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Abstract

To achieve a good