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Abstract

Recent works have shown that facial attributes are useful
in a number of applications such as face recognition and
retrieval. However, estimating attributes in images with
large variations remains a big challenge. This challenge
is addressed in this paper. Unlike existing methods that
assume the independence of attributes during their esti-
mation, our approach captures the interdependencies of
local regions for each attribute, as well as the high-order
correlations between different attributes, which makes it
more robust to occlusions and misdetection of face regions.
First, we have modeled region interdependencies with a
discriminative decision tree, where each node consists of
a detector and a classifier trained on a local region. The
detector allows us to locate the region, while the classifier
determines the presence or absence of an attribute. Sec-
ond, correlations of attributes and attribute predictors are
modeled by organizing all of the decision trees into a large
sum-product network (SPN), which is learned by the EM
algorithm and yields the most probable explanation (MPE)
of the facial attributes in terms of the region’s localization
and classification. Experimental results on a large data set
with 22, 400 images show the effectiveness of the proposed
approach.

1. Introduction
Visual attributes are properties observable from images,

such as “smiling” and “lighting”. They are powerful as

high-level representations of images in a variety of tasks,

such as object recognition, image-to-text matching, and

attribute discovery.

The usefulness of face attributes has also been demon-

strated in the applications of face search [11], ranking [19],
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Figure 1. (a) Different kinds of face variations. (b) Conventional

methods [12, 11] concatenate low-level features extracted from a few pre-

defined functional regions, such as the eyes and chin shown in the second

image of (a), and then learn a binary SVM to build a separate classifier

for each attribute—this method is unreliable due to feature corruption at

the functional regions. (c) Human vision can predict attributes, such as

“smiling”, even with large occlusions. This study intends to bridge this
gap between computer vision and human vision.

and verification [12]. The success of these algorithms relies

heavily on the accuracy of predicted attribute values, i.e. the
scores of separate attribute classifiers. For example, Kumar

et al. [11] created an image retrieval system in which users
can search for face images based on text queries, such as

“young woman smiling”. Images are retrieved by simply
ranking the values of face attributes. Recently, Siddiquie et
al. [19] exploited the cooccurrences of attributes to improve
image search performance. Since the query “young woman
smiling” contains the attribute “woman”, face images with
attribute “mustache” will be disregarded, and those with
attribute “blond hair” are likely to be selected.

Current methods [11, 12] concatenate low-level features

extracted from a few pre-defined functional regions, e.g.
eyes and chin, and then train a separate binary SVM

classifier for each attribute. Although they are sufficient

for well controlled environments, the problem is that if

large face variations such as pose, lighting, and occlusion
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are present (Fig.1 (a)), the scores of the separate classifiers

become unreliable due to feature corruption at the func-

tional regions as in Fig.1 (b). In this case, the attribute

values can greatly bias the algorithms built on top of them.

In uncontrolled scenarios, faces could be only partially

visible for many reasons. Subjects may intentionally wear

masks, sunglasses, or makeup to hide their identities. The

same happens when cameras cannot capture faces with the

optimal viewpoints, subjects occlude each other, or some

regions have heavy shadows under lighting conditions.

Even if faces are fully visible, some functional regions

could be misdetected for various reasons. All the above

pose a big challenge for attribute estimation.

Nevertheless, human vision can predict attributes even

with the presence of large variations. There are three key

observations. First, an attribute can be estimated even

from small image regions. For instance, one can easily

predict a person is “smiling” only by the mouth, as shown
in Fig.1 (c.1). Second, if a region has been occluded, an

attribute can still be inferred by its interdependence with

respect to other regions. For example, according to the

eyes and the nose-mouth line (c.2), it is reasonable to judge

that the person is “smiling”. Third, the presence of some
attributes may indicate the absence or presence of others.

For example, given the “black hair” and “black eyes” of
the woman shown at the right, the attribute “European” is
unlikely to be present.

