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Abstract

When face images are taken in the wild, the large varia-
tions in facial pose, illumination, and expression make face
recognition challenging. The most fundamental problem
for face recognition is to measure the similarity between
faces. The traditional measurements such as various
mathematical norms, Hausdorff distance, and approximate
geodesic distance cannot accurately capture the structural
information between faces in such complex circumstances.
To address this issue, we develop a novel face patch
network, based on which we define a new similarity measure
called the random path (RP) measure. The RP measure is
derived from the collective similarity of paths by performing
random walks in the network. It can globally characterize
the contextual and curved structures of the face space. To
apply the RP measure, we construct two kinds of networks:
the in-face network and the out-face network. The in-face
network is drawn from any two face images and captures
the local structural information. The out-face network
is constructed from all the training face patches, thereby
modeling the global structures of face space. The two
face networks are structurally complementary and can be
combined together to improve the recognition performance.
Experiments on the Multi-PIE and LFW benchmarks show
that the RP measure outperforms most of the state-of-art
algorithms for face recognition.

1. Introduction
Over the past two decades, face recognition has been

studied extensively [10, 14, 19, 33, 4, 6, 34, 3, 30, 16].

However, large intra-personal variations, such as pose [24,

35], illumination [24, 8], and expression [2, 24], remain

challenging for robust face recognition in real-life photos.

In Figure 1, for example, A and A’ are two images of the

same person with different poses and illuminations. A and
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Figure 1. Illustration of the superiority of our random path (RP)

measure over other measures (for example, Euclidean (E) measure

and the shortest path (SP) measure). Due to the large intra-

personal variations (e.g., pose, illumination, and expression), there

may be underlying structures in face space (denoted by the red and

blue clusters). For three face images A, B, and A’ of two different

persons, the distances are dEAA′ > dEAB and dSPAA′ > dSPAB if

measured by Euclidean measure (solid green line) and the shortest

path measure (solid yellow line). In other words, A is more similar

to B than to A’. Incorrect decisions are usually made because

the intra-personal variation is much larger than the inter-personal

variation. If we consider their underlying structures and compute

their similarity by our random path measure (dashed yellow line),

we get dRPAA′ < dRPAB . The correct decision can be made. Note that
this figure is only for the purpose of schematic illustration. In the

real experiment, we use facial patches instead of the whole face.

B are from two different persons with the same pose and

illumination. The appearances of A and B are more similar

to each other than A is to A’, which may confuse most

existing face recognition algorithms.

Classical measurement approaches for face recognition

have several limitations, which have restricted their wider

applications in the scenarios of large intra-personal vari-

ations. Seminal studies in [27, 23, 20, 22] have revealed
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Figure 2. The proposed in-face network pipeline.
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Figure 3. The proposed out-face network pipeline.

that the diverse distributions of face images for one person

may form the underlying manifold structures. In fact,

these distributions generally have different densities, sizes,

and shapes, due to the high complexity in face data. In

addition, noise and outliers are often contained in face

space. The current measurement approaches fail to tackle

all of these challenges. Many methods based on (dis-

)similarity measures [1, 25, 32, 10] directly use pairwise

distances to compute the (dis-)similarities between faces,

which cannot capture the structural information for the

high-quality discrimination, as shown in Figure 1. Although

some studies [29, 27, 21] apply the structural information

in measurements, the developed algorithms are, generally

speaking, sensitive to noise and outliers. For instance,

computing the length of the shortest path in a network is

very sensitive to noisy nodes.

This paper reports on a new face similarity measure

called random path (RP) measure, which was designed to

overcome the above-mentioned problems. We first con-

struct two novel face patch networks: the in-face network

and the out-face network, as shown in Figures 2 and 3.

