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Abstract

This paper presents a novel structure gradient and tex-
ture decorrelating regularization (SGTD) for image decom-
position. The motivation of the idea is under the assumption
that the structure gradient and texture components should
be properly decorrelated for a successful decomposition.
The proposed model consists of the data fidelity term, total
variation regularization and the SGTD regularization. An
augmented Lagrangian method is proposed to address this
optimization issue, by first transforming the unconstrained
problem to an equivalent constrained problem and then ap-
plying an alternating direction method to iteratively solve
the subproblems. Experimental results demonstrate that
the proposed method presents better or comparable perfor-
mance as state-of-the-art methods do.

1. Introduction
Image decomposition defined as separating an image f

as the sum of two independent components f = x+ v, usu-

ally is the first step to the solution of many image processing

tasks like inpainting [2], demosaicing [15] and registration

[12]. The piecewise smooth function x with quasi-flat inten-

sity plateaus and jump discontinuities is called ”cartoon”.

This component contains main large-scale structure features

of the image, and can be used for feature detection, segmen-

tation and object recognition. Another component v usu-

ally represented by a small-scale oscillatory function and

having some periodicity nature, captures texture and possi-

bly noise, and thus is suitable for solving various texture-

depended applications e.g. classification, surface analysis,

shape/orientation from texture. Variational approach is the

most popular approach to address the image decomposition

problem. The common part in this approach is often related

to total variation (TV) minimization. The pioneering for-

mulation of such approach was originated from Meyer [9],

∗Corresponding author: D. Liang dong.liang@siat.ac.cn

who suggested starting from the regularization of Rudin et
al. (ROF) model, or TV-L2 model [14]:

x = argmin
x

{ μ

2
‖f − x‖22 +

n2∑
i=1

‖Dix‖2
}

(1)

where TV (x) =
∑n2

i=1‖Dix‖2. For each i, Dix ∈ R2

represents the first-order finite-difference of x at pixel i in

both horizontal and vertical directions. The term ‖Dix‖2
is the variation of x at pixel i, and the summation TV (x)
is taken over all pixels for a n × n image. It can be seen

that TV-L2 model performs decomposition by modeling the

cartoon component x with TV semi-norm and using the L2-

norm for oscillating features v = f − x. Starting from this

model, the strategies for improving image decomposition

can be divided into three approaches, based on searching

the suitable model for texture, cartoon or for both texture

and cartoon.

The first approach devotes to modifying the norm on the

texture component. Since the ROF model rejects the tex-

tures, Meyer defined a new function space G, and replaced

the L2-norm by the G-norm. It was proved that G corre-

sponds to a space of oscillating functions, and thus is bet-

ter suited to model textures. Some approximated norm like

div(Lp)-norm [20] and H−1-norm (OSV) [11] were devel-

oped by following this idea. Particularly, by replacing the

L2 norm on data fidelity (i.e. texture component) with the

L1 norm, the importance of TV-L1 model in image decom-

position has attracted many researchers [10, 3, 25]. Yin et
al. have shown that this model has scale-selection and mor-

phologically invariant properties [25].

The second approach, focusing on modifying the norm

on the TV measure, encompasses methods such as weighted

least squares (WLS) [5] and L0 gradient minimization [22].

Though still depending on gradient images, these two meth-

ods differ from the TV-L2 decomposition model on regular-

ization term and specific optimization steps, and do not suit

texture separation very well. Inspired by the observation

that a major edge of cartoon in a local window contributes
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more similar-direction gradients than textures with complex

patterns, Xu et al. [6] introduced relative total variation

(RTV) regularization for extracting structure from texture.

The experimental results demonstrate that RTV can make

main structures stand out by combining general windowed

total variation and novel windowed inherent variation.

Unlike the above two approaches that enhance the de-

composition by modifying texture norm or cartoon norm

individually, a “structural decorrelating” approach for im-

age decomposition has attracted much attention and pre-

sented impressive performance recently. The methods in

this stream directly predefined the decorrelation measure

between the structure and texture components. Shahidi

et al. [16] improved the OSV method by introducing the

penalty of correlation coefficient between structure and tex-

ture components. Szolgay et al. [18] used the angle de-

viation error (ADE) based orthogonality measure to im-

prove the spatial filter for better separating the cartoon and

texture parts. However, the experimental results in [18]

showed that the DOSV improvement is limited. Addition-

ally, both DOSV and the ADE-based methods usually have

large computational complexity in the optimization stage.