In this work, we propose estimating attributes from
face images that may be corrupted. Our method involves

the following three steps: 1) automatically discover the

discriminative regions for an attribute, 2) explore interde-

pendencies of these regions, and 3) learn correlations of

different attributes.

In the first step, we devise a discriminative binary
decision tree for each attribute. Each node corresponds

to a rectangle region in images, and contains a region

detector as well as a regional classifier. The region detector

provides reliable localization over a cluttered background

and occluded faces, while the regional classifier predicts the

attribute. Region discovery at each node can be considered

as selecting the most discriminative region separating posi-

tive and negative samples.

In the second step, a learned decision tree is transformed
to a sum-product tree (SPT) to explore interdependencies

among discovered discriminative regions. SPT outputs

the likelihood that an attribute will be present, using the

scores of all the regional classifiers as input. If a region

is misdetected, the output of the corresponding regional

classifier can be efficiently marginalized during inference

without affecting attribute estimation.

In the third step, we organize all the SPTs into a sum-
product network (SPN) that models the joint probability of

the SPTs (organzine the regional classifiers in a hierarchical

manner) and the attribute labels by stacking many layers

of sum and product nodes. As the SPN goes deeper, an

exponentially large number of attribute correlations can be

compactly encoded. Even for a large and deep architecture,

SPN can be efficiently learned by the EM algorithm, and

can perform exact inference, such as the most probable

explanation (MPE), with which misdetection handling is

like answering “probabilistic queries” [5]. We can effi-

ciently derive the probabilities of the presences of attributes

conditioned on only a few evidences, i.e. p({presences of any
subset of attributes}|{scores of any subset of region classifiers}).
The key contributions of our work can be summarized

as follows. We propose a new deep SPN architecture for

robust estimation of facial attributes. Our system models

attribute correlations using a new network architecture

that combines decision trees with SPN, and has some

attractive advantages. 1) Discriminative regions for each

attribute can be automatically discovered. 2) It does not

require occluded training data, which may introduce bias

on the distribution of occlusions. The joint distribution

of classification scores and attribute labels can be learned

from unoccluded training samples. 3) This new network

architecture can efficiently compute the correlation between

any subsets of attributes, which is not trivial (there are 2n

possible subsets for n attributes). 4) At the test stage,

any types of misdetections can be handled by efficiently

marginalizing the classification scores of the misdetected

regions.

1.1. Related Work

We review several robust deep models to handle data

corruption, such as noise and occlusion. These models

can be divided into two categories: implicitly learning
robust features [22, 4, 13], and explicitly modeling the
structure of occlusions [21, 20, 18, 16, 15, 14]. To learn

robust features, Vincent et al. [22] extended Hinton’s deep
autoencoder [8] by randomly corrupting the input of the

restricted Boltzmann machine (RBM) at the pre-training

stage. Recently, more efforts have been made to explicitly

model the structure of noisy images. Tang et al. [21]
introduced the robust Boltzmann machine, which couples

noise estimation and feature learning. It distinguishes

corrupted and uncorrupted pixels and finds useful latent

representations. Nicolas et al. [18] proposed a more
sophisticated model to separate appearance and occlusion

boundaries of image patches with a field of RBMs.

These methods have certain drawbacks. The denoising

autoencoder [22, 4] has a strong assumption that input is

corrupted following a known distribution. The subsequent

methods [21, 20, 18, 16] overcame this problem by learning

noise models from training data. The learned models rely

on noisy training samples, but the large noise space cannot

be easily covered by the training set. We did not employ
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Figure 2. We first select discriminative regions with a discriminative decision tree (DDT) (a). To explore region interdependencies, each DDT is transformed
to a sum-product tree (SPT) (c) through the representation of a join tree (b).

these methods since we do not know the prior distribution

of noise in face images and our training set does not include

noisy or occluded samples. Unlike previous deep models,

our work does not need to employ or synthesis training

data with noise and can naturally cope with any kinds of

corruptions, because the scores of the misdetected region

classifiers can be marginalized out.

