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Abstract

We present a method for estimating human scanpaths,
which are sequences of gaze shifts that follow visual atten-
tion over an image. In this work, scanpaths are modeled
based on three principal factors that influence human atten-
tion, namely low-level feature saliency, spatial position, and
semantic content. Low-level feature saliency is formulated
as transition probabilities between different image regions
based on feature differences. The effect of spatial position
on gaze shifts is modeled as a Levy flight with the shifts
following a 2D Cauchy distribution. To account for se-
mantic content, we propose to use a Hidden Markov Model
(HMM) with a Bag-of-Visual-Words descriptor of image re-
gions. An HMM is well-suited for this purpose in that 1) the
hidden states, obtained by unsupervised learning, can rep-
resent latent semantic concepts, 2) the prior distribution of
the hidden states describes visual attraction to the semantic
concepts, and 3) the transition probabilities represent hu-
man gaze shift patterns. The proposed method is applied
to task-driven viewing processes. Experiments and analysis
performed on human eye gaze data verify the effectiveness
of this method.

1. Introduction
An image contains a tremendous amount of visual in-

formation that would overload the brain if absorbed all at

once. To protect from this, the brain employs a scheme of

visual attention, in which parts of the visual information are

selected and transferred in sequence for further processing.

To promote efficiency, the human visual system naturally

places information of higher attention value earlier in this

pipeline.

Computational visual attention has become a significant

research topic in computer vision because it can inform al-

gorithms about important areas in an image. Toward this
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Figure 1. Illustration of gaze shifts. The left and right images show

human scanpath segments and corresponding estimates from our

algorithm, respectively, where the correspondences are indicated

by matching colors.

end, much work has focused on salient object detection

[15][7] and gaze density estimation [8][29]. On the other

hand, only a few works have considered the process of

gaze shifting and recovered a temporal ordering of atten-

tion points over an image [10][28][27]. Estimation of such

temporal orderings, which we refer to as scanpaths, has ap-

plications in image transmission, display, and compression.

In this paper, we present a method to estimate gaze shifts

and infer scanpaths such as shown in Fig. 1.

Factors that influence gaze shift can be categorized into

three types: low-level feature saliency, spatial position, and

semantic content. Low-level feature saliency has been the

most widely adopted and investigated cue for visual atten-

tion, and is often modeled based on feature contrast. In

the estimation of gaze shifts, we utilize feature differences

to calculate transition probabilities between different image

regions, with more visually salient regions having greater

attraction of gaze.

Spatial position has commonly been used to calculate

transition probabilities in graph based and random walk

based methods [28][8][7][32]. In [3], it was empirically

shown that gaze shifting is a Levy flight process, which is a

particular type of random walk with a step length that fol-

lows a heavy-tailed distribution. In our work, we incorpo-

rate Levy flight with a 2D Cauchy distribution to model the

effect of spatial position on gaze shifts. Spatial position as

well as low-level feature saliency are stimulus-driven rather
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than interpretation-driven factors, and as such they both lie

in the domain of bottom-up attention.

The third factor, semantic content, provides a top-down

attention component that has received little consideration

due to its complexity. This component can be described as

task-driven, since it is affected by the user’s interpretation of

the image. The task may be hidden (e.g., watching a street

scene) or specific (e.g., searching for cars). Even without a

specific task, our high-level interpretation of a scene affects

our viewing behavior. In [5], it was experimentally shown

that discrete objects attract more attention and predict vi-

sual fixation much better than early saliency cues. The ex-

periments in [9] also demonstrate significant semantic guid-

ance of eye movements for real-world scenes. In spite of the

empirical support on the importance of semantic content in

guiding attention, semantic content remains difficult to ex-

ploit because object segmentation and scene interpretation

are still challenging problems. Recent methods have incor-

porated semantics to a degree, through the use of face or

person detectors [11][32], or by learning task-related fea-

ture weights [13][19].

A practical, unsupervised approach for extracting se-

mantic concepts is through latent semantic analysis [6].

