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Abstract

This paper presents a new approach for image set classi-
fication, where each training and testing example contains
a set of image instances of an object captured from varying
viewpoints or under varying illuminations. While a number
of image set classification methods have been proposed in
recent years, most of them model each image set as a single
linear subspace or mixture of linear subspaces, which may
lose some discriminative information for classification. To
address this, we propose exploring multiple order statistics
as features of image sets, and develop a localized multi-
kernel metric learning (LMKML) algorithm to effectively
combine different order statistics information for classifica-
tion. Our method achieves the state-of-the-art performance
on four widely used databases including the Honda/UCSD,
CMU Mobo, and Youtube face datasets, and the ETH-80
object dataset.

1. Introduction

Image set classification has attracted increasing inter-
est in computer vision and pattern recognition in recent
years [1, 4, 6, 7, 10, 15, 16, 17, 20, 25, 28, 30, 34, 37, 40]
due to its wide potential applications such as visual surveil-
lance and multi-view image analysis. One representative
application of image set classification is the video-based
face recognition problem, where each gallery and probe
face video can be considered as an image set and the char-
acteristics of the image set are used for person identifica-
tion. Different from the conventional image classification
problem where each training and testing example is a single
image, for image set classification, each training and testing
example contains a set of image instances. Compared to a
single image, an image set provides us more information to
describe objects of interest. However, it is also challenging
to exploit discriminative information of image sets as there

Figure 1. The basic idea of our approach. For each image set, we
first compute its multiple order statistics as feature representation.
For each order statistic, we compute a kernel matrix to measure
the pairwise similarity of two image sets. Then, we learn a dis-
tance metric by using the localized multi-kernel metric learning
(LMKML) method to combine the different order statistics. Last-
ly, the nearest neighbor classifier is used for classification.

are usually larger intra-class variations within a set.
There has been a number of work on image set classifi-

cation over the past two decades [1, 4, 10, 16, 21, 23, 30, 34,
35, 38]. However, to our best knowledge, most existing im-
age set classification methods usually make some prior as-
sumptions such as singe Gaussian, Gaussian mixture mod-
els, subspace or manifold models to represent image sets.
In many practical applications, these assumptions may not
be held, especially when there are large and complex data
variations within a set. Moreover, the models learned based
on these assumptions may also lose some discriminative in-
formation for classification.

In this paper, we propose a new approach for image set
classification. Given an image set, we compute its holistic
multiple order statistics as features for set representation.
Compared with most existing image set modeling method-
s [4, 16, 35], our multiple order statistics features can more
robustly capture the distribution of image instances with-
in a set in a holistic way because no parameter estimation
is required. Moreover, they are also less sensitive to noise
because noisy samples can be largely filtered out in the ex-
tracted statistic features. To make better use of the infor-
mation extracted from different order statistics, we further
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develop a localized multi-kernel metric learning (LMKML)
algorithm to learn a distance metric, under which different
order statistics are effectively combined and more discrim-
inative information are exploited for classification. Exper-
imental results on four widely used image set datasets are
presented to show the efficacy of our proposed approach.
The basic idea of our approach is illustrated in Figure 1.

1.1. Related work

Image Set Classification: There has been a growing in-
terest in developing new algorithms for image set classifi-
cation in recent years [1, 4, 5, 9, 10, 14, 15, 16, 21, 23, 30,
33, 35], and they can be mainly classified into two cate-
gories: parametric and nonparametric. Compared to these
works, the contribution of our work is two-fold: 1) extract-
ing multiple order statistics features to reliably represent an
image set; 2) a localized multi-kernel metric learning algo-
rithm. While [34] explored the second-order statistics of
image sets for feature representation, our approach can ex-
tract more discriminative information because it considers
and utilizes multiple different order statistics of image sets.
We also achieve state-of-the-art performance on the image
set classification problem with existing publicly available
datasets.

Multiple Kernel Learning: There have been extensive
work on multiple kernel learning in the literature [2, 8, 11,
13, 18, 22, 26, 29, 32, 36, 39, 41]. While many effort-
s have been made including classification [2, 11, 29, 36],
clustering [39], transfer learning [8], and dimensionality re-
duction [26], little progress has been made in metric learn-
ing with multiple kernel learning. More recently, Wang et
al. [32] proposed a metric learning method with multiple k-
ernels by learning a universal weight vector over the whole
space. Differently, our proposed LMKML algorithm learns
an adaptive weight to each local region in the kernel space
when learning the distance metric. Hence, our approach is
complementary to existing multiple kernel learning meth-
ods.