We adopt the recently proposed SPN [17], which models

probability distribution by stacking many layers of sums

and products. We extend the traditional SPN by proposing

a new architecture with 12 layers for modeling correlations

of attributes. Our deep SPN learns the joint distribution

of the regional classifiers’ scores and the attributes’ labels

from the images without occlusions, and it can capture

correlations between any subset of attributes. During

inference, occlusions can be handled by marginalizing out

the variables of the undetected regions given the property of

SPN. Our SPN is more efficient and robust than the existing

SPNs [17, 7], which use pixel values or low-level features

as input, because we operate on classifiers’ scores.

2. Discriminative Region Discovery
A binary discriminative decision tree (DDT) is learned

for each attribute to discover discriminative regions. As

shown in Fig.2 (a), each node corresponds to a rectangle

region and contains a region detector and a regional classi-

fier. Each node splits data into its children by first scanning

images with the region detector and then classifying the

attribute with the regional classifier once the region has

been located. The split process stops when a pre-defined

maximum depth is reached. In this work, the maximum

depth is 3 and the number of nodes is N = 7. Fig.3 shows
the selected discriminative regions of several attributes.

In order to learn DDT, three training sets are prepared:

“presence”, “absence”, and “background”. Both the “p-

resence” and “absence” sets contain images with faces,

indicating whether the attribute is “on” or “off”. The

“background” set contains images without faces. Training

is conducted in four steps: 1) for each node, randomly

sample a number of rectangles with various positions; 2)

for each rectangle, use latent-SVM [6] to train the classifier

with the “presence” set as positives, and the “absence” set

as negatives; 3) at each node, select the rectangle with the

maximum information gain [1] as a discriminative region;

4) learn the detector at each node based on the selected

discriminative region with linear-SVM, which utilizes both

the “presence” and “absence” sets as positive training

samples, and the “background” set as negative training

samples. Steps 1) and 3) are similar to [25], and step 4)

is trivial. The details of step 2) are discussed below.

As shown in Fig.3, as face images are captured in

an unconstrained environment, the regions extracted from

different images at the same position are not well aligned.

Therefore, given a sampled rectangle with its position

denoted as (x, y), we train the region classifier rc with
latent-SVM that iterates between locally searching the

region position (x, y) in each image and optimizing the
parameters α by minimizing the objective function,

L(α) =
1

2
‖α‖2 + C

n∑

i=1

max(0, 1− �ir
c(I

(x,y)
i )). (1)

I
(x,y)
i and �i ∈ {1,−1} indicate the region of the i-

th image at position (x, y) and its label. rc(I
(x,y)
i ) =

max(x,y)∈{(x,y)|dist((x,y),(x,y))≤τ}α · Φ(I
(x,y)
i ) is a func-

tion that determines the region position (x, y) with the
maximum classification score, according to the current

parameters α. dist(·, ·) is the Euclidean distance. (x, y)
is searched within radius τ around (x, y). Eq.1 can be

efficiently optimized with the stochastic gradient descent

[6].

3. Region Interdependencies
Region interdependence is modeled with a sum-product

tree (SPT), which is a shallow sum-product network (SPN).

SPN Overview. SPN models joint probabilities and

builds on the network polynomial [5], which is a multi-

linear function of variables’ indicators. For example,

consider the joint probability P (A1, A2) of two binary
variables, A1, A2, which can be written as a multi-linear

function with only sums/products: P (A1, A2) = P (A1 =

1, A2 = 1)1(A1 = 1)1(A2 = 1) + P (A1 = 0, A2 = 1)1(A1 =

0)1(A2 = 1) + P (A1 = 1, A2 = 0)1(A1 = 1)1(A2 = 0) +
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Figure 3. Seven discriminative regions on each image are selected for each attribute and visualized in red. Yellow indicates the area where the seven regions
are highly overlapped. Also, a positive example and a negative example are shown for each attribute.