Motivated by this approach, we attempt to infer latent se-

mantic concepts and account for them in estimating gaze

shifts. This is achieved using a Hidden Markov Model

(HMM), a probabilistic model for time-series data that can

be well adapted to this problem. In our work, latent se-

mantic concepts which are difficult to discern are modeled

by the hidden states, while the observations produced from

these states are visible in the image and extracted as low-

level descriptors. Gaze shift patterns are modeled by tran-

sition probabilities between the states, and the hidden states

are obtained through an unsupervised training process con-

venient for application.

The main technical contribution of our human scanpath

estimation method is the incorporation of semantic content

through an HMM formulation in which latent semantics are

represented by the hidden states, and gaze shift patterns are

modeled in the transition matrix. This method is applied

to task-driven attention, in which the HMM is learned from

training images in the same general image class as the test-

ing images. To evaluate the similarity of estimated scan-

paths to ground truth, we employ a method based on gene

sequence alignment. The results of our experiments on hu-

man gaze data provide strong support for this approach.

2. Related Work
There exist numerous works on visual attention that esti-

mate saliency or the gaze distribution over an image. Rela-

tively few techniques consider the dynamic process of gaze

shifts and estimate scanpaths. In this section, we first re-

view existing saliency calculation methods since saliency

reflects gaze allocation and represents part of the basis for

gaze shifts. We then review the methods for scanpath gen-

eration and other related works.

2.1. Saliency Calculation

The family of contrast based methods occupies a major

position in the field of saliency calculation, and is motivated

by the biological aspect of attention. The biological ba-

sis for the idea of contrast is rooted in the center-surround

structure of the receptive field. This family includes Itti’s

saliency method [10] and its descendants, including those

based on graphs [8] and proto-objects [27]. Itti’s method

calculates multi-scale contrast through a Gaussian pyramid,

while other methods compute contrast in different ways,

e.g., random walks on graphs [7] and color co-occurrence

histograms [17].

The second important family of saliency methods is

based on information pursuit and explores the psychological

aspect of attention. The premise for this family of methods

is that while viewing an image, the subject quickly gath-

ers as much information from it as possible. The Atten-

tion based on Information Maximization (AIM) method [4]

and the Super Gaussian Component (SGC) based method

[26] measure the information of each image block based

on the context within the given image. In contrast to these

two methods, the Saliency Using Natural statistics method

(SUN) [31] estimates information by obtaining the distri-

butions of various features from natural image datasets and

then using this prior knowledge to measure the information

contained in each image block.

The third family consists of machine learning based

methods, which learn from user data a model to measure

saliency. Representatives of this family include methods

based on conditional random fields [15][30], support vec-

tor machines [11], task-dependent influences [19][2], and

probabilistic multi-task learning [13]. The significance of

such methods is that they can learn from particular tasks to

model the top-down aspect of attention [13][19][2].

2.2. Scanpath Generation

To generate scanpaths, Itti et al. fed a saliency map into a

neural network and employed the Winner Take All (WTA)

and Inhibition of Return strategies [10], while Walthera and

Koch identified proto-objects in the image and ranked them

according to saliency value [27]. These two methods gen-

erate scanpaths according to saliency but in fact what mo-

tivates gaze shifts is far more than that. Lee proposed that

gaze shifting is due heavily to the radial decrease in reso-

lution within the fovea, and that gaze shifting aims to max-

imize the information gain [12]. Renninger proposed that

the purpose of gaze shifts is for information maximization

[21], and further verified that gaze shifts aim to reduce local

uncertainty [22]. Based on the above ideas, Wang simulated

32263233



human scanpaths by exploiting the properties of the human

visual system, including the decrease of resolution in the

fovea, the storing and fading of working memory, and in-

formation maximization on the residual image [28]. The

primary difference of our work from the method in [28] is

in the calculation of transition probabilities. Specifically,

we employ an HMM to model shift patterns and to explore

the impact of semantic content.