In our study, faces are divided into multiple overlapping

patches of the same size. The in-face network is defined

for any pair of faces. For each pair of faces, at each patch

location, we use the two corresponding patch pairs and their

eight neighboring patches to form a KNN graph, which we

call the in-face network. For each such in-face network, we

propose a random path (RP) measure as the patch similarity
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of the corresponding patch pair. Given a network, all paths

between arbitrary two nodes are integrated by a generating

function. The RP measure includes all paths of different

lengths in the network, which enables it to capture more

discriminative information in faces and significantly reduce

the effect of noise and outliers. For a pair of faces with

M patches, therefore, we can compute M RP measures to

form the similarity feature vector between the two faces.

Since the network is only constructed within two faces in

this approach, we call it the in-face network.

The out-face network is built in a similar fashion. Instead

of using local neighboring patches to form the network,

for each patch we search a database of face patches and

find similar patches in the same location neighbors of the

patch to form the patch pair network. Since the search

is conducted globally over the training space, the out-

face network captures more global structural information.

Because the two networks describe the local and global

structural information respectively, the similarities derived

from the RP measure on these two networks can be

combined to boost the recognition performance. By means

of the RP measure on the in-face and outface networks,

our RP measure performs significantly better than existing

measures for face verification on two challenging face

datasets, LFW [11] and Multi-PIE [9]. In addition, our

method outperforms most of the current appearance-based

methods [15, 4, 18, 7].

2. Related Work
From the point of view of data structures, there are two

types of measures for face recognition: non-structure-based

measures [1, 25, 32, 10, 4] and structure-based measures

[29, 27, 21]. Here, the structure means that data points

may lie in some underlying manifolds and the distance

between data points cannot be accurately measured by a

straight line or its analogous variants. Since the face space

is often structured - that is, nonlinear [27, 23, 20, 22] -

the distance between faces cannot be precisely measured

by non-structured measures such as Euclidian distance,

Manhattan distance, Pearson’s coefficient of correlation,

Hausdorff distance, and Chi-square distance, or by linear

subspaces derived from linear projection methods such

as Principal Component Analysis (PCA) [28] and Linear

Discriminant Analysis (LDA) [2, 31, 30].

Studies on similarity measure in face recognition mainly

focus on the non-structured metrics. In [1], for example, a

Manhattan-like measure was proposed, which is a weighted

sum of Chi-square distances. In [4], the component similar-

ity is measured by L2 distance between the corresponding

descriptors of the face pair. A partial Hausdorff distance

measure was defined in [25], where a pixel in one face

could be matched with any other pixel with the same local

binary pattern in the other face. Similarly, in [10], a robust

elastic and partial matching metric was presented, where

each descriptor in one face is matched with its spatial

neighboring descriptors in another face and the minimal

distance is regarded as their dis-similarity. Although some

measures, such as the one in [10], have taken spatial neigh-

borhood information into consideration, they all directly use

pairwise distances to measure similarities without structural

information.

For the structural information based measures, one of the

representative works is the Isomap algorithm in manifold

learning [27]. Isomap models the structural proximity

between two data points by the geodesic distance that can

be approximated by the shortest path length. Based on

geodesic distances, spectral low-dimensional embeddings

of data correctly unfold the underlying manifold. The idea

was applied in [29] for face recognition by proposing the

Manifold-Manifold Distance (MMD). Instead of measuring

two data points, the MMD measures the similarity of

two manifolds by finding the shortest distance between

component subspaces from the two manifolds. Although

these approaches can capture the manifold structures, their

performance often degrades significantly with the existence

of noise or outliers, because the shortest path is sensitive to

noisy perturbations.

3. Modeling Faces with Patch Networks
A face is holistically structured. Even for a patch p

cropped from the face, its micro-structure is continuously

connected with that of patches around patch p. For instance,
the structure of the patch of the eye corner is bridged

with that of its neighboring patches, as Figures 2 (a)

and (b) show. Therefore, it is more convincing to take

the neighboring patches into consideration when locally

comparing the similarity between two faces from patch pair.