P (A1 = 0, A2 = 0)1(A1 = 0)1(A2 = 0), where 1(·) is the
indicator, i.e. 1(x) = 1 if x is true, otherwise 1(x) = 0.
We can marginalize a variable, e.g. A1, simply by setting

all the indicators related to A1 as 1 [17]. The above

polynomial then becomes P (A2) = P (A2 = 1)1(A2 = 1) +

P (A2 = 0)1(A2 = 0). Therefore, computing any conditional

probability, e.g. P (A1|A2) =
P (A1,A2)
P (A2)

, becomes easy.

However, the network polynomial has a size exponential in

the number of variables, e.g. 2n for n binary variables.

Figure 4. Example of SPN.

SPN compactly represents the network polynomial in

a hierarchical manner. In the simple example shown in

Fig.4 (a), SPN models the joint probability of two binary

variables, X1 and X2, as a rooted acyclic graph with

terminal, sum, and product nodes. We denote indicators

1(Xi = 1), 1(Xi = 0) by Xi, Xi. The terminals are the

indicatorsX1, X1, X2, X2. The sum and product nodes are

arranged in alternating layers: all the children of a product

node are sums, and all the children of a sum node are

products or terminals. An edge (v+, v∗) that connects a sum
node v+ with its child v∗ has weight wv+v∗ > 0, and all
the weights of its children

∑
∀v∗∈Ch(v+) wv+v∗ = 1, where

Ch(v+) is the set of children of v+. An edge (v∗, v+) that
connects a product node v∗ with its child v+ ∈ Ch(v∗)
has uniform weight wv∗v+ = 1. With this representation,
the value of a sum node v+, denoted as Sv+ , can be
recursively derived as Sv+ =

∑
∀v∗∈Ch(v+) wv+v∗Sv∗ ,

and Sv∗ =
∏
v+∈Ch(v∗) Sv+ . Note that the value of

the root equals the joint probability of the variables [17],

i.e. S(X1, X1, X2, X2) = P (X1, X2).

Fig.4 (a) illustrates an example when X1 = 1 and X2

is unobserved. Thus, by marginalizing X2, S(1, 0, 1, 1) =

P (X1 = 1) = 0.3 × 0.4 + 0.7 × 0.7 = 0.61. With SPN, we can

efficiently infer the value of an unobserved variable using

the MPE inference [17], which has linear complexity in the

number of nodes and is tractable in polynomial time. We

first replace the sums with maximizations, as shown in Fig.4

(b), which means that the product node with maximum

value is selected during inference. The MPE contains two

passes. The first pass computes the value at each node

from bottom to top (b), and then the second pass backtracks
the path of the first pass from top to bottom (c) until it

reaches the terminals. For instance, with X1, X1, X2, X2

being 1, 0, 1, 1, the most probable explanation of X2 when

X1 = 1 is 0. This is why we can estimate the occluded
attributes conditioning on the observed ones.

DDT to SPT. Our SPT considers the scores of the

regional classifiers {ri} in Eq.1 as terminals. To model
region interdependencies and simultaneously maintain the

discriminative power of DDT, we transform a DDT to

SPT, which can better handle misdetection. If a region

is not detectable, DDT must guess the output of the

regional classifier at the misdetected node, while SPT can

estimate the attribute by marginalizing the variables of the

undetected regions.

A decision tree can be transformed to a sum-product

structure with the join tree using the algorithm proposed

in [10, 5]. A join tree is an undirected tree on which each

node is a set of variables, called a cluster, and each edge
is labeled with the intersection of the adjacent clusters,

called a separator. The join tree of our decision tree is
illustrated in Fig.2 (b). The sum-product structure is then

determined by two types of mappings: 1) each instantiation

of a cluster is mapped to a product node; and 2) each

instantiation of a separator is mapped to a sum node.
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For instance, as shown in Fig.2 (b) and (c), cluster r1r2
(blue) has four instantiations, r1r2, r1r2, r1r2, r1r2, and is
transformed to four products, while the separator r1 (red)
with two instantiations r1, r1 is mapped to two sums. In
Fig.2 (c), the SPT is obtained by replacing the instantiations

with sum/product nodes.