2. Proposed Approach

Figure 1 shows the flow-chart of our proposed approach.
For each image set, we first extract its multiple order statis-
tics for set modeling. For each order statistic, we com-
pute a kernel matrix to measure the pairwise similarity of
two image sets. Then, we propose a LMKML method to
learn a discriminative, localized distance metric to combine
statistics information at different orders. Lastly, the near-
est neighbor classifier is employed for classification. The
details are introduced in the following subsections.

2.1. Set Modeling with Multiple Order Statistics

Let 𝑋 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛] be an image set containing
𝑛 different images of an object, where 𝑥𝑖 ∈ 𝑅𝑑 denotes

the 𝑖th image sample. Image pixel values are used as raw
features. Given each image set, we extract the following
different order statistics information as features to represent
the set. These multiple order statistics can reliably describe
the distribution of image samples of a set, and hence can be
used as image set features.

∙ First-order statistics: the mean vector 𝑚 of the image
set is computed, which shows the averaged position of
the image set in the high dimensional space:

𝑚 =
1

𝑛

𝑛∑
𝑖=1

𝑥𝑖 (1)

∙ Second-order statistics: the covariance matrix 𝐶 of
the image set is computed, which represents the corre-
lation of two individual features of each pair of sam-
ples in the image set:

𝐶 =
1

𝑛− 1

𝑛∑
𝑖=1

𝑛∑
𝑗=1

(𝑥𝑖 −𝑚)(𝑥𝑗 −𝑚)𝑇 (2)

∙ Third-order statistics: the out product between the
covariance matrix 𝐶 and mean 𝑚 of the image set is
calculated, which forms a third-order tensor to mea-
sure the correlation of two individual elements of the
covariance matrix and the mean vector:

𝒯 = 𝐶 ⊗𝑚 (3)

where 𝑚 is a 𝑑-dimensional vector, 𝐶 is a 𝑑×𝑑 matrix, and
𝒯 is a 𝑑× 𝑑× 𝑑 tensor, respectively. Here “⊗” denotes the
Kronecker product of two matrices. Note that more higher-
order statistics can also be computed for each image set.
However, we only consider these three in our approach be-
cause it is very expensive to compute higher-order statistics
features.

Compared with previous image set representation meth-
ods, there are several advantages to model image sets with
multiple order statistics information:

1. No assumption on the data distribution is required and
the statistics features can be computed from an image
set containing any number of samples.

2. Different order statistics information can characterize
the image set from different perspectives. For exam-
ple, the mean vector roughly reflects the position of the
object in the high-dimensional space, and the covari-
ance matrix represents the variance of each individu-
al feature in the diagonal elements and measures the
correlations of different features in the non-diagonal
elements. Hence, these statistics features can provide
complementary information to represent the image set.

330



Figure 2. Illustration of the importance of different order statistics
in image set classification. In this figure, the squares and trian-
gles demote two different image sets. The first-order statistics are
the same and the second-order statistics are different in (a), where
the first-order statistics are different and the second-order statistics
are the same in (b). Hence, we can see that different order statis-
tics contribute different discriminative and complementary infor-
mation for image set classification.

Figure 2 shows a toy example to illustrate that differ-
ent order statistics contain different discriminative in-
formation for image set classification.

3. These statistic features are more robust to outlines s-
ince they are statistics of all the samples in the image
set and the effect of the noisy samples can be large-
ly alleviated, especially compared to the previous n-
earest sample pair based image classification method-
s [4, 16].

2.2. Localized Multi-Kernel Metric Learning

Having extracted multiple order statistics features, we
perform classification by using the nearest neighbor classi-
fier, which involves calculating the similarity between two
image sets. We compare two statistics features in the kernel
space, given the great success of kernel learning [26, 39].
This is equivalent to mapping the original statistic features
to a new space, and calculating the dot product in the new
space. We write the new feature for the 𝑝th statistic fea-
ture as 𝜙𝑝, and the mapping function as 𝑅𝑑𝑝 → ℱ , where
𝑅𝑑𝑝 is the original feature space and ℱ is the mapped high-
dimensional space. Though 𝜙𝑝 is usually implicit, we first
consider it as an explicit feature vector for simplicity. Later,
we will show any manipulation based on 𝜙𝑝 can be repre-
sented based on kernel values by using the kernel trick.