In the present work, a new and yet effective method

utilizing the “structural decorrelating” strategy is proposed

for image decomposition. Well-decomposed performance

is achieved by adding a novel structure gradient and tex-

ture decorrelating (SGTD) regularizer to the TV-L2 model.

Specifically, this proposed regularizer aims to enforce that

the correlation between structure gradient and texture com-

ponents is minimal instead of the correlation between struc-

ture and texture components. With regard to the new regu-

larizer, texture and main structure exhibit appropriate decor-

related properties, making them surprisingly decompos-

able. A robust numerical solver named alternating direction

method is proposed to decompose the original highly non-

convex optimization problem into several subproblems, and

find the fast and robust solutions.

The rest of this study is organized as follows. In Sec-

tion 2, we will present our new regularizer and model for

image decomposition. In Section 3, an efficient algorithm

for solving the proposed model will be derived by apply-

ing alternating minimization. Numerical experiments will

be provided in Section 4. Finally, concluding remarks and

perspectives are sketched in Section 5.

2. SGTD: Structure Gradient and Texture
Decorrelating Regularizer and Model

In this section, the structure gradient and texture decor-

relating (SGTD) regularizer and its corresponding decom-

position model will be derived. The intuitive motivation

and explanation are presented first. Subsequently the math-

ematical formulation and model behind this observation are

established. Finally, we will reveal the relation and differ-

ence between the proposed model and TV-L1 model.

2.1. Structure Gradient and Texture Decorrelating
(SGTD) Regularizer

Intuitively, for a successful decomposition, any given

feature in an image should be considered as either a car-

toon feature or a textural feature. Therefore, the correlation

between the cartoon and texture components of a decompo-

sition should be low, i.e. the range of this random field will

consist of values close to zero. This assumption has been

adopted in previous work [16, 18]. The straightforward way

to model this assumption is to minimize
∑n2

i=1 |fi−xi|·|xi|.
However, directly calculating the correlation between these

two components could cause problem since the texture part

has an inherent zero mean while the cartoon does not. In or-

der to help address this issue, we propose an alternative way

by minimizing
∑n2

i=1 |fi − xi| · ‖Dix‖. Different from the

straightforward expression, the new model involves finite-

difference operation, which makes the gradient images have

inherent zero mean since this operation for one pixel could

be either positive or negative. Therefore, our proposed reg-

ularizer suggests the gradient magnitude of the cartoon and

texture component are generated from independent process

and thus are uncorrelated.

Theoretically, the SGTD regularizer can be approxi-

mately viewed as a window based correlation coefficient

with size of two between the texture component and the car-

toon component. For example, assume [xi−1, xi] is a vector

representing cartoon variable in a window of size two, and

[fi−1−xi−1, fi−xi] denotes the corresponding texture vari-

ables with zero mean, then the absolute value of correction

coefficient between the two random variables X and Y is

|ρXY | =
∣∣∣Cov(X,Y )

σXσY

∣∣∣ =
∣∣∣E[(X − X̄)(Y − Ȳ )]

σXσY

∣∣∣
=
|xi − xi−1| · |fi − xi|

2σxσf−x
=
|Dix| · |fi − xi|

2σxσf−x

Similarly as in DOSV, by assuming that the standard de-

viations σx and σf−x are not the functions of xi, the abso-

lute value of correction coefficient in pixel i can approxi-

mate the SGTD regularizer.

Taking the decomposition of image “Barbara” in Fig.1

for example, we can find that the range of the cartoon and

texture components may not at the same or near scale (one

is 0.8 while the other is 0.5). Fortunately, the range of the

magnitudes of cartoon gradient and texture components are

close to each other (one is 0.4 and the other is 0.5), after ap-

plying the SGTD regularizer. It can be seen that the magni-

tude images of cartoon gradient and texture components in

Fig.1 (d) and (e) are largely complementary. This observa-

tion suggests that these two components are highly uncorre-

lated and thus are suitable for cartoon + texture decomposi-

tion. Moreover, the range of the SGTD values (i.e. 0.035) is
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(a) (b) (c)

(d) (e) (f)

Figure 1. Numerical validation of the assumption that the

small SGTD is necessary for successful decomposition.