4. Attribute Correlations with Deep SPN

4.1. Our Architecture

Our deep SPN jointly models the outputs of regional

classifiers and the labels of attributes. It has two types of

terminal nodes (Fig.5). 1) SPTs, denoted as {Ti}Ki=1, con-

tain terminals with continuous values, R = {rij}K,Ni=1,j=1,

each of which indicates the classification score of the

j-th regional classifier of the i-th attribute. 2) A =
{(Ai, Ai)}Ki=1 are the binary indicators, each of which
indicates the label of an attribute. Ai = 1 and Ai = 0
denote that the i-th attribute is present; otherwise, Ai = 0
and Ai = 1.

In the following, we denote the name of an attribute

with bold Ai and its binary indicator with Ai, Ai. Our

network is shown in Fig.5, where different sets of nodes

(in dashed lines) model correlations of different groups of

attributes (in bold type). A set of product nodes represent

the instantiations for an attribute group, e.g. a node in layer
4 can be viewed as A1A2A3A4 for group A1A2A3A4

in layer 5. A set of sum nodes represents the possible

correlations among a group of attributes, e.g. there are 3
possible correlations (3 sum nodes) of A1A2A3A4 in

layer 5, each being the weighted sum of the product nodes
(instantiations) in layer 4. Note that the number of possible
correlations, i.e. the number of sum nodes of each attribute
group, is an empirical parameter. Once it has been set,

the number of product nodes for an attribute group is

determined. In Fig.5, since both groups A1A2 and A3A4

have 3 sum nodes, there are 3 × 3 = 9 products in layer 4.
In our experiment, we set the number of sum nodes in each

group as a constant 20. Intuitively, a larger number of sums
result in larger number of products, which means they have

stronger representative power.

Our SPN is reconstructed as follows. 1) In layer 1, we
treat the SPTs and the indicators of two attributes as one
group, e.g. the group in blue in Fig.5. 2) In layer 2, a
product node connects to all the sum nodes of a group in

layer 1 if they represent the correlations of the same set of
attributes; 3) In the upper layer, a sum node connects to all
the products belonging to the same group of attributes, e.g.
each sum of A1A2 in red connects to all the products in

green, since they all relate to the correlations of attributes

A1 and A2. A product node connects to two sum nodes to
form the instantiations of an upper attribute group.

Inference. Given an image, we first run the region

Figure 5. In our SPN, different attribute correlations are modeled by different
groups of nodes, e.g. group A1A2A3A4 represents correlation among the first
four attributes. When more layers are added, an exponentially large number of
attribute correlations can be compactly encoded. Ti represents a SPT and it has

K ×N terminalsR = {rij}K,N
i=1,j=1.

detectors with the sliding window scheme. If a region is

located, apply the corresponding regional classifier. Let

Rd, Rud, and A denote the continuous terminals, i.e.
classification scores of the detected and undetected regions,

and the binary terminals respectively. Inferring the values

of attributes is equivalent to maximize the posterior with

the learned SPN,

{A∗,Rud∗} =argmaxA,RudP (A,Rud|Rd)

=argmaxA,Rud

S({A,Rud,Rd})
S(Rd)A=1,Rud=1

. (2)

A and Rud are unobserved variables. Rd are observed

variables. S(·) is the value of the root. Note that

S(Rd)A=1,Rud=1 is a constant computed by marginalizing

A and Rud, i.e. setting the corresponding indicators to 1.
Eq.2 can be efficiently optimized with the most probable

explanation (MPE) introduced in Sec.3. The only difference

is that we are dealing with a more sophisticated network.

4.2. Learning the Deep SPN

The learning algorithm is summarized in Alg.1. Given

a set of training images {Ii}ni=1, we first obtain Rd
i , Rud

i ,

and Ai from Ii. As occluded images are not required for
training, Rud

i could be empty. The training process iterates

between learning weights w while keeping the network

architecture fixed and pruning edges with zero weights.