To do this, we sample the r neighboring patches around
patch p. Figure 2 (b) shows the patch examples in the case
of r = 8 for face a and face b. The visual semantics of
local patches cropped at the same point for different faces

may be highly correlated. For example, the eye corners for

different faces are very similar. Therefore, the 2 × (r + 1)
neighbor patches may be spatially mixed if we present them

as spatial vector points. To model such mixing structures,

we resort to complex network. The mixing patches are

locally connected according to their spatial positions in

feature space by a KNN network. Figure 2 (c) shows a

2-NN network of facial patches. The network constructed

between two faces is called the in-face network.

Figure 2 (c) shows that some patches of the same person

are not directly linked. To model the structure in such

case, we apply paths to connect the distant nodes in the

network. Path-based measurements are widely employed

in social networks to compute the nodal similarities. For

instance, each entry of (I − zP)−1 presents the global
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similarity for the corresponding nodes [13], where P is the
adjacency matrix of the network. The nodal similarity is

defined by all the connected paths between nodes. With the

similarity matrix (I− zP)−1, we can measure the structural
compactness of the network by the average similarity

between all nodes. To this end, we define the path centrality

CG =
1
N 1

T (I − zP)−11. The more compact the network
is, the larger the path centrality is. With path centrality CG,
it will be easy to measure the similarity of patch pair in the

network framework. To make the analysis clearer, we let

Gap ∪ Gbq denote the network constructed from patch p in
face a and patch q in face b, as shown in Figure 2 (a), where
Gap is the sub-network of patch p andG

b
q is the sub-network

of patch q. It is straightforward to know that the more

similar the patch p and the patch q are, the more mutually
connected paths there are between Gap and Gbq . Therefore,
the increment of the path centrality CGap∪Gbq will be large
over CGap and CGbq of the sub-networks, which motivates us
to define the random path measure CGap∪Gbq − CGap − CGbq
for measuring the similarity of patch pair. We will present

the formulation in Section 3.1.

For many faces, there also exists the correlation between

the same components of different faces. For example,

Peter’s eyes look like Tom’s. To model such structural

correlation, we further construct a network from the patches

at the same positions of all faces. Thus we can build

the M networks if there are M different patches in one

face, as Figures 3 (a) and (b) illustrate. To integrate these

component networks, for each patch in a face, we link it

with its r most similar patches in the neighbor position in
the training data, as Figures 3 (c) shows. Thus we derive a

global network that cover the structural correlation between

faces and within faces. We call it the out-face network.

The random path measure will be adopted both in the

in-face and out-face networks. So we first present the

formulation of the random path measure and then the

construction of the in-face and out-face networks follows.

3.1. The Random Path Measure

Let G denote a network with N nodes {x1, . . . , xN},
and P denote its weighted adjacency matrix. Each entry in
the matrix P is the similarity between associated nodes. For
generality, G is assumed to be directed, which means that

P may be asymmetric. A path of length t defined on P is
denoted by pt = {v0 → v1 → · · · → vt−1 → vt}. St is
the set of all paths of length t. Let T denote the transpose

operator of a matrix, 1 the all-one vector, and I the identity
matrix.

Inspired by concepts in social network analysis [17],

we introduce the definition of path centrality CG for the

network G.

Definition 1 Path Centrality CG = 1
N 1

T (I − zP)−11,
where z < 1/ρ(P) and ρ(P) is the spectral radius of P.

The (i, j) entry of the matrix (I−zP)−1 represents a kind of
global similarity between node xi and node xj . It was first
introduced by Katz [13] to measure the degree of influence

of an actor in a social network. To make it clear, we expand

(I− zP)−1 and view it as a generating matrix function

(I− zP)−1 = I+ zP+ z2P2 + · · · =
∞∑
t=0

ztPt. (1)