Similar to [2, 11], we assume different order statistic fea-
tures can be mapped to a common high-dimensional feature
space. And we aim to learn a distance metric to enforce ob-
jects from the same category to be close, and objects from
different categories to be far away, in the learned metric s-
pace. Different from [2, 11] which assume the weights of
different types of features (which are the different order s-
tatistic features here) are the same for all objects, we argue

that weights should be data-adaptive. For example, if an
image set’s mean vector is discriminative, then we should
assign a higher weight to it, compared to other orders. We
formulate our learning problem based on this intuition as
below, and call it Localized Multi-Kernel Metric Learning
(LMKML).

Write 𝑆 = [𝑆1, 𝑆2, ⋅ ⋅ ⋅ , 𝑆𝑁 ] as the training set of 𝑁 d-
ifferent image sets, where 𝑆𝑖 = [𝑠𝑖1, 𝑠𝑖2, ⋅ ⋅ ⋅ , 𝑠𝑖𝑛𝑖

] denotes
the 𝑖th image set, 1 ≤ 𝑖 ≤ 𝑁 , and 𝑛𝑖 is the number of sam-
ples in this image set. For each image set 𝑆𝑖, we compute
its first-, second-, and third-order statistics 𝑚𝑖, 𝐶𝑖 and 𝒯𝑖,
respectively. Let 𝑋𝑝 = [𝑥𝑝

1, 𝑥
𝑝
2, ⋅ ⋅ ⋅ , 𝑥𝑝

𝑁 ] be the 𝑝th statistic
feature set of all training samples, and 𝑥𝑝

𝑖 ∈ 𝑅𝑑𝑝 denotes
the 𝑝th statistic feature extracted from the 𝑖th image set 𝑆𝑖,
where 1 ≤ 𝑝 ≤ 𝑃 . In this work, 𝑃 = 3 as we use three dif-
ferent order statistics features for image set representation.
𝜙𝑝
𝑖 is the corresponding high-dimensional feature of 𝑥𝑝

𝑖 . 𝑀
is the distance metric to be learned in the high-dimensional
space ℱ . The distance between two image sets 𝑆𝑖 and 𝑆𝑗

under 𝑀 is:

𝑑(𝑆𝑖, 𝑆𝑗) =

𝑃∑
𝑝=1

𝜂𝑝(𝜙
𝑝
𝑖 )(𝜙

𝑝
𝑖 − 𝜙𝑝

𝑗 )
𝑇𝑀(𝜙𝑝

𝑖 − 𝜙𝑝
𝑗 )𝜂𝑝(𝜙

𝑝
𝑗 ) (4)

where 𝜂𝑝(𝜙
𝑝
𝑖 ) is a gating function to generate different pos-

itive weighting numbers for different 𝜙𝑝
𝑖 , which will be de-

tailed later. Because of 𝜂𝑝(𝜙
𝑝
𝑖 ), our learning method is “lo-

calized”. It is obvious that previous global kernel weighting
algorithms [2, 11] can be considered as a special case of our
method, where 𝜂𝑝(𝜙

𝑝
𝑖 ) is the same for any 𝜙𝑝

𝑖 .
To learn a distance metric 𝑀 , we maximize inter-class

variations and minimize intra-class variations, simultane-
ously. The objective function is formulated as:

max
𝑀

𝐽 =
𝑁∑

𝑖,𝑗=1
(𝑆𝑖,𝑆𝑗)∈𝐶−

𝑑(𝑆𝑖, 𝑆𝑗)

𝑁𝐶−
−

𝑁∑
𝑖,𝑗=1

(𝑆𝑖,𝑆𝑗)∈𝐶+

𝑑(𝑆𝑖, 𝑆𝑗)

𝑁𝐶+

(5)

where 𝐶− and 𝐶+ denote the inter-class and intra-class
sample pairs in the training set, and 𝑁𝐶− and 𝑁𝐶+ denote
the number of pairs in these two sets, respectively.