(a)(b)(c): The input image, cartoon + texture decomposition

results. (d)(e)(f): gradient magnitude image of the cartoon

component, the magnitude of texture component and their

SGTD values.

smaller by an order of magnitude than their original values.

This example numerically validates that for an appropriate

decomposition of cartoon and texture components, the co-

herent between the gradient cartoon and texture is small.

2.2. SGTD Regularization Model

In this subsection, a new decomposition model involv-

ing the SGTD regularizer is presented. Mathematically, the

objective function can be expressed as:

x =argmin
x

{ μ

2
‖f − x‖22 + η

n2∑
i=1

‖Dix‖2

+
n2∑
i=1

|fi − xi| · ‖Dix‖2
}

(2)

where μ and η are the weights. The first term in the cost

function enforces data fidelity in the image domain. The

second term favors that the structure part to be sparse in

the gradient domain. The effect of more powerfully decom-

posing cartoon and texture is introduced by the third term,

which measures the correlated quality between the gradient

of structural component and the textural component. Com-

pared to the TV-L2 moedel, the new added term alleviates

the drawback introduced by only using TV regularizer and

makes the proposed model be able to handle images con-

taining complex patterns.

2.3. The Relation and Difference between SGTD
and TV-L1 Model

When η → 0, our model (2) degrades to:

(a) TV-L1 (b) TV-L1 (c) SGTD (d) SGTD

Figure 2. The demonstration on the difference between TV-

L1 and SGTD models. The first two columns are obtained

by TV-L1 , where the parameter μ in (a) and (b) is 0.3 and

0.7 respectively, and the latter two are those by SGTD. The

parameter μ in (a) and (b) is 0.3 and 0.7 respectively, and the

parameter pairs (μ, η) in (c) and (d) are (1500, 0.006) and

(400, 0.003) respectively. The perfect separation of various

meaningful cartoon and texture patterns may come from the

proposed nonlinear reformulation of the model.

x = argmin
x

{ μ

2
‖f − x‖22 +

n2∑
i=1

|fi − xi| · ‖Dix‖2
}

= argmin
x

{ n2∑
i=1

|fi − xi| · (μ
2
|fi − xi|+ ‖Dix‖2)

}

(3)

In this form, it can be observed that our model can be seen

as a weighted TV-L1 model with the weight wi = |fi−xi|.
Based on this observation, it is natural to conclude that our

method may associate to the excellent properties of TV-L1

such as contrast preservation and data driven scale selection

[25]. Moreover, it allows more freedom and robustness than

TV-L1, benefited from the nonlinear reformulation. Fig. 2

illustrates one challenging example for decomposition since

the texture of the input image Zebra has a wide range of

sizes. We can see that the non-textural parts such as slow

changes of the gray level values and non-textural parts of

the background cannot be appropriately separated from the

texture by tuning the parameter of TV-L1. This drawback

can be overcome by the proposed SGTD method. An in-

teresting phenomenon is that by varying the parameters μ
and η, the proposed model can not only provide the tra-

ditional decomposition result shown in Fig. 2(c), but also

yield meaningful decomposition as depicted in Fig. 2(d),

where the stripe of the animal are almost separated from the

background and can be used for image segmentation. More

supporting numerical illustrations are provided in Section 4

and the Supplemental Material. In summary, our model can

be viewed as a weighted TV-L1 model, and thus provide

more freedom to deal with various image processing tasks.
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3. Optimization Solver: ADM Method to Solve
the SGTD Model

3.1. ADM Method to Solve the SGTD Model

Although the SGTD regularization has exhibited some

appealing properties in model setting, the issues of com-

putational complexity and local optimality have to be ad-

dressed due to the non-convexity and high non-linearity

nature of the problem, which limits its practical applica-

tion. Therefore, developing an efficient and robust solver

is still highly desirable. In this subsection, an augmented

Lagrangian (AL) method is proposed to solve the problem.