2.3. Other related works

There are a few works related to our HMM-based scan-

path generation in that they use hidden states to model the

invisible factors affecting gaze shifts. These include meth-

ods that model eye movements for camera control [23], and

passive/active patterns [18] or brain states [1] to generate

saliency maps. In all of these works, the hidden states are

manually defined. By contrast, our method learns them

from training data.

3. Our Method
In this paper, we denote a vector/matrix by a lower-

case/uppercase letter in boldface. We also represent the

transpose of a vector or a matrix by the superscript ′. The

�2 distance between two vectors a,b ∈ R
n is defined as

‖a− b‖ = √
(a− b)′(a− b).

In our method, we segment the image into regions and

model gaze shifts in terms of transition probabilities from

one region to another. With the variables corresponding to

the t-th gaze position denoted by the subscript t, the prob-

ability of a region to be chosen as the next gaze location

gt+1 is determined by three components, namely low-level

features y, semantic content z, and image position u:

p(gt+1|g1, · · · , gt)
= p(yt+1, zt+1,ut+1|y1, z1,u1, · · · ,yt, zt,ut).

(1)

We assume gaze shifts to be a Markov process, meaning

that the next gaze location depends only on the current one.

Thus Eq. (1) can be rewritten as

p(gt+1|gt) = p(yt+1, zt+1,ut+1|yt, zt,ut). (2)

We also assume the three factors to be independent, so that

Eq. (2) can be expressed as

p(gt+1|gt) = p(yt+1|yt)p(zt+1|zt)p(ut+1|ut). (3)

The three parts of this formula are described in the follow-

ing subsections.

3.1. Low-level feature saliency

The transition probabilities determined by low-level fea-

tures are calculated through feature differences between im-

age regions. Let y(r) be the feature vector of region r,

where r = 1, 2, · · · , R, and R is the number of regions.

We define the weight between region r and region s as the

feature distance between them:

Wr,s = ‖y(r) − y(s)‖. (4)

The low-level features used in this paper are the YUV color

values and Gabor features at five scales and eight orienta-

tions, since measures of intensity, color, orientation, and

texture have been widely adopted and shown to be effective

for estimating saliency [10][8].

The transition probability from region r to region s is

calculated by normalizing the corresponding weight by the

sum of outgoing weights from region r:

p(y(s)|y(r)) =
Wr,s∑R
s=1 Wr,s

. (5)

A graph can be formed with the regions as nodes and the

transition probabilities are the weights of the edges. Ran-

dom walks on such graphs have been used to construct

saliency maps [28][8].

3.2. Semantic content

We describe the influence of semantic content on gaze

shifts using a hidden Markov model. The HMM is a sta-

tistical tool widely used for modeling time-series data, by

characterizing an underlying process based on the visible

output that it generates. The system being modeled is as-

sumed to be a Markov process with unobserved (hidden)

states. The states in an HMM are not directly visible but

can be estimated from the visible output which is depen-

dent on the state. This property of the HMM makes it a

suitable choice for modeling semantic content in scanpath

estimation, as the hidden states can represent latent seman-

tic concepts while the output corresponds to descriptors for

the visible image.

3.2.1 HMM-based prediction of gaze shifts

An HMM with M hidden states can be represented by

three parameters, λ = (π,Θ,Φ). π ∈ R
M is a vec-

tor that indicates the prior distribution of the hidden states.

Θ ∈ R
M×M is the transition matrix of the states, with

entries θi,j representing the probability of transiting from

state i to state j. Φ ∈ R
M×K is the emission matrix which

stores the probability of an observation given a certain state.