𝑀 is symmetric and positive semidefinite. We can seek a
nonsquare matrix 𝑊 (𝑊 = [𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑑]) of size 𝑑ℱ ×
𝑑, where 𝑑ℱ is the dimensionality of the high-dimensional
feature space, and 𝑑 is the number of basis in 𝑊 , such that

𝑀 = 𝑊𝑊𝑇 (6)

Combining Eqs. (5) and (6), we simplify 𝐽 to the follow-
ing form

𝐽 = 𝑡𝑟

(
𝑊𝑇 (

𝐴1

𝑁𝐶−
− 𝐴2

𝑁𝐶+

)𝑊

)
(7)
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where

𝐴1 =

𝑁∑
𝑖,𝑗=1

(𝑆𝑖,𝑆𝑗)∈𝐶−

𝑃∑
𝑝=1

𝜂𝑝(𝜙
𝑝
𝑖 )(𝜙

𝑝
𝑖 − 𝜙𝑝

𝑖 )(𝜙
𝑝
𝑖 − 𝜙𝑝

𝑖 )
𝑇 𝜂𝑝(𝜙

𝑝
𝑗 ) (8)

𝐴2 =

𝑁∑
𝑖,𝑗=1

(𝑆𝑖,𝑆𝑗)∈𝐶+

𝑃∑
𝑝=1

𝜂𝑝(𝜙
𝑝
𝑖 )(𝜙

𝑝
𝑖 − 𝜙𝑝

𝑖 )(𝜙
𝑝
𝑖 − 𝜙𝑝

𝑖 )
𝑇 𝜂𝑝(𝜙

𝑝
𝑗 ) (9)

Generally, it is difficult or even impossible to compute
𝐴1 and 𝐴2 directly in the feature space ℱ because the form
of 𝜙𝑝

𝑖 is usually unknown. Hence, we use the kernel trick
method [3] by expressing the basis 𝑤𝑘 as a linear combina-
tion of all the training samples in the mapped space, i.e.,

𝑤𝑘 =

𝑁∑
𝑖=1

𝑢𝑘
𝑖 𝜙

𝑝
𝑖 (10)

where 𝑢𝑘
𝑖 are the expansion coefficients. Hence,

𝑃∑
𝑝=1

𝑤𝑇
𝑘 𝜙𝑝

𝑖 =

𝑁∑
𝑖=1

𝑃∑
𝑝=1

𝑢𝑘
𝑖 (𝜙

𝑝
𝑖 )

𝑇𝜙𝑝
𝑖 =

𝑃∑
𝑝=1

(𝑢𝑘)𝑇𝐾𝑝
.𝑖 (11)

where 𝑢𝑘 is a 𝑁 × 1 column vector and its 𝑖th entry is 𝑢𝑘
𝑖 ,

and 𝐾.𝑖𝑝 is the 𝑖th column of the 𝑝th kernel matrix 𝐾𝑝.
Here 𝐾𝑝 is an 𝑁 × 𝑁 kernel matrix, calculated from the
𝑝th statistic feature using the RBF kernel between each pair
of image set.

Then, Eqs. (7)-(9) can be rewritten as

𝐽 = 𝑡𝑟

(
𝑈𝑇 (

𝐵1

𝑁𝐶−
− 𝐵2

𝑁𝐶+

)𝑈

)
(12)

where

𝐵1 =

𝑁∑
𝑖,𝑗=1

(𝑆𝑖,𝑆𝑗)∈𝐶−

𝑃∑
𝑝=1

𝜂𝑝(𝜙
𝑝
𝑖 )(𝐾

𝑝
.𝑖 −𝐾𝑝

.𝑗)

(𝐾𝑝
.𝑖 −𝐾𝑝

.𝑗)
𝑇 𝜂𝑝(𝜙

𝑝
𝑗 ) (13)

𝐵2 =
𝑁∑

𝑖,𝑗=1
(𝑆𝑖,𝑆𝑗)∈𝐶+

𝑃∑
𝑝=1

𝜂𝑝(𝜙
𝑝
𝑖 )(𝐾

𝑝
.𝑖 −𝐾𝑝

.𝑗)

(𝐾𝑝
.𝑖 −𝐾𝑝

.𝑗)
𝑇 𝜂𝑝(𝜙

𝑝
𝑗 ) (14)

Now we discuss how to choose the gating function
𝜂𝑝(𝜙

𝑝
𝑖 ). There are a number of possible functions which

could be used as the gating function. In this work, the gat-
ing function is selected as follow [11]:

𝜂𝑝(𝜙
𝑝
𝑖 ) =

exp(ℎ𝑇
𝑝 𝜙

𝑝
𝑖 + 𝑏𝑝)

𝑃∑
𝑝=1

exp(ℎ𝑇
𝑝 𝜙

𝑝
𝑖 + 𝑏𝑝)

(15)

where ℎ𝑝 and 𝑏𝑝 are the parameters of this grating function.
There are two reasons to select this gating function: 1) this
function is monotonically increasing with the importance of
𝜙𝑝
𝑖 ; 2) this function can guarantees nonnegative weights and

it is easy to obtain the derivatives with respect to ℎ𝑝 and 𝑏𝑝.
Since 𝜙𝑝

𝑖 is implicit and its dimension is unknown, we
express ℎ𝑇

𝑝 𝜙
𝑝
𝑖 as follow similar to Eq. (11):

ℎ𝑇
𝑝 𝜙

𝑝
𝑖 = 𝑎𝑇𝑝 (𝜙

𝑝
𝑖 )

𝑇𝜙𝑝
𝑖 = 𝑎𝑇𝑝 𝐾

𝑝
.𝑖 (16)

Then, the gating function can be written as:

𝜂𝑝(𝜙
𝑝
𝑖 ) =

exp(𝑎𝑇𝑝 𝐾
𝑝
.𝑖 + 𝑏𝑝)

𝑃∑
𝑝=1

exp(𝑎𝑇𝑝 𝐾
𝑝
.𝑖 + 𝑏𝑝)

(17)

where 𝑎𝑝 ∈ 𝑅𝑁×1 and 𝑏𝑝 ∈ 𝑅1 are the parameters.
To our best knowledge, there is no closed-form solution

to the optimization problem in Eq. (12) because we aim to
learn 𝑈 but have to infer 𝑎𝑝 and 𝑏𝑝 simultaneously. Hence,
We solve this problem in an iterative manner inspired by
some recent EM-like multiple kernel learning algorithm-
s [26, 32]. The basic idea is to fix 𝑎𝑝 and 𝑏𝑝, update 𝑈 ,
and fix 𝑈 , update 𝑎𝑝 and 𝑏𝑝, iteratively.

We first initialize 𝑎𝑝 and 𝑏𝑝 with small random numbers,
1 ≤ 𝑝 ≤ 𝑃 , and obtain 𝑈 by solving the minimization
problems in Eq. (12). We add a constraint 𝑈𝑇𝑈 = 𝐼 to
restrict the scale of 𝑈 such that the optimization problem in
Eq. (12) with respect to 𝑊 is well-posed. Then, 𝑈 can be
obtained by solving the following eigenvalue problem

(𝐵1 −𝐵2)𝑢 = 𝜆𝑢. (18)

Let 𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑑 be the eigenvectors of Eq. (18) corre-
sponding to the 𝑑 largest eigenvalues ordered according to
𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑑. An 𝑁 × 𝑑 transformation matrix
𝑈 = [𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑑] can be obtained.

Having obtained 𝑈 , we use the gradient descent method
to update 𝑎𝑝 and 𝑏𝑝 as follows:

𝑎𝑡+1
𝑝 = 𝑎𝑡𝑝 − 𝛼

∂𝐽

∂𝑎𝑝
(19)

𝑏𝑡+1
𝑝 = 𝑏𝑡𝑝 − 𝛼

∂𝐽

∂𝑏𝑝
(20)

where 𝛼 is the learning rate and set as 0.000001 in our ex-
periments.

Having updated 𝑎𝑝 and 𝑏𝑝, we first re-compute the
weight 𝜂𝑝(𝜙

𝑝
𝑖 ) in Eq. (17), and then 𝐵1 and 𝐵2 in Eqs. (13)

and (14), respectively. Then, we update 𝑈 by re-solving the
eigenvalue equation in Eq. (18). We repeat this procedure
until the algorithm is convergent. The proposed LMKML
algorithm is summarized in Algorithm 1.
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Algorithm 1: LMKML
Input: Training set: 𝑃 𝑁 ×𝑁 kernels computed from

𝑁 image sets, iteration number 𝑇 , feature
dimension 𝑑, convergence error 𝜖.

Output: Transformation matrix 𝑈 and parameters 𝑎𝑝
and 𝑏𝑝.