Each entry in the matrix Pt can be written as

Pti,j =
∑

pt ∈ St
v0 = i, vt = j

t−1∏
k=0

Pvk,vk+1 , (2)

which is the sum of the products of the weights over all

paths of length t that start at node xi and end at node xj
in G. In machine learning, the global similarity defined by
Eq. (2) is also called the semantic similarity [12]. In our

framework, the weighted adjacency matrix P satisfies that
each entry is non-negative and each row sum is normalized

to 1. Therefore, we can view the entry Pti,j as the probability
that a random walker starts from node xi and arrives at node
xj after t steps. From this point of view, the path centrality

is to measure the structural compactness of the network G
by all paths of all lengths between all the connected nodes

in G. Due to the randomness of walks in G, we refer to our
measurement as the random path measure.
With the definition of path centrality, the RP measure

can be naturally used to compute the similarity between two

networks. From the definition of path centrality, it makes

sense that the two sub-networks in G have the most similar

structures in the sense of path centrality if they share the

most paths. In other words, from the viewpoint of structural

recognition, the two networks are most relevant. Therefore,

for two given networks Gi and Gj , the definition of our RP
measure can be defined as follows.

Definition 2 Random PathMeasureΦGi∪Gj = CGi∪Gj−
(CGi + CGj ), is regarded as the similarity between two
networks Gi and Gj .

In the definition above, the union path centrality CGi∪Gj is
written as

CGi∪Gj =
1

|Gi ∪Gj |1
T (I− zPGi∪Gj )

−11. (3)

where PGi∪Gj is the union adjacency matrix corresponding
to the nodes in Gi and Gj . The RP measure ΦGi∪Gj
embodies the structural information about all paths between

Gi and Gj . In order to understand the definition intuitively,
we consider a case shown in Figure 4. CGi and CGj mea-
sure the structural information in Gi and Gj , respectively.

32843291



:/5 :/6

:/5;/6

Figure 4. Illustration of the random path measure. Paths in Gi
and Gj are denoted by red and yellow arrows, respectively. Paths
between Gi and Gj are denoted by blue arrows.

CGi∪Gj measures not only the structural information within
Gi and Gj , but also that through all paths between Gi and
Gj . The larger the value of ΦGi∪Gj , the more structural
information the two networks share, meaning that these two

networks have more similar structures. Therefore, ΦGi∪Gj
can be exploited to measure the structural similarity be-

tween two networks.

The RP measure takes all paths between two networks

into consideration to measure their similarity, not only the

shortest path such as [29, 27]. Therefore, our measure is

robust to noise and outliers. Besides, we take the average

value of nodal centrality (I − zP)−11. With this operation,
the structural information of network is distributed to each

node, which means that the RP measure is also insensitive

to multiple distributions and multiple scales.

3.2. In-face Network

Figure 2 presents the in-face network pipeline. We

densely partition the face image into M = K × K
overlapping patches of size n× n (n = 16 in our settings).
We set 8-pixel overlap in this paper. We apply a local image

descriptor to extract features for each patch of size n × n.
Therefore, each face is represented by a set ofM = K×K
feature vectors formed from a local image descriptors

F = {f11, . . . , fij , . . . , fM}, (4)

where fij is the feature vector of the patch located at (i, j)
in the face. Fa and Fb denote the feature sets of face a
and face b, respectively. To build an in-face network for the
patches at (i, j), we take faij inFa and fbij inF b. At the same
time, the r neighbors of faij around (i, j) are also taken. The
same operation is also performed for fbij . We set r = 8
in this paper. Thus, we get the (2 + 2r) feature vectors of
patches that are utilized to construct a KNN networkGij for

the patch pair of faij and f
b
ij . Its weighted adjacency matrix

is denoted by PGij . Therefore, the adjacency matrix PGaij
of the network Gaij corresponding to f

a
ij and its r neighbors

is the sub-matrix of Gij identified by the indices of faij and
its r neighbors. Similarly, we can get Gbij and its adjacency
matrix PGbij . For better understanding, we define Gij =

Gaij ∪ Gbij , which means the set of nodes of Gij are the

union of that of Gaij and Gbij . For the patch pair of f
a
ij and

fbij , we calculate their path centralities as follows:

CGaij =
1

|Gaij |
1T (I− zPGaij )

−11,

CGbij =
1

|Gbij |
1T (I− zPGbij )

−11,

CGaij∪Gbij = CGij =
1

|Gij |1
T (I− zPGij )

−11.