K denotes the number of emissions, which in our case is

the number of visual words. Observations of image regions

are described by using the Bag-of-Visual-Words (BoVW)

model with SIFT descriptors, as it has been widely used

for recognizing various semantic categories [6] [16]. Let

wk be the k-th visual word. An image region is repre-

sented as a vector x = [x1, x2, · · · , xK ]′, with xk denot-

ing the frequency of occurrences of word wk, normalized
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to
∑K

k=1 xk = 1. With the BoVW representation, φi,k

(i.e., the (i, k)-th entry of Φ) is the probability of word wk

given that the state for the current region is i. Let us denote

bi(x) = p(x|z = i) as the probability of an observation x
conditioned on state z = i. With the emission matrix, bi(x)
can be expressed as

bi(x) =
K∏

k=1

(φi,k)
xk . (6)

Given a sequence of gazed image regions

{g1, g2, · · · , gT }, we represent its BoVW representa-

tions as X = {x1,x2, · · · ,xT }, where each xt denotes

the BoVW representation of the t-th region and T is the

sequence length. Denoting αt,i = p(zt = i,x1, . . . ,xt) as

the probability of state i at time t, we can estimate αt,i by

using the forward procedure [20] as follows:

α1,i = bi(x1)πi,

αt,i = bi(xt)
M∑
j=1

θj,iαt−1,j , ∀t = 2, . . . , T,
(7)

where πi (i.e., the i-th entry of π) is the prior probabil-

ity of the i-th hidden state. Now, we obtain p(zt+1|zt) in

Eq. (3) by using the probability of the region to be gazed

next through the HMM:

p (xt+1=x|x1, . . . ,xt) ∝ p (x1, . . . ,xt,x)

=

M∑
i=1

bi(x)
M∑
j=1

θj,iαt,j .
(8)

3.2.2 Model learning

To learn the parameters of the HMM, λ = (π,Θ,Φ), we

use the Expectation-Maximization (EM) algorithm to ob-

tain maximum likelihood estimates. We sketch the training

process below and refer readers to [20] for more details.

Let us denote the training set as {Xn|Nn=1}, where Xn =

{x(n)
1 , . . . ,x

(n)
Tn
} is the n-th training sample (i.e., a saccadic

scanpath from one user on one image), and N is the total

number of training samples. Tn is the length of the n-th

sample. To distinguish the variables corresponding to dif-

ferent training samples, we will add the superscript (n) to

those corresponding variables when necessary.

In the E-step, we calculate the probabilities αt,i based on

the current HMM model λ = (π,Θ,Φ) by using the for-

ward algorithm as in Eq. (7). Moreover, given state zt = i,
we can also estimate the probability of the partial sequence

after time t (i.e., βt,i = p(xt+1, . . . ,xT |zt = i)) by using

the backward procedure as follows:

βT,i = 1,

βt−1,i =
M∑
j=1

θi,jbj(xt)βt,j , ∀t = 2, . . . , T.
(9)

Figure 2. Visualization of seven learned hidden states, arranged in

columns. The regions with red boundaries correspond to the states.

The numbers below the columns are the prior probabilities of the

hidden states.

In the M-step, using the obtained αt,i and βt,i values, we

re-calculate the parameters π, Θ and Φ. Specifically, π is

updated to

πi =
1

N

N∑
n=1

α
(n)
1,i . (10)

Recall that Θ models the transition probability between any

two states. We first define ξt,i,j = p(zt = i, zt+1 = j|X )
as the probability of a sequence being in state i at time t and

in state j at time t+ 1, which can be calculated as

ξt,i,j =
αt,iθi,jbj(xt+1)βt+1,j∑M

i=1

∑M
j=1 αt,iθi,jbj(xt+1)βt+1,j

. (11)

Then, Θ is updated as

θi,j =

∑N
n=1

∑Tn−1
t=1 ξ

(n)
t,i,j∑N

n=1

∑Tn−1
t=1

∑M
j=1 ξ

(n)
t,i,j

. (12)

Finally, we update Φ based on the number of co-

occurrences of word wk and the state z = i. Based on

Eq. (11) and (7), the probability of a state zt = i can be

calculated as ηt,i =
∑M

j=1 ξt,i,j for t = 1, . . . , T − 1 and

ηT,i = αT,i. Therefore, by defining the co-occurrence as

c(z = i, wk) =
∑N

n=1

∑Tn

t=1 η
(n)
t,i x

(n)
t,k with x

(n)
t,k being the

k-th entry of x
(n)
t , the emission matrix Φ is updated by

φi,k =
c(z = i, wk)∑K
k=1 c(z = i, wk)

. (13)

This EM process is repeated to update the parameters

until it converges to yield the final HMM.