Step 1 (Initialization):
Initialize 𝑎0

𝑝 and 𝑏0𝑝 with small random numbers.
Step 2 (Local optimization):

For 𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝑇 , repeat
2.1. Compute 𝐵1 and 𝐵2 using Eqs. (13) and (14).
2.2. Solve the eigenvalue problem in Eq. (18).
2.3. Obtain 𝑈 𝑡 = [𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑑].
2.4. Update 𝑎𝑝 and 𝑏𝑝 using Eqs. (19) and (20).
2.5. If 𝑡 > 2, ∣𝑎𝑡+1

𝑝 − 𝑎𝑡
𝑝∣ < 𝜖 and ∣𝑏𝑡+1

𝑝 − 𝑏𝑡𝑝∣ < 𝜖
or ∣𝑈 𝑡+1 − 𝑈 𝑡∣ < 𝜖, go to Step 3.

Step 3 (Output transformation matrix and parameters):
Output the matrix 𝑈 and parameters 𝑎𝑝 and 𝑏𝑝.

2.3. Classification

Given a testing image set 𝑋𝑇 , we first compute its 𝑃
different order statistics for feature representation, denoted
as 𝑥𝑝

𝑇 , 1 ≤ 𝑝 ≤ 𝑃 . Then, we calculate the distance between
𝑋𝑇 and each training image set 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 , as follows:

𝑑(𝑆𝑇 , 𝑆𝑖) =
𝑃∑

𝑝=1

𝜂𝑝(𝜙
𝑝
𝑇 )(𝜙

𝑝
𝑇 − 𝜙𝑝

𝑖 )
𝑇

𝑊𝑊𝑇 (𝜙𝑝
𝑇 − 𝜙𝑝
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where 𝐾𝑝
.𝑇 is the column vector denoting the similarity be-

tween the test image set and all the training image sets using
the 𝑝th statistic feature.

Lastly, we classify the test image set 𝑥𝑇 into class 𝑐 that
can minimize the distance between the test image set and
all the training image sets

𝑐 = argmin
𝑖

𝑑(𝑆𝑇 , 𝑆𝑖) (22)

3. Experimental Results

We evaluate our proposed approach on two image set
classification applications: face recognition based on im-
age sets and set-based object categorization. The following
describes the details of the experiments and results.

3.1. Datasets

Three publicly available face datasets, namely Hon-
da/UCSD [23], CMU MoBo [12], and YouTube Celebri-
ties [19], are used for face recognition based on image sets

experiments. Each video sequence from these three datasets
consists of an image set. The Honda/UCSD dataset contains
59 video sequences of 20 different subjects, and each video
contains approximately 400 frames covering large varia-
tions in both out-of-plane head movement and facial expres-
sion. There are 96 video sequences of 24 subjects in the C-
MU MoBo dataset. For each subject, 4 video sequences are
collected where each one corresponds to a different walking
pattern. For each sequence, there are around 300 frames.
The YouTube Celebrities dataset contains 1910 video se-
quences of 47 celebrities (actors, actresses and politicians)
which are collected from YouTube. Most videos are low
resolution and recorded at high compression ratio, which
leads to noisy and low-quality image frames. The clips con-
tain different numbers of frames (from 8 to 400). Face im-
age in each frame was first automatically detected by the
face detector method proposed in [31] and then resized to
a 20 × 20 intensity image. Histogram equalization was the
only pre-processing method used to alleviate illumination
effect.

For object categorization, we used the ETH-80
dataset [24]. This database contains visual object images
of eight different categories including apples, cars, cows,
cups, dogs, horses, pears and tomatoes. For each category,
there are 10 object instances and each object instance has
41 images of different views which construct an image set.
The task is to recognize each image set of an object instance
into a known category. Similar to previous studies [21, 34],
object images were segmented from the simple background
and scaled to 20× 20 for classification.

3.2. Experimental Settings

To make a fair comparison with previous methods, we
follow the same protocol used in [4, 16, 33, 34, 35]. On all
of four datasets, we conduct experiments 10 times by ran-
domly randomly selecting gallery/probe combinations, and
compute and compare the average recognition rates of dif-
ferent methods. Specifically, for both the Honda and MoBo
datasets, we randomly select one image set for each person
as the gallery set and the remaining image sets are used for
probes. For the YouTube dataset, the whole dataset is equal-
ly divided into five folds (with minimal overlapping). Each
containing 9 video sequences per subject. In each fold, 3
image sets per subject are randomly selected as the gallery
set and the remaining 6 are selected for probes. For the
ETH-80 dataset, each category has 5 objects for gallery and
the other 5 objects for probes.