AL method is a well studied optimization algorithm

for solving the constrained problems in mathematical pro-

gramming community [13]. Recently, it is enjoying a re-

popularization mainly due to the work of Osher et al. [21]

and has been used in various applications of signal/image

processing [1, 17, 7, 23]. The AL related methods usually

employ the operator splitting first to transform the origi-

nal unconstrained minimization problem to an equivalent

constrained problem, and then the alternating-minimization

strategy is used to iteratively find solutions of the subprob-

lems. Generally speaking, the AL scheme aims to solve the

following problem:

min
x,y,z

{ μ

2
‖z‖22 +

n2∑
i=1

(η + |zi|) · ‖yi‖2
}

s.t. yi = Dix, i = 1, . . . , n2 (4)

z = f − x

where yi ∈ R2, i = 1, · · · , n2 and z are auxiliary variables.

Problem (4) can be solved via the standard augmented La-

grangian method. Specifically, letting y = [y1, · · · , yn2 ],
λ1 = [λ11, · · · , λ1n2 ] and starting from λ0 = 0, it solves

(xk+1, zk+1, yk+1) = arg min
x,z,y

L(x, z, y, λk) (5)

= arg min
x,z,y

n2∑
i=1

(η + |zi|) · ‖yi‖2 − λ
T

1i(yi −Dix) +
μ

2
‖z‖22

+
β1

2

n2∑
i=1

‖yi −Dix‖2 − λ
T

2 (z − x+ f) +
β2

2
‖z − x+ f‖2

at the k-th iteration for (xk+1, yk+1, zk+1), then updates the

mulitpliers λ1 and λ2 by the formula

λk+1
1 = λk

1 − β1(y
k+1 −Dxk+1)

λk+1
2 = λk

2 − β2

[
zk+1 − (xk+1 − f)

]
(6)

Since solving the augumented Lagrangian function (5)
for x, y and z simultaneously can be difficult, an alternative

choice is to minimize it with respect to each block variable

x, y and z one at a time while fixing the other two blocks at

their latest values, and then update the Lagrange multiplier

using

yk+1 = argmin
y

{ n2∑
i=1

(η + |zki |) · ‖yi‖2

+
β1

2

n2∑
i=1

‖yi −Dix
k − λk

1/β1‖2
}

(7)

zk+1 = argmin
z

{ n2∑
i=1

(η + |zi|) · ‖yk+1
i ‖2 +

μ

2
‖z‖2

+
β2

2
‖z − (xk − f)− λk

2/β2‖2
}

(8)

xk+1 = argmin
x

{ β1

2

n2∑
i=1

‖yk+1
i −Dix− λk

1/β1‖2

+
β2

2
‖z − (x− f)− λk

2/β2‖2
}

(9)

• y-and z-subproblems
Firstly, the minimization of Eq.(7) with respect to y can be

computed analytically. Concretely, we obtain the optimal

solution:

yk+1
i =max

{‖Dix
k + λk

1/β1‖2 − (η + |zki |)/β1, 0
}

· Dix
k + λk

1/β1

‖Dixk + λk
1/β1‖2

(10)

Simlarily, it follows that

zk+1 = sgn
{ β2

μ+ β2
(xk − f + λk

2)/β2

}
�max

{ β2

μ+ β2

· (xk − f + λk
2)/β2 − β2‖Dxk‖/(μ+ β2), 0

}
(11)

where sgn and � respresent the signum and point-wise

product function respectively, and both operations are im-

plemented by compoment-wise manner.

• x-subproblem
By taking the derivative of Eq.(9) with respect to x and set-

ting it to zero,

(β1D
TD + β2)x

= β1D
T (yk+1 − λk

1/β1) + β2(z + f − λk
2/β2) (12)

we can get the solution xk+1:

F−1

{F(
β1D

T (yk+1 − λk
1/β1) + β2(z + f − λk

2/β2)
)

β1F�(D)�F(D) + β2

}

(13)

where F represents the two dimensional discrete Fourier

transform.

The whole SGTD mehod is summarized as follows:
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Figure 3. The plot of function values vs iteration number, and the intermediate structure images at different iterations. (a)

Objective value evolution. (b) The intimidate structure image obtained by the algorithm at the 3-th, 5-th, and 7-th iteration.