3.2.3 Discussion

To visualize the hidden states, for each user scanpath we

estimate the state of each gazed region (Eq. (7)). For each

state, the regions with high probability are used for visual-

ization, as illustrated in Fig. 2. Here, we use the NUSEF-

portrait dataset (see Sec. 4.1) with seven hidden states. The
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Figure 3. Visualization of three learned HMM transition matrices,

with brighter shades indicating higher probability.

visualization shows that each hidden state has a consistent

visual pattern (e.g., hair, hand, face, and eye) which in-

dicates that they are able to represent semantic content to

some degree.

The parameters of the HMM have practical meaning in

the context of scanpath estimation. The prior distribution π
is related to the attractiveness of each state (latent topics)

with respect to the dataset. In Fig. 2, the prior probabilities

of the states are given in the bottom row. We have found

that certain objects always attract more attention, such as

human faces and hands.

The transitions between states describe human gaze shift

patterns. In [9], Hwang et al. found that human gaze tends

to shift to similar concepts. Fig. 3 shows three visualized

transition matrices learned in the experiment, on NUSEF-

portrait (see Sec. 4.1) with 3-fold cross-validation. It can

be seen that the transition matrices are consistent with the

results of [9].

3.3. Spatial position

As mentioned previously, gaze shifting has been shown

to be a Levy flight, which is a random walk with steps in an

isotropically random direction and a step length subject to

a heavy-tailed distribution [3]. Here, we use a 2D Cauchy

distribution to model the gaze shift. Let ut = (ut, vt) be

the position of the t-th gaze position. The probability of

transiting from ut to position u = (u, v) is defined as

p(ut+1=u|ut)=
γ

2π
(
‖u− ut‖2 + γ2

) 3
2

, (14)

where γ is the parameter of the Cauchy distribution. Under

this model, the distribution of step lengths, p(d) with d =
‖u− ut‖, is

p(d) =
γ

2π (d2 + γ2)
3
2

× 2πd =
γd

(d2 + γ2)
3
2

, (15)

where d ∈ (0,+∞). Eq. (15) is a heavy-tailed distribution

so the random walk defined by Eq. (14) is a Levy flight.

In several existing methods, a 2D Gaussian function is

used to model the gaze shift [7][8][32]. However, as shown

in Fig. 4 for human gaze data from the NUSEF dataset [25],

0 500 1000 1500
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Figure 4. Step length distribution for human gaze shifts, with fit-

ting results by using a Cauchy distribution and a Gaussian distri-

bution.

a Gaussian function is less suitable than a Cauchy distribu-

tion for modeling gaze shift. γ = 60 is used in the figure

and also in all the experiments.

3.4. Implementation details

We chose to use regions instead of pixels or image blocks

as the basic perceptual unit for two reasons. First, visual

grouping is a necessary step prior to semantic interpretation,

where spatially neighboring pixels with similar features are

perceived as a unit. Second, unlike image blocks, regions

provide scale flexibility. To achieve scale invariance with

block based methods, low-level feature saliency needs to be

calculated at multiple scales [10][15]. For image segmen-

tation, we employ the entropy rate superpixel segmentation

method [14].

4. Experiments
In our experiments, we first evaluate performance with

respect to different HMM settings, then examine the effect

of each component in our method. Finally, we compare our

method to other techniques. To determine the region that

will be gazed next in a scanpath, we take the region with

the highest probability computed from Eq. (3). Inhibition-

of-return is used to prohibit the process from returning to

previously gazed regions. The length of the scanpath is set

to 20 for our method and the comparison techniques.

4.1. Test data and similarity metric
Dataset: We use two publicly available eye tracking

datasets for evaluation, namely NUSEF [25] and JUDD

[11]. Both record human gaze in a free viewing setting.