3.3. Results and Analysis

Comparison with Existing Image Set Classification
Methods: We compare the proposed approach with sev-
eral existing image set classification methods which were
proposed recently in the literature, including Discriminan-
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Table 1. Average recognition rates (%) of different image set clas-
sification methods on the four datasets.

Method Honda MoBo Youtube ETH-80
DCC [21] 94.9 88.1 64.8 90.5
MMD [35] 94.9 91.7 66.7 86.1
MDA [33] 97.4 94.4 68.1 89.2
AHISD [4] 89.5 94.1 66.5 77.6
CHISD [4] 92.5 95.8 67.4 74.5
SANP [16] 93.6 96.1 68.3 80.5
CDL [34] 97.4 87.5 69.7 92.5
Our approach 98.5 96.3 78.2 94.5

t Canonical Correlation analysis (DCC) [21], Manifold-to-
Manifold Distance (MMD) [35], Manifold Discriminan-
t Analysis (MDA) [33], Affine Hull based Image Set Dis-
tance (AHISD) [4], Convex Hull based Image Set Dis-
tance (CHISD) [4], Sparse Approximated Nearest Point
(SANP) [16], and Covariance Discriminative Learning
(CDL) [34].

The standard implementations of all methods from the
original authors were used except CDL. We carefully im-
plemented the CDL algorithm since its code has been not
publicly available. The key parameters of different methods
were carefully optimized as follows: For DCC, PCA was
performed to learn the linear subspace and the subspace
dimensions were set as 10 to preserves 90% data energy
and the corresponding 10 maximum canonical correlations
were used to define the similarity of two image sets. For
MMD and MDA, the parameters were configured accord-
ing to [35] and [33], respectively. Specifically, the maxi-
mum canonical correlation was used in defining MMD, and
the number of connected nearest neighbors for computing
geodesic distance in both MMD and MDA was fixed as 12.
There is no parameter setting for AHISD. For CHISD, we
set the error penalty parameter to be the same as that used
in [4]. For SANP, we applied the same weight parameters
as in [16] for the convex optimization. For CDL, the kernel
variant of LDA (KLDA) was used for discriminative learn-
ing and the regularization parameter was set the same as that
used in [34]. Note that for the DCC, CDL and our proposed
approach, there is a single gallery image set from each class
in the Honda and MoBo datasets, we randomly divided each
gallery set in these two datasets into two subsets to model
the within-class variation.

Table 1 tabulates the recognition results of different im-
age set classification methods on these four datasets. We
can see that our approach performs better than the other sev-
en compared image set classification methods, especially on
the most difficult Youtube face dataset, where the improve-
ment is significant. This is because most other compared
methods require certain assumptions for image set repre-
sentation and these assumptions may not hold in this chal-

Table 2. Average recognition rates (%) of different order statistics
features on these four datasets.

Method Honda MoBo Youtube ETH-80
First-order 95.4 92.3 72.7 88.0
Second-order 96.5 88.9 67.5 89.5
Third-order 97.2 94.2 76.2 90.5
All-order 98.5 96.3 78.2 94.5

Table 3. Average recognition rates (%) of different multi-kernel
metric learning methods on different datasets.

Method Honda MoBo Youtube ETH-80
GMKML 98.3 95.4 76.7 92.4
LMKML 98.5 96.3 78.2 94.5

lenging dataset. However, no assumption is required in our
approach and hence better performance can be obtained.

Comparison of Different Order Statistics Features:
We compare the discriminative power of different order s-
tatistics features for image set classification. For each single
order statistics feature, we performed image set classifica-
tion with the NN classifier. Table 2 tabulates the classifi-
cation rates of different order statistics features. We can
observe from this table that the third-order statistics fea-
ture achieves the best classification performance than other
two order statistics features because the third-order statistic-
s feature encodes both the first- and second-order statistics
information. Meanwhile, the first- and second- order statis-
tics are still complementary to the third-order statistics.