Algorithm SGTD
1: for k = 0 to K − 1 do do
2: update yk+1

i according to Eq.(10)
3: update zk+1 according to Eq.(11)
4: update xk+1 according to Eq.(13)
5: update λk+1 according to Eq.(6)
6: end for

3.2. Computation Cost and Parameter Setting

At each iteration, the computational cost of (10) and

(11) is linear with respect to the problem size, namely

O(n2). Additionally, the main cost for solving (13) is

two FFTs (inlcuding one inverse FFT), each at a cost of

O(n2log(n)). The proposed method contains two param-

eters β1 and β2, whose setting can be referred to [24, 19].

In all the experiments of this article, we empirically choose

β1 = 5 and β2 = 20.

As mentioned in the literature [23, 24, 19], one advan-

tage of the ADM based optimization is that it can decrease

the objective function rapidly. This advantage can be ob-

served from Fig. 3(a) that the objective function value

changes slightly only after 20 iterations. Fig. 3(b) displays

the intermediate structure images obtained at the 3-th, 5-th,

and 7-th iteration, where we can find the proposed method

quickly updates the cartoon image in iterations. It indicates

the effectiveness of the alternating strategy adopted by our

method.

4. Experimental Results
In this section, we evaluate the performance of SGTD

on several experiments under the scenario of decompostion,

which aims to investigate the effect of imposing structural

incoherence (when working on the color images, the ex-

tension is the same as that in [19]). In the experiments,

the proposed method was compared with TV-L1 method1,

RTV method2, OSV and DOSV methods [21], and the ADE

1http://www.caam.rice.edu/˜wy1/ParaMaxFlow.
2http://www.cse.cuhk.edu.hk/˜leojia/projects/

texturesep.

based method [18]3. All the test images are normalized to

have a maximum magnitude of 1. The parameter setting

of all these methods follows the rule that choosing the one

gives the best visual result.

4.1. Parameter Adjustment

In the proposed SGTD regularized model, two weights μ
and η are involved to balance the contributions of the three

terms in the objective. The effect of varying parameter val-

ues is demonstrated in Fig. 4. The parameter μ takes 400,

800 and 1500 from top to bottom, and η takes 0.001, 0.003
and 0.006 from left to right. We can see that, the textu-

ral part of the results with smaller parameters mainly con-

tain the strips of the animal, and may favor the followed

classification or segmentation tasks [3, 4]. As both param-

eters increasing, the results approximate to the traditional

decomposition task. The well-performed separation to var-

ious types of meaningful cartoon and texture patterns under

different parameter values indicates the diverse usage of the

proposed method.

4.2. Decomposition Comparison with State-of-the-
art Methods on Standard Images

When visually evaluating the performance of decompo-

sition method, one important criterion is to consider how

strong the remaining parts of one component on the image

of another component [18]. For a part of the image “Bar-

bara”, we can see on Fig. 5(a) that TV-L1 method can-

not completely eliminate the texture from the table cover,

while there are apparent cartoon edges on the texture image.

Many other methods like OSV and DOSV provide similar

results [18], which are not shown here due to the limit of

space. AD-aBLMV-ADE and RTV methods can eliminate

the texture from the cartoon image, but the slow changes of

gray level values shown in the region of table leg are also

apparent on the texture image. The proposed method suc-

cessfully eliminates the texture from the cartoon while visu-

ally almost no cartoon parts appearing on the texture image

3The results using DOSV and ADE based method are copied from [18]

directly for a fair comparison since the implementations are not public.
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Figure 4. The effect of varying parameters. The param-

eter stakes 400, 800 and 1500 from top to bottom, and

takes 0.001, 0.003 and 0.006 from left to right. The well-

performed separation to various types of meaningful car-

toon and texture patterns indicates the diverse usage of the

proposed method.

(a) TV-L1 (b) AD-aBLMV-ADE[18]

(c) RTV (d) SGTD

Figure 5. Comparison with state-of-the-art methods on im-

age “Barbara”.

(see Fig. 5(d)), and thus gives the best separation results

and exhibits contrast-preserving feature.