(5)

Applying the RP measure gives the similarity measure of

the patch pair

Sinij = ΦGaij∪Gbij = CGaij∪Gbij − (CGaij + CGbij ). (6)

Analogous to this manipulation, the similarities ofM patch

pairs from Fa and Fb can be derived. Padding them as a

similarity vector

sin = [Sin11 , . . . , S
in
ij , . . . , S

in
M ]
T . (7)

completes the process of applying the RP measure on the

in-face network for two face images.

We refer to the network presented above as the in-face

network because the network is only constructed within two

face images. Only the structural information of patch pair

and their neighborhoods is considered; therefore, the in-face

network mainly conveys the local information.

3.3. Out-face Network

The proposed out-face network pipeline is shown in

Figure 3. Unlike the in-face network, the construction

of the out-face network requires the training data in an

unsupervised way. The patch division and feature extraction

is performed in the same way as in Section 3.2. Suppose

that T is the number of face images in the training set. Write
the feature set as

Ψ = {F1, . . . ,FT }, (8)

where F t is the feature set of the t-th face. We first adopt
all the feature vectors {f1ij , . . . , fTij} at (i, j) in the training
set to construct a KNN network Gglobalij . In this way, we

can construct M independent Gglobalij , meaning that there

is no connection between them. Further, to preserve the

structural proximity between ftij and its neighbors at (i, j)
in each face, we connect ftij with all of its 8 neighbors.
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Here by “connect” we mean when a patch is selected, all

its r neighbors will also be selected. Therefore, by the

connections of neighborhoods, the M independent Gglobalij

are linked together to form the final global network Gglobal

with the weighted adjacency matrix Pglobal.
Given a test face image a, we search its rNN most

similar patches in Gglobalij for each faij , and then for

each selected patch, we also select its 8 neighbor patches
together to form the initial Ga. This search method can
guarantee that the acquired similar patches are among the

spatially semantic neighbors of faij in other face images.
Thus, (rNN + 1) × M patch nodes are finally selected

from Gglobal. We delete some duplicates from them and

use the remaining nodes to extract the sub-network Ga

from Gglobal with its corresponding sub-matrix PGa from
Pglobal. Gb and PGb can be acquired in the same way for
face b. By merging nodes in Ga and Gb, we can draw the

union network Ga ∪ Gb and its adjacency matrix PGa∪Gb
from Gglobal and Pglobal.
After acquiring PGa , PGb , and PGa∪Gb for face a and

face b, it is straightforward to compute their path centrali-
ties: CGa , CGb , and CGa∪Gb according to Definition 1. We
then utilize the RP measure to calculate their similarity

sout = ΦGa∪Gb . (9)

sout describes the structural information of two face images
from the global view.

Since the construction of this network requires the

training data and the each test face needs to be projected

on it, we call the network the out-face network. Searching

for the nearest neighbors for each patch is fast because the

search operation is only made in Gglobalij instead of Gglobal.

3.4. The Fusion Method

From the analysis above, it is clear that the in-face

network and the out-face network are structurally comple-

mentary. To improve the discriminative capability of the

networks, we present a simple fusion method to combine

them

sfinal = [αsin, (1− α)sout], (10)

where sfinal is the combined similarity vector of two face
images, and α is a free parameter learned from the training

data. This fusion method can effectively combine the

advantages of the in-face network and the out-face network.

We feed sfinal to the linear SVM [5] to train a classifier for

recognition.

3.5. Weighted Adjacency Matrix

The weight P(i, j) of the edge connecting node xi and
node xj in the network is defined as

P(i, j) =

{
exp

(
−dist(xi,xj)2σ2

)
, if xj ∈ NKi

0, otherwise
(11)

where dist(xi, xj) is the pairwise distance between

xi and xj , NKi is the set of KNNs of xi, and

σ2 = 1
nK [

∑n
i=1

∑
xj∈NK

i
dist(xi, xj)

2]. To get the

transition probability matrix, we perform P(i, j) ←
P(i, j)/

∑n
j=1 P(i, j).