Learning weights w. If v∗i ∈ Ch(v+) is a child
(product) of a sum node v+, let P (v∗i |Rd) be the probability
of choosing the i-th child v∗i at sum node v+, conditioned on

the observables Rd. SPN can be learned with an EM-like

algorithm following [5]. The E-step computes P (v∗i |Rd),
which can be viewed as the weights at each sum node,

indicating which child to chose during inference. The M-
step adds all these probabilities and renormalizes them to

update the weights. Specifically, at the E-step, we use the
MPE inference as in Sec.4.1 to select the child of a sum

node. At the M-step, we maintain a count for each of its
child, and increment the count if a child has been chosen in

an iteration during training. Then the weights at each sum
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Algorithm 1: Learning Deep SPN
Input: All the training images {Ii} and the labels of 73 attributes
Output: w and network architecture

1. train DDT for each attribute as described in Sec.2

2. transform DDT to SPT by bi-breadth-first search in Sec.3

3. obtain {Rd
i ,Rud

i ,Ai} from {Ii}, and initialize w and network

architecture as described in Sec.4.2

repeat
-Update w
E-step: inferRud

i ,Ai according to Eq.2, Sec.4.1

M-step: renormalize w
-Prune edges with zero weights

until converge

node are updated by normalizing the counts over all of its

children. A similar strategy was used in [17, 7].

Initializing network architecture. We initialize the

network following Sec.4.1. Each group at an upper layer

represents the combination of two groups at the lower layer.

Our goal is to obtain a compact network structure, i.e. to
determine which two groups should be combined, because

there are exponentially large numbers of combinations

when SPN goes deeper. As we have 73 attributes in our
experiment, layer 3 in Fig.5 may contain 73!

(73−2)!2! = 2628

groups, each indicating correlation of two attributes. If

we consider full combinations all the time, when more

layers are added, learning SPN becomes impractical due to

huge computational cost. For example, layer 5 will have
2628!

(2628−2)!2! = 3, 451, 878 groups.

To ensure compactness as well as combination diversity,

we introduce two constraints at layer 3 and the above layers:
1) a group in the previous layer can be combined only once;

and 2) two groups with no intersection have higher priority

to be combined. We adopt greedy search to find group

combinations. Considering the groups at layer 3 of Fig.5
in sequence, we first search forA3A4 to be combined with

A1A2, because they do not have overlap in attributes. We

then considerA1A2A3A4 as a new group at layer 5. And
A1A2 can no longer be combined at the next iteration. This

strategy will reduce the number of groups at each layer

by half at a time, while retaining the diversity of attribute

combinations. Our deep SPN has 12 layers in total.

5. Experiments

Datasets. The previous works [11, 12] evaluated their
methods on the subsets of FaceTracer and PubFig, but did

not release the subsets selected. Therefore, it is impossible

to directly compare with their published results on those

datasets. To achieve a fair and extensive comparison, we

construct a large dataset that is a composition of LFW [9],

FaceTracer [11], and PubFig [12], and implement state-

of-the-art methods for comparison. The face images are

taken in uncontrolled environments with large variations in

Figure 6. Some images with occlusions in Experiment II.

Figure 7. The pairwise correlations of 15 attributes.

poses, lightings, expressions, and camera settings. 10, 000
unoccluded images are selected for training and another

10, 000 unoccluded images and 2, 400 occluded images
(some occluded examples are shown in Fig.6) are selected

for testing. These images were annotated by a professional

image labeling company. An image was labeled by one sub-

ject because the data scale. Face images are roughly aligned

based on the positions of eyes, cropped and normalized to

200× 160.

I. Learning Attribute Correlations. We use the learned
SPN to compute the correlation between two attributes as

the conditional probability of one when the other is present

in a way as described in Sec.3. Note that the correlation

between any two sets of attributes can be computed in

the same way. The correlation value is in the range of

[0, 1]. “0”, “0.5”, and “1” indicate “negative correlation”,
“independence”, and “positive correlation”, respectively.