The NUSEF dataset includes 758 images in total, among

which we use the 476 images not protected by copyright.

On average, the scanpaths of about 25 users are recorded

for each image. The JUDD dataset consists of 1003 images

with scanpaths of 15 subjects recorded by an eye tracking

machine.

Since our method applies to task-driven viewing pro-

cesses, either specific or hidden, the training and test im-

ages should ideally be from the same or similar categories.
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For this we choose two subsets from the NUSEF dataset,

namely NUSEF-portrait and NUSEF-face, which consist of

140 and 75 images respectively. The entire NUSEF and

JUDD datasets are also used for evaluation.

Similarity metric: In [28], performance is evaluated

by using the time delay embedding based distance. This

method has the problem of multiple-to-one matching, i.e.,

multiple segments of a scanpath may be matched to the

same segment of another one. Therefore, to evaluate the ac-

curacy of an estimated scanpath, we compare it to measured

ground truth using the Smith-Waterman local alignment al-

gorithm [24], which yields a similarity measure widely used

for DNA sequence comparison. Suppose we have two scan-

paths, X1 and X2, of length T1 and T2. To identify similar

scanpath segments between X1 and X2, we build a matrix

H ∈ R
(T1+1)×(T2+1) with hi,j as the (i, j)-th entry:

hi,0 = 0, 0 ≤ i ≤ T1

h0,j = 0, 0 ≤ j ≤ T2,
(16)

and the other elements are calculated as

hi,j = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0

hi−1,j−1 + w(x
(1)
i ,x

(2)
j ) (mis)match,

hi−1,j + w(x
(1)
i ,−) deletion,

hi,j−1 + w(−,x(2)
j ) insertion,

(17)

where

w(x
(1)
i ,x

(2)
j ) =

{
w(match), if x

(1)
i = x

(2)
j

w(mismatch), if x
(1)
i �= x

(2)
j .

(18)

In this matrix, hi,j is the maximum similarity score be-

tween the first i entries of X1 and the first j entries of X2.

To account for gaps in X1 and/or X2 during local align-

ment, “deletion” and “insertion” operations add a gap in X1

or X2, respectively, while adding a penalty of w(x,−) or

w(−,x) to the similarity score. In our method, we use the

settings w(match) = 1 and w(mismatch) = w(x,−) =
w(−,x) = gap, where gap can be set to −1

2 , − 1
3 , or − 1

4
to indicate a tolerance of gap length 1, 2, or 3 between the

first and second matched elements. In calculating matches

for Eq. (18), we allow a distance threshold of 50, meaning

that if the distance between x
(1)
i and x

(2)
j is less than 50,

they are considered to be matched. This match calculation

is used to evaluate each method.

To find locally aligned pairs of segments from matrix H,

we start from its maximum element hi,j and trace back-

wards to position (i − 1, j), (i, j − 1), or (i − 1, j − 1)
depending on the direction of movement used to construct

the matrix. This traceback is continued until reaching a ma-

trix cell with zero value. The traced path describes a locally

aligned segment pair between X1 and X2, which has a sim-

ilarity score of hi,j . We repeat this process to find other

matched segments, starting from the next largest matrix el-

ement not included in a previously traced path. The sum

of similarity scores from all the aligned segments is used

as the similarity metric. For each image, we have multiple

ground truth scanpaths from different users, so we compare

the estimated scanpath with all of them and report the aver-

age similarity.

Three alignment examples are displayed in Fig. 1. In

the red segment, our method estimates two points correctly.

The green segment contains a redundant point, and the blue

one has a mismatch. When gap = − 1
2 , the similarity of the

red, green, and blue segments are 2, 1.67, 1.67, respectively.

4.2. HMM settings

We use the NUSEF-portrait dataset to examine the per-

formance for different HMM settings and parameters. The

two main HMM settings are the number of visual words (K)

and the number of hidden states (M ), while the number of

training samples (N ) also impacts performance. We set the

number of regions to 300 in all the experiments.