4. Experiments
In this section, we conduct experiments on face ver-

ification to validate the effectiveness of our RP measure

based on the in-face and out-face networks. The face data

we use are two widely used face databases: the Multi-

PIE dataset [9] and the LFW dataset [11]. The Multi-PIE

dataset contains face images from 337 subjects under 15

view points and 19 illumination conditions in four recording

sessions. Unlike the Multi-PIE dataset, the LFW dataset

contains 13,233 uncontrolled face images of 5,749 public

figures of different ethnicity, gender, age, etc.
In our settings, according to subject identities, the Multi-

PIE dataset is divided into three parts: S1 (ID 1-100), S2
(ID 101-300), and S3 (ID 301-346). We collect a new

dataset Strain by randomly selecting 3000 face images

from S1. The Strain is applied to construct the global

networkGglobal employed in Section 4.1 and 4.2. From S2,
we randomly select 10 mutually disjoint folders with 500

intra-personal and 500 extra-personal pairs in each folder.

This dataset will be used for testing in Section 4.2. The

remaining S3 is applied in Section 4.1. We also randomly
select 10 mutual disjoint folders with 100 intra-personal

and 100 extra-personal pairs from S3 to tune the optimal
parameters. For the LFW dataset, we follow the restricted

protocol of the LFW benchmark for evaluation [11]. To

perform the fair comparison with the recent algorithms in

face recognition, we follow the procedures in [4] to crop

faces and each cropped face is resized to 84 × 96 pixels
with the eyes and mouth corners aligned.

To verify the performance of the proposed RP mea-

sure, we compare our algorithms mainly to the widely

used measures, including Euclidean distance, Chi-square

distance, Hausdorff distance, Hua et al.’s method [10], and
the shortest path [26, 29], on four popular descriptors in face

recognition: LBP [18], HOG [7], Gabor [32], and LE [4].

4.1. Tuning Parameters

Since our approaches involve some free parameters,

we first determine the optimal parameters used in our

approaches on the randomly selected face image collection

from S3. Our approaches involve four important parameters
1. The first two parameters are the number Kin of nearest

1There are also three relatively unimportant parameters: the size of

the patch (n), the patch sampling step (s), and the number of the patch’s
neighbors (r). Intuitively, the size and the step should not be too large or
too small; so it is good that n = 16 and s = 8. Usually, the patch is only
relative to its eight surrounding neighbors, so r is set to 8.
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Figure 5. Setting parameters. There are four important parameters in our approaches. We tune one of four parameters while keeping the

other parameter unchanged.

Dataset Recog. rate on Multi-PIE Recog. rate on LFW

Descriptor LBP HOG Gabor LE LBP HOG Gabor LE

l1 70.8± 0.8 72.8± 0.7 72.1± 0.7 80.1± 0.7 66.9± 0.6 66.3± 0.5 61.4± 0.3 73.4± 0.4
Euclidean 66.9± 0.4 76.9± 0.8 72.7± 0.6 75.8± 0.6 62.2± 0.9 68.2± 0.6 49.5± 0.5 65.2± 0.8
Chi-Square 70.1± 0.6 75.9± 0.9 49.9± 0.1 73.6± 0.6 67.2± 0.7 68.4± 0.7 50.1± 0.1 73.4± 0.4
Hausdorff 61.9± 0.7 76.1± 0.9 68.9± 0.7 57.1± 0.8 50.8± 0.5 64.9± 0.7 61.8± 0.4 51.7± 0.3

Hua et al [10] 61.4± 0.3 69.9± 0.4 70.9± 0.3 73.8± 0.7 64.3± 0.8 65.7± 0.7 64.1± 0.9 67.4± 0.9
Shortest Path [26, 29] 51.2± 0.1 50.3± 0.3 52.1± 0.3 50.4± 0.5 50.1± 0.1 50.7± 0.4 52.3± 0.5 50.4± 0.1