Fig. 6 shows the results of decomposing the challenging

image “Zebra” using different methods. It can be seen that

DOSV performs worst since it cannot eliminate the larger

texture parts without blurring the cartoon. RTV performs

poorly with some texture parts remaining on the cartoon,

while some nontextural parts such as slow changes of gray

level values and the background are apparent on the texture

image. It is possibly due to the limitation that RTV cannot

distinguish between structure and texture that are similar in

scales. AD-aBLMV-ADE performs slightly better than the

RTV method by eliminating most of the texture on the an-

imal but the nontextural parts such as the background are

still apparent on the texture image. Our proposed method

gives the best results visually. When applying three de-

composition models OSV, TV-L1 and SGTD to the image of

“4-textures” depicted in Fig. 7, the parameter values were

adjusted aiming to extract the woven texture (the upper right

part) accurately. Fig. 7 exhibits the difference of the three

methods in decomposition capability. In this example, TV-

(a) DOSV[16] (b) RTV

(c) AD-aBLMV-ADE[18] (d) SGTD

Figure 6. Comparison with state-of-the-art methods on im-

age “Zebra”.

(a) OSV (b) TV-L1 (c) SGTD

Figure 7. Comparison with state-of-the-art methods on im-

age “4-textures”.

(a) Input image (b) RTV

(c) TV-L1 (d) SGTD (e) SGTD

Figure 8. Comparison with state-of-the-art methods on

“Tiger” image containing complex texture. The parameter

pairs (μ, η) in (d) and (e) are (1500, 0.006) and (400, 0.003)
respectively.
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(a) Input image (b) RTV (c) SGTD

Figure 9. Comparison with RTV on image “crossstitch27”.

(a) Input image (b) RTV (c) SGTD

Figure 10. Comparison with RTV on “Pompeii FishMo-

saic”.

L1 and our SGTD overall perform at a similar level. How-

ever, in the upper right part of the test image, our method

outperforms TV-L1 by yielding a flatter and more uniform

cartoon.

Fig. 8 presents the results of one image containing com-

plex textures obtained by RTV, TV-L1 and SGTD. Almost

none of them can completely eliminate the stripes on the

tiger. Compared to the results of RTV in Fig. 8(b) and TV-

L1 in Fig. 8(c), the grass part in the image is better removed

from the cartoon part by the proposed SGTD as shown in

Fig. 8(d). Additionally, as can be seen in Fig. 8(e), the

ripple can be well-separated from the texture part by tuning

the parameter of our method, thus the tiger may be easier to

be segmented from the image [4].

4.3. Removing Non-uniform and Anisotropic Tex-
ture

In this subsection, three examples with non-uniform and

anisotropic texture are shown to exhibit the flexibility of our

method in dealing with other image processing task, which

is slightly different from image decomposition but focuses

on extracting main structure. Fig.9 displays the results by

RTV and SGTD. It can be observed that the performance of

removing texture from the cross stitch by both methods is

very similar, while our method preserves more fine details

than RTV on the background.

Fig. 10(a) shows a “Pompeii FishMosaic” image, in

which the main structures are surrounded by the back-

ground formed by many tiles with salient but fine tessera

boundaries, making the extraction very challenging [6].

Results from this method is presented in Fig. 10 (b).

Although this method makes use of local signed gradi-

ents and the relative total variation (RTV) exhibits special

properties, it fails to preserve some fine structures com-

pared to our method shown in Fig.10(c). The result from

our method indicates that SGTD has better capability on

contrast-preserving.

Finally, we show an example where the texture is highly

non-uniform and anisotropic. Fig. 11 displays the compar-

ison between RTV and our SGTD on one image from the

BSDS database [8]. It is clear that the structure parts such

as of the cheek and hair of the girl are better preserved in

the result of SGTD than that of RTV. Besides, the decompo-

sition of SGTD preserves the contrast between the girl and

the background better. More examples are included in the

Supplemental Material.

5. Conclusion
In this paper, a decorrelating regularizer for extracting

meaningful structure from texture was proposed. The im-

age decomposition results were improved by forcing inco-

herence between the gradient magnitude of the cartoon and

texture components. The proposed model can be viewed as

a weighted TV-L1 method, and thus posses the advantages

of TV-L1, such as contrast-preserving and data-driven scale

selection. Additionally, the proposed model allows a high

level of freedom and robustness due to the nonlinear formu-

lation. With the aid of augmented Lagrangian and alternat-

ing direction methods, the original non-linear problem was

transformed into a set of subproblems that are much easier

to be solved with both accuracy and efficiency. Experimen-

tal results demonstrate the effectiveness and robustness of

the proposed method compared to several state-of-the-art

methods.
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