HMM setting Grid search is used to find the opti-

mal HMM setting. We sample the number of states as

M = {2, 3, · · · , 10} and the number of visual words as

K = {10, 20, 30, 40, 50}. We use 3-fold cross-validation

in this experiment. The results are displayed in Fig. 5. (a)

shows the relationship between performance and number of

states. The performance is averaged over all the sampled

codebook sizes (number of visual words). From the figure,

we can see that the performance increases quickly at first

but more slowly after M = 7. (b) shows the performance

with different codebook sizes, averaged over all the sam-

pled numbers of states. Better performance is shown with

smaller codebook sizes. Based on these tests, we choose

K = 10 and M = 7 as the default HMM settings.

Number of training samples To examine the effect of

the number of training samples, we performed the experi-

ments using 2-fold, 3-fold, 4-fold, 7-fold, and 10-fold cross-

validation. The results shown in (c) indicate that more train-

ing samples leads to improved performance.

4.3. Gaze factors

We compared the performance using each individual

gaze factor (low-level feature saliency, semantic content

with HMM, and spatial position with Levy flight) as well as

the full gaze shift method with all three factors. Fig. 6 dis-

plays the results with gap = −1
2 on the four datasets, where

NUSEF and JUDD denote the full datasets. Semantic con-

tent with HMM is shown to be effective and outperforms

low-level feature saliency. The full combination of three

factors is shown to perform significantly better than any of

the factors individually. With gap = − 1
3 and gap = − 1

4 ,

we have the same observation.

To determine the importance of the transition matrix,
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Figure 5. Effects of HMM settings.
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Figure 6. Effectiveness of gaze factors.

which is a key part in our approach, we conduct on the

four datasets an experiment using the same HMM based ap-

proach except with a uniform transition matrix (i.e., θi,j =
1
M , ∀i and j. With gap = −1

2 , the results of the simplified

HMM based approach are 0.87, 0.85, 0.79, and 0.86, which

are lower than the 1.18, 0.97, 1.03, and 1.02 of our HMM

based approach with the trained transition matrix (see the

result from “HMM” in Fig. 6). This demonstrates the im-

portance of modeling the gaze transitions.

More experiments are conducted to evaluate the perfor-

mance for different numbers of regions, using the NUSEF

dataset as an example. With gap = −1
2 , the results are 1.07,

1.15, 1.19, 1.19, and 1.19 when using 100, 200, 300, 400,

and 500 regions, which indicates that our approach is robust

when the number of regions is within [100, 500].

4.4. Comparison with other methods

To our knowledge, Itti’s saliency based method (Itti)
[10], Walthera’s proto-object based method (proto) [27],

and Wang’s scanpath simulation method (WW) [28] are the

only existing techniques for estimating scanpaths. Others

output only saliency maps. We compared our method to the

aforementioned techniques, using the code from [8] for Itti,
and codes from the authors themselves for proto and WW.

The results with gap = − 1
2 are displayed in Fig. 7. We

also conducted the t-test to examine the significance of the

results. Based on the t-test, our proposed method surpasses

Itti’s method and the proto-object based method on all the

datasets with a significance level of 0.05. Compared with

Wang’s method, our method is significantly better on the

face, portrait, and NUSEF datasets, and is comparable to it

on the JUDD dataset.
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Figure 7. Comparison with other scanpath methods.

In Fig. 7, from the results for proto, we can see that sort-

ing regions according to saliency does not provide good es-

timates of scanpaths. The improvements of our method over

Wang’s method on the JUDD dataset are less significant,

due to its diverse content. Fig. 8 shows scanpath results for

two images in the NUSEF-portrait set.

5. Conclusion
In this paper, we have proposed a human scanpath esti-

mation method that employs an HMM to model the influ-

ence of semantic content, and uses Levy flight to account

for spatial position. Experiments on challenging datasets

show our method to outperform existing scanpath estima-

tion techniques.
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