Our in-face 81.3± 0.4 85.1± 0.6 83.6± 0.3 88.1± 0.7 77.1± 0.1 74.2± 0.3 71.5± 0.4 84.4± 0.2
Our out-face 71.8± 0.6 77.8± 0.7 74.1± 0.6 81.3± 0.2 67.4± 0.4 69.5± 0.2 65.6± 0.1 79.5± 0.1
Our fusion 85.3± 0.1 88.6± 0.5 87.4± 0.1 92.3± 0.3 80.1± 0.3 76.3± 0.1 74.4± 0.6 86.7± 0.4

Table 1. Results on Multi-PIE and LFW. In the experiment, the out-face networks for Multi-PIE and LFW are the same and constructed

from the Multi-PIE faces.

neighbors in the construction of the in-face network and

Kout in the construction of the out-face network. Kin

and Kout play a very important role in our approaches

because they directly determine the structures of the in-face

network and the out-face networks. The third parameter is

rNN , which is the number of nearest neighbors for each
patch of a test face in Gglobal. It controls the inter-personal
complexity of the out-face network. The fourth parameter

is the weighting parameter α in the fusion method. To

balance the importance of similarities yielded by the in-face

network and the out-face network, this parameter should be

chosen carefully.

In this section, we conduct four experiments to explore

the effects of the four parameters. In all of the experiments,

we extract LBP features for facial patches. When tuning

one of the four parameters, we keep the other three ones

unchanged. For example, in Figure 5 (a), we fix that

Kout = 50, rNN = 50, and α = 0.5. Then, the optimal
value of Kin is acquired, as Kin = 4, when the algorithm
achieves the best performance. The adjustment of Kout,

rNN , and α are shown in Figures 5 (b), (c), and (d). In

Figure 5 (b), the verification performance coincides when

rNN = 30 and rNN = 40. For fast computation, rNN =
30 is chosen. Similarly, we get Kout = 40 from Figure 5

(c). Therefore, we determine that Kin = 4, Kout = 40,
rNN = 30, and α = 0.5 in our parameter settings.

4.2. Results on Multi-PIE and LFW

Table 1 provides the results of our RP measure and

other measures for comparison on two face database bench-

marks. The results clearly show that our RP measure can

dramatically improve the recognition performance of the

four descriptors. In addition, the results in the last three

rows in Table 1 effectively verify that the in-face network

and the out-face network are complementary, because the

recognition performance of the combined network can be

improved over that of the in-face and out-face networks.

Our RP measure is a general similarity measurement and

can be applied to improve any appearance-based approach.

To further demonstrate the robust performance of our

method, we present the verification results on the LFW

dataset with the outside training data. 10,000 face images

from theMulti-PIE and Pugfig83 [14] databases are adopted

to construct the out-face network. The feature vector for

each patch is the combined features of LBP, HOG, Gabor,

and LE. As shown in Figure 6, our method performs best

when all of the methods are directly performed on the

original faces. The best performance for LFW is 93.3%
reported in [3]. Their method applies the accurate face

alignment and warp with the human-labeled locations of 95

face parts for 20,639 face images. If all images in LFW

are aligned with global affine transformations based on the
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Figure 6. Verification performance on LFW with the outside

training data.

detected locations of the eyes and mouth instead of their

accurate alignment and warp, the accuracy in [3] is 90.47%.

Since the in-face and out-face networks are constructed

from patches of the aligned face images, the more accurate

face alignment will lead to the more accurate face-patch

networks. So it can also be predicted that the performance

of our RP measure will be improved if performed on such

accurately aligned faces.

5. Conclusion

This paper has proposed a random path (RP) measure for

face recognition based on the path similarity defined from

random walk in the network. To adopt the RP measure for

face recognition, we construct two types of networks on

face data: the in-face network and the out-face network.

The in-face and out-face networks describe the local and

global structural information of faces, respectively. We

combine them to improve the recognition performance.

Extensive experiments on the Multi-PIE and LFW face

databases validate that the proposed RP measure has the

superiority of discriminating complex faces with the large

intra-personal variations including pose, illumination, and

expression. This study has only examined the random path

measure for face recognition. Our future work will explore

the applications of the RP measure for other recognition

tasks, such as image retrieval and object recognition.
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