Fig.7 plots the pairwise correlations among 15 attributes,
where an element in this matrix represents the probability

of the attribute at the j-th column when the attribute
at the i-th row is present. Some interesting results are

observed. For example, “attractive woman” has highly
positive correlation with “smiling” and “heavy makeup”, but
is negatively correlated with “bald” and “mustache”. The
experiment results show that attribute correlations can be

well discovered by the proposed deep SPN.

II. Attribute Estimation. Our deep SPN is compared
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Table 1. Classification accuracies of deep SPN, SAC [12, 11], and MAC [2]. The first three rows are on the unoccluded test set, and the last three are on
the occluded test set.

with the separate attribute classifiers (SAC) [12, 11] and

the multilevel attribute classifiers (MAC) [2] on both the

unoccluded and occluded testing images. The SAC trains a

binary SVM classifier for each attribute. The original MAC

is to predict human attribute based on poselets. We apply

it to faces by replacing the poselets with our discriminative

regions in Sec.2 and then train different level of classifiers

as in [2]. Note that MAC can model pairwise attribute

correlations.

The results are reported in Table 1. On the unoccluded

test, the averaged classification accuracies of SAC, MAC,

and deep SPN are 82.1%, 84.4%, and 87.9%, respectively,
while the corresponding accuracies on the occluded test set

are 68.0%, 72.1%, and 79.8%. The deep SPN generally

performs better especially with the presence of occlusions,

because it effectively models the high-order correlations

between attributes and regional classifiers. On the occluded

test set, the deep SPN significantly outperforms SAC and

MAC on nearly all the attributes, because SAC assumes

independence between attributes, while MAC can only

model pairwise correlation. We also examine our SPTs

alone. The averaged accuracies are 81.9% and 70.2%
of the unoccluded and occluded tests, respectively, which

indicate their performances can be significantly improved

when organizing them into the deep SPN. Moreover, it takes

2 hours to train our deep SPN on two 3.3 GHz CPUs and

16G RAMs, and 5.3 seconds to classify 73 attributes of an
image, which is comparable to 5 seconds of MAC in the
same experimental environment.

III. Experiments on synthetic datasets. We evaluate
the robustness of deep SPN under different levels of

occlusions on a synthetic dataset. We use the same training

and unoccluded test sets as in parts I and II. However,

for each sample in the test set, a series of corrupted

images are generated with the following strategy. We

first generate random noise that covers the whole image,

and then gradually reduce the coverage of noise towards

one of the four directions: “Top to Bottom”, “Bottom to

Top”, “Left to Right”, and “Right to Left”. An example

of generating occluded images along the “Right to Left”

direction is shown in Fig.8.

Fig.8 plots the classification accuracies of the deep SPN

when the percentage of visible image region is increased

from 10% to 80%. At 50% visibility, all the accuracies are

over 75% (random guess is 50%). This is because with our
deep model, only a few attributes need to be observed in

order to infer the others. As plotted at the left of Fig.9, we

average the accuracies of the four directions and compare

with SAC and MAC. Our method clearly shows superior

performance, showing that our method is more robust when

large occlusions are present.
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Figure 8. Classification accuracies of deep SPN under different levels of
occlusions.

Figure 9. We compare our deep SPN with SAC [12] and MAC [2] under
different levels of occlusions.

6. Conclusion
This paper has proposed a facial attribute estimation

framework, where attribute estimation is achieved by

combining discriminative decision trees with a SPN. For

robust attribute estimation, we devise a deep architecture to

capture attribute correlations for the SPN, where occlusion

handling is casted as marginalizing the variables of the

undetected regions. Experimental results on both occluded

and unoccluded images show great improvement and indi-

cate that our method is very robust under different levels of

occlusions. As face attributes are becoming more important

for face recognition, in the future work, we will explore the

advantage to combine face attributes with traditional face

recognition approaches [23, 24, 3, 26].
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