Localized vs. Global Multi-Kernel Metric Learning:
The multi-kernel distance metric can also be learned in a
global manner. To show the effect of LMKML, we assume
𝜂𝑝(𝜙

𝑝
𝑖 ) is the same for different 𝑥𝑝

𝑖 and learn a distance by
using the global multi-kernel metric learning (GMKML) al-
gorithm, where the weights of different kernels are learned
and updated following the method in [27]. Table 3 tabu-
lates the classification rates of these two methods. We can
observe that our localized method can achieve better per-
formance than the global one, which shows that learning
data-specific kernel is better because it can exploit the char-
acteristics of each data point.

Robustness Analysis: We test the robustness of our ap-
proach in case there are some noisy data in image sets or the
image sets are of varying size. For the noisy data problem,
we followed [4] and [34] and conducted three experiments
where the gallery and/or probe sets were artificially corrupt-
ed by including one image from the other category. Similar
to [34], the original clean data and three noisy datasets are
called as “clean”, “NG” (only gallery sets have noise data),
“NP” (only probe sets have noise data), and “NGP” (both
gallery and probe sets have noise data), respectively. For the
varying size problem, we randomly selected a subset from
each image set (both gallery and probe) and used the sub-
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Figure 3. Average recognition rates (%) of different image set classification methods with (a) noisy data and (b) varying data size on the
Youtube dataset, respectively.

Table 4. Average recognition rates (%) of different multi-kernel
metric learning methods on different datasets. For the polynomial
kernel, the parameter is selected as 2.

Kernel type Honda MoBo Youtube ETH-80
Linear 98.0 96.3 77.6 93.8
Polynomial 98.0 96.0 77.8 94.0
RBF 98.5 96.3 78.2 94.5

sets for classification. We tested three cases by extracting
200, 100 and 50 frames, referred to F200, F100, and F50,
respectively. In case a set contains fewer image frames, all
images were used for classification. Figure 3 shows the av-
erage recognition rates of different image set classification
methods on the Youtube dataset with different challenging
test. From this figure, we can see that our proposed ap-
proach shows high robustness against these two challenges,
with some slight performance drop. That is because we use
different order statistics features as the set representation,
which are robust to outlines and and the number of sam-
ples in the set. Hence, the effects of the noisy samples and
varying data size can be alleviated.

Parameter Analysis: Since our approach is an iterative
method, we evaluate its performance with different number
of iterations. Figure 4 shows the recognition accuracy of
our approach versus different number of iterations on the
Youtube dataset. We can see that our proposed approach
can achieve stable performance in several iterations.

Table 4 shows the recognition accuracy of our approach
versus different types of kernels on different datasets. We
can see that the performance of our approach is non sensi-
tive to the kernel type selection.

Computational Time: Lastly, we compare the com-
putational complexity of different image set classification
methods using the YouTube dataset. For testing, we re-
port the classification time for matching one probe image
set with all the gallery image sets. Our hardware config-
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Figure 4. Average recognition rate (%) of our approach versus d-
ifferent number of iterations on the Youtube dataset.

uration comprises a 2.8-GHz CPU and a 10GB RAM. Ta-
ble 5 shows the time spent on the training and the testing by
these methods with the Matlab software. It is to be noted
that training time is only required for discriminative learn-
ing methods such as DCC, MDA and our approach. We
can see that the computational complexity of our approach
is generally larger than the other compared methods. That
is because our approach compute multiple order statistics
features for image set representation, which requires more
algebraic operation than other methods and hence leads to a
higher computational complexity.

4. Conclusion and Future Work

In this paper, we propose a new image set classifica-
tion approach by using holistic multiple order statistics fea-
tures and localized multi-kernel metric learning. The pro-
posed approach has been evaluated on two visual classifi-
cation applications: face recognition and object categoriza-
tion. Experimental results on four widely used databases
have shown the superiority of our approach over the state-
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Table 5. Computation time (seconds) of different methods on the Youtube dataset for training and testing (classification of one image set).

Method DCC MMD MDA AHISD CHISD SANP CDL Our approach
Training 122.8 N.A. 225.0 N.A. N.A. N.A. 80.2 4755.8
Testing 3.8 5.4 64.8 9.2 14.5 55.6 15.6 220.3

of-the-art image set classification methods in terms of accu-
racy and robustness.

For future work, we are interested in designing more effi-
cient kernel calculation method to improve the speed of our
approach and exploring higher order statistics features and
combine them with the features used in this work to further
improve the recognition performance.
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