five different

viewpoints. IXMAS(new) has the same set of actions as

IXMAS, recorded from five different viewpoints with dif-

ferent cameras. Two-thirds of the videos contain objects in

the scene partially occluding the actors. i3DPost has 13 ac-

tions of 8 people recorded from 8 viewpoints. In addition

to simple actions (e.g. Walk, Run, Bend), i3DPost contains

structured actions (e.g. Run-Fall, Run, Jump, Walk), and

actions with two actors (e.g. Pull). Prior work reports ac-

curacy only for the simple actions of i3DPost. We evaluate

our approach on all the actions of i3DPost.

Video Representation. A video is split into overlapping

2D+t windows of varying width, height and time duration.

The width and height vary in a range of [100, 200] pixels,

and time varies in [5-90] frames in increments of 10 frames.

This generates approximately 25000 overlapping 2D+t win-

dows for a video of 90 frames of size (400 × 300) pixels.

In our experiments, our approach is relatively insensitive to

the size parameters and placement of 2D+t windows. For

example, a twice larger size and coarser placement of 2D+t

windows, totaling 10000, yields on average a performance

reduction by 2%.

Input parameters to our LMTL include: the number

of action parts K = {2, 4, 6, 8} and the number of groups

g ∈ {1, 5, 6, 7, 8}. We test our sensitivity to the specific

choice of K and g. Fig. 2 shows that changes of g affect our

average accuracy on the action classes of i3DPost. Varying

K in the subrange 4−−6 seems to have negligent effect on

our average accuracy. In the following, we will use g = 3
and K = 6, which give the best results, if not mentioned

otherwise.

Baselines. Baseline 1 learns action classifiers separately

for different viewpoints, and is specified in (3). Baseline 2

learns a common feature subspace for all tasks; it is intro-

duced in [1], and specified in (4). Baseline 3 learns a feature

subspace for a group of tasks; it is introduced in [10], and

specified in (9).

Two Settings. We use two settings for evaluation. First,

we have access to a balanced set of labeled data from all

viewpoints. We use the standard two-thirds and one-third

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg

B1 78.7 75.3 74.8 73.8 69.6 74.4

B2 78.9 71.5 70.1 69.1 72.4 72.4

B3(g=3) 81.1 82.8 82.5 80.4 77.6 80.9

LMTL(g=1) 86.4 85.5 80.2 84.1 76.8 82.6

LMTL(g=3) 96.8 95.6 94.7 96.5 92.1 95.1

Table 1: Average accuracy in [%] of LMTL and Baseline1

(B1), Baseline2 (B2), Baseline3 (B3) for different camera view-

points on IXMAS.

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg

B1 65.5 64.2 62.7 68.8 59.3 64.1

B2 60.3 66.2 60.5 63.8 61.9 62.5

B3(g=3) 68.8 70.1 66.5 70.6 64.4 68.1

LMTL(g=1) 78.2 81.6 80.7 77.6 76.1 78.8

LMTL(g=3) 90.2 91.4 88.7 88.1 84.4 88.6

Table 2: Average accuracy in [%] of LMTL and Baseline1

(B1), Baseline2 (B2), Baseline3 (B3) for different camera view-

points on IXMAS(new).

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Cam5 Cam6 Cam7 Avg

B1 72.4 74.8 72.6 69.6 69.7 70.6 73.9 71.2 71.9

B2 69.7 73.9 72.3 68.8 70.5 69.7 70.4 70.1 70.7

B3(g=3) 71.3 81.2 79.4 80.7 74.5 77.3 78.2 77.8 77.6

LMTL(g=1) 85.4 84.5 86.7 86.6 81.6 79.5 79.8 80.9 83.1

LMTL(g=3) 89.9 91.1 89.5 90.9 86.9 85.6 84.2 83.4 87.7

Table 3: Average accuracy in [%] of LMTL and Baseline1

(B1), Baseline2 (B2), Baseline3 (B3) for different camera view-

points on i3DPost.

split for training and testing, respectively. This setting al-

lows us to compare our LMTL with the baselines and meth-

ods which use all viewpoints in training. The second set-

ting tests how our LMTL deals with an unbalanced number

of videos from different viewpoints, as is often the case in

real world applications. We have access to videos from one

or more source views, and limited (or no) access to videos

from other target views. For evaluation, we vary the num-

ber of source views, and the number of videos from target

views present in training.

Tables 1, 2 and 3 show the average accuracy of LMTL

and the baselines with respect to different viewpoints on IX-

MAS, IXMAS(new) and i3DPost respectively in the first

setting.

We see that sharing features across all viewpoints in

Baseline 2 worsens results relative to Baseline 1. This

is not a surprise, because the assumption that all view-

points share a common feature space is too strong (e.g.,

top view in IXMAS dataset has completely different ap-

pearance from the other views). We can see that Base-

line 3 gives better accuracy by grouping different view-

points. Another interesting observation is the effect of using

latent action parts. LMTL(g=1), gets better results com-

pared to Baseline 3, especially on the IXMAS(new) and

31253132

CW CA GU KI PU PT PC SH SD TA WK WV

CW 93.1 0 0 0 0 1.7 0 3.4 0 0 0 1.7

CA 3.4 89.7 0 0 0 0 0 1.7 0 0 0 5.2

GU 0 0 100 0 0 0 0 0 0 0 0 0

KI 0 0 0 100 0 0 0 0 0 0 0 0

PU 0 0 0 0 98.3 0 0 0 1.7 0 0 0

PT 0 0 0 0 0 86.2 8.6 0 1.7 0 0 3.4

PC 0 0 0 3.4 0 3.4 93.1 0 0 0 0 0

SH 1.7 1.7 0 0 0 0 0 89.7 0 0 0 6.9

SD 0 0 0 0 0 0 0 0 100 0 0 0

TA 0 0 0 0 1.7 0 0 0 0 96.6 1.7 0

WK 0 0 0 0 0 0 0 0 0 0 100 0

WV 1.7 3.4 0 0 0 1.7 0 1.7 0 0 0 91.4

Table 4: The confusion matrix of LTML for the IXMAS action

classes. CW=CheckWatch, CA=CrossArms, GU=GetUp, KI=Kick,

PU=PickUp, PT=Point, PC=Punch, SH=ScratchHead, SD=SitDown,

TA=TurnAround, WK=Walk, WV=Wave. The values are in [%]

CW CA GU KI PU PC SH SD TA WK WV

CW 79.3 8.6 0 0 0 5.2 3.4 0 0 0 3.4

CA 6.9 75.9 0 0 0 3.4 6.9 0 0 0 6.9

GU 0 0 89.7 0 3.4 0 0 6.9 0 0 0

KI 0 0 0 93.1 0 5.2 0 0 1.7 0 0

PU 0 0 5.2 0 94.8 0 0 0 0 0 0

PC 1.7 0 0 6.9 0 91.4 0 0 0 0 0

SH 0 5.2 0 0 0 1.7 82.8 0 0 0 10.3

SD 0 0 6.9 0 3.4 0 0 89.7 0 0 0

TA 0 0 0 1.7 0 0 0 0 93.1 5.2 0

WK 0 0 0 0 0 0 0 0 0 100 0

WV 0 3.4 0 1.7 0 0 5.2 0 0 5.2 84.5

Table 5: Confusion matrix of LMTL on IXMAS(new) ac-

tion classes. CW=CheckWatch, CA=CrossArms, GU=GetUp,

KI=Kick, PU=PickUp, PC=Punch, SH=ScratchHead, SD=SitDown,

TA=TurnAround, WK=Walk, WV=Wave

BD HS HW JF JP PL RN RF RJ SS WK WS

BD 96.6 0 0 0 0 0 0 0 0 3.4 0 0

HS 0 65.5 0 0 0 0 0 0 1.7 0 24.1 8.6

HW 0 0 100 0 0 0 0 0 0 0 0 0

JF 0 0 0 91.4 0 0 8.6 0 0 0 0 0

JP 0 0 0 0 100 0 0 0 0 0 0 0

PL 3.4 5.2 0 10.3 0 67.2 3.4 1.7 0 8.6 0 0

RN 0 0 0 0 0 0 96.6 1.7 0 0 1.7 0

RF 0 0 0 0 0 0 5.2 93.1 1.7 0 0 0

RJ 0 0 0 15.5 0 0 8.6 3.4 70.7 0 0 1.7

SS 6.9 0 0 0 0 0 0 0 0 93.1 0 0

WK 0 0 0 0 0 0 0 0 0 0 100 0

WS 0 0 0 0 0 0 1.7 0 0 0 20.7 77.6

Table 6: Confusion matrix of LMTL on I3DPost action classes.

BD=Bend, HS=HandShake, HW=HandWave, JF=JumpForward,

JP=Jump-In-Place, PL=Pull, RN=Run, RF=Run-Fall, RJ=Run-Jump-

Walk, SS=Sit-Standup, WK=Walk, WS=Walk-Sit

I3DPost datasets which contain occlusion and structured ac-

tions. This shows the merit of our accounting for action

parts. We also see performance improvement by grouping

viewpoints, LMTL(g=3), over using a single group. In sum-

mary, we perform 10% − 26% better than the baselines on

the benchmark datasets.

Tables 4, 5 and 6 show the confusion tables of our ap-

proach for action classes on the IXMAS, IXMAS(new) and

i3DPost datasets. Although we do not model structured ac-

tions and actions with more than one actor explicitly in our

model, results on the i3DPost dataset show a reasonable ac-

curacy for these set of actions.

Figure 3: Accuracy in [%] of LMTL across different

viewpoints on IXMAS.

CAM0 CAM1 CAM2 CAM3 CAM4

CAM0 81.8 12.7 3 1.8 0.6

CAM1 16.4 81.2 1.8 0.6 0

CAM2 0.6 3 84.8 11.5 0

CAM3 3.6 3.6 8.5 83.6 0.6

CAM4 1.8 4.8 7.3 7.9 78.2

Table 7: The confusion matrix of viewpoints estimated by LMTL on

IXMAS. The values are in [%]

CAM0 CAM1 CAM2 CAM3 CAM4

CAM0 82.4 1.8 9.7 1.2 4.8

CAM1 1.2 87.9 2.4 7.9 0.6

CAM2 4.2 0.6 83.6 1.8 9.7

CAM3 1.2 8.5 1.8 86.1 2.4

CAM4 5.5 1.2 7.3 2.4 83.6

Table 8: Confusion matrix of estimated viewpoints for LMTL on

IXMAS(new). Values are in [%]

Studying recognition accuracy per viewpoint is impor-

tant, because it shows how well an approach performs in

different viewpoints. Fig. 3 shows our average accuracy

per viewpoint on the IXMAS dataset. We can see that

our recognition accuracy is consistent across different view-

points.

Table 7 shows the confusion matrix of our viewpoint es-

timation on the IXMAS dataset. Our average viewpoint es-

timation accuracy is 82%. Confusion matrices of our view-

point estimation on the IXMAS(new) and i3DPost datasets

are shown in tables 8 and 9 respectively.

In the second setting, we fix the number of source view-

points, and evaluate the sensitivity of LMTL to a varying

fraction of target samples in training. Fig. 4 shows the aver-

age accuracy of LMTL for different fractions of target views

in the IXMAS datasets. For 0% fraction of target views,

LMTL does not perform as good as [11] on IXMAS. This is

because LMTL is a supervised approach, and needs at least

some fraction of target examples for classification. Starting

31263133

CAM0 CAM1 CAM2 CAM3 CAM4 CAM5 CAM6 CAM7

CAM0 88.7 6.7 4.6 0 0 0 0 0

CAM1 3.6 90.3 5.6 0 0 0 0.5 0

CAM2 0 0 90.3 0 1.0 8.7 0 0

CAM3 6.7 4.1 0 88.7 0 0.5 0 0

CAM4 0 0 0.5 0 86.7 0 2.1 10.8

CAM5 0 0 7.7 0 0 91.3 1.0 0

CAM6 0 0 0 0 3.6 0 91.8 4.6

CAM7 0 0.5 0 0 8.7 0 6.2 84.6

Table 9: Confusion matrix of estimated viewpoints for LMTL on

I3DPost. Values are in [%]

Figure 4: Average accuracy in [%] based on the fraction of

target examples in the IXMAS training dataset.

Figure 5: Average accuracy in [%] for different numbers

of viewpoints in the IXMAS, IXMAS(new) and i3DPost

datasets.

from one-fourth of target samples, we get better accuracy

compared to [11].

In the second setting, we also test our sensitivity to the

number of source viewpoints. This is important, because

not all methods result in significant performance increase

by using multiple source views (e.g. [11]). Fig. 5 shows

the effect of using multiple source views on our average ac-

curacy for three datasets. We have averaged over all dif-

ferent combinations of source views. In addition to the

source view videos, we also use one-third of videos of the

target viewpoint in learning. Note that the total number of

groups of viewpoints is limited by the number of the source

views, which is 5 in IXMAS, and 8 in both IXMAS(new)

and i3DPost.

For a fair comparison with the state of the art, we use

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg

[11] 62.0 65.5 64.5 69.5 57.9 63.9

[26] 86.1 93.1 73.6 80.6 - 83.3

LMTL 89.2 87.7 86.8 90.5 79.6 86.8

LMTL 89.2 87.7 86.8 90.5 - 88.6

Table 10: Average accuracy in [%] of LMTL, and the state of

the art on IXMAS in unbalanced labeling mode.

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg

[9] 74.8 74.5 74.8 70.6 61.2 71.2

[12] 86.6 81.1 80.1 83.6 82.8 82.8

[26] 95.1 89.6 91.7 90.3 - 91.7

LMTL 95.9 96.8 94.5 96.9 89.9 94.8

LMTL 95.9 96.8 94.5 96.9 - 96

Table 11: Average accuracy in [%] of LMTL and the state of

the art on IXMAS in balanced labeling mode.

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg

[24] 87.0 88.3 85.6 87.0 69.7 83.5

LMTL 90.2 91.4 88.7 88.1 84.4 88.6

Table 12: Average accuracy in [%] of LMTL and the state of

the art on IXMAS(new) in balanced labeling mode.

two different modes of tests: 1) Unbalanced labeled mode,

where we use one-third of videos from the target views in

training, and 2) Balanced labeled mode, where we use two-

thirds of videos from the target views in training. The state-

of-the-art approaches include [9] and [11, 12] as represen-

tatives of view-invariant features and transfer learning ap-

proaches. [11] uses multi-kernel SVM. We also compare

with another latent structured model [27]. A comparison

with geometric-based approaches to view-invariant recog-

nition is not possible, because they do not report their ac-

curacy per viewpoint. Table 10 shows the comparison on

IXMAS in the unbalanced labeled mode. Tables 11 and 12

show the comparison using fully labeled training data on the

two IXMAS datasets. LMTL outperforms the state-of-the-

art approaches by 4.5–6%.

The best average accuracy on the simple action classes of

i3DPost, reported in [8], is 90.88%. From Table 3, LMTL

outperforms the approach of [8] by 5.4% for the same set

of actions. Our evaluation on i3DPost shows that the DPM

representation of action classes is capable of handling more

complex, structured actions.

Implementation is done in C++. We perform our ex-

periments on a core-i7 cpu and 8GB RAM PC. The infer-

ence running time is O(m logm), where m is the number

of overlapping 2D+t windows in the video.

31273134

8. Conclusion
We have formulated a new approach to view-invariant

action recognition. Our novelty is two-fold. We have for-

malized viewpoints of a given set of action classes as learn-

ing tasks, which can be jointly learned within the Multitask

Learning (MTL) framework. To express that some view-

points may not be correlated, and that discriminative action

parts are subject to occlusion across the views, we have ex-

tended the standard MTL to latent MTL (LMTL). Thus, our

LMTL identifies groupings of correlated viewpoints, lever-

aging a multiclass deformable parts model of actions.

Our evaluation on the benchmark IXMAS, IX-

MAS(new), and i3DPost datasets shows that account-

ing for parts and grouping viewpoints in LMTL leads

to significant performance improvements over MTL, and

other knowledge-transfer approaches to view-invariant ac-

tion recognition.

Acknowledgement
The support of the National Science Foundation under

grant NSF IIS 1018490 is gratefully acknowledged.

References
[1] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task

feature learning. Machine Learning, 73:243–272, 2008. 3, 5

[2] R. Caruana. Multitask learning. Machine Learning,

28(1):41–75, 1997. 1

[3] A. Farhadi and M. K. Tabrizi. Learning to recognize activi-

ties from the wrong view point. In ECCV, 2008. 1

[4] A. Farhadi, M. K. Tabrizi, I. Endres, and D. A. Forsyth. A

latent model of discriminative aspect. In ICCV, 2009. 1

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. PAMI, 32(9):1627–45, 2010. 2, 4

[6] N. Gkalelis, H. Kim, A. Hilton, N. Nikolaidis, and I. Pitas.

The i3DPost multi-miew and 3D human action/interaction

database. CVMP, 2009. 4

[7] D. Gong and G. Medioni. Dynamic manifold warping for

view invariant action recognition. ICCV, 2011. 1

[8] A. Iosifidis, N. Nikolaidis, and I. Pitas. Movement recog-

nition exploiting multi-view information. In MMSP, 2010.

7

[9] I. N. Junejo, E. Dexter, I. Laptev, and P. Pérez.

View-independent action recognition from temporal self-

similarities. PAMI, 33(1):172–85, 2011. 1, 7

[10] Z. Kang and K. Grauman. Learning with whom to share in

multi-task feature learning. ICML, 2011. 2, 3, 4, 5

[11] R. Li and T. Zickler. Discriminative virtual views for cross-

view action recognition. CVPR, 2012. 1, 6, 7

[12] J. Liu, M. Shah, B. Kuipers, and S. Savarese. Cross-view ac-

tion recognition via view knowledge transfer. CVPR, 2011.

1, 7

[13] N. Loeff and A. Farhadi. Scene discovery by matrix factor-

ization. In ECCV, 2008. 1

[14] F. Lv and R. Nevatia. Single view human action recogni-

tion using key pose matching and viterbi path searching. In

CVPR, 2007. 1

[15] V. Parameswaran and R. Chellappa. View invariance for hu-

man action recognition. IJCV, 66(1):83–101, 2006. 1

[16] A. Quattoni, M. Collins, and T. Darrell. Transfer learning for

image classification with sparse prototype representations. In

CVPR, 2008. 1

[17] C. Rao, A. Yilmaz, and M. Shah. View-invariant representa-

tion and recognition of actions. IJCV, 50(2):203–226, 2002.

1

[18] Y. Shen and H. Foroosh. View-invariant action recognition

from point triplets. PAMI, 31(10):1898–905, 2009. 1

[19] T. F. Syeda-Mahmood, M. A. O. Vasilescu, and S. Sethi.

Recognizing action events from multiple viewpoints. In

IEEE Workshop on Detection and Recognition of Events in
Video, pages 64–, 2001. 1

[20] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing vi-

sual features for multiclass and multiview object detection.

PAMI, 29(5):854–869, 2007. 1

[21] H. Wang. Dense Trajectories. http://
lear.inrialpes.fr/people/wang/dense_
trajectories/, 2011. 4

[22] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action

Recognition by Dense Trajectories. In IEEE Conference on
Computer Vision & Pattern Recognition, pages 3169–3176,

Colorado Springs, United States, June 2011. 4

[23] D. Weinland, E. Boyer, and R. Ronfard. Action recognition

from arbitrary views using 3D Exemplars. ICCV, 2007. 1

[24] D. Weinland, M. Özuysal, and P. Fua. Making action recog-

nition robust to occlusions and viewpoint changes. ECCV,

2010. 4, 7

[25] D. Weinland, R. Ronfard, and E. Boyer. Free viewpoint

action recognition using motion history volumes. CVIU,

104(2):249–257, 2006. 1, 4

[26] X. Wu and Y. Jia. View-invariant action recognition using

latent kernelized structural svm. In ECCV, 2012. 1, 4, 7

[27] Y. Wu. Mining actionlet ensemble for action recognition

with depth cameras. In CVPR, 2012. 7

[28] P. Yan, S. M. Khan, and M. Shah. Learning 4D action feature

models for arbitrary view action recognition. ICCV, 2008. 1

[29] A. Yilmaz and M. Shah. Actions sketch : A novel action

representation. CVPR, 2005. 1

[30] C.-N. J. Yu and T. Joachims. Learning structural SVMs with

latent variables. ICML, 2009. 2, 4

[31] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust vi-

sual tracking via structured multi-task sparse learning. IJCV,

101(2):367–383, 2012. 1

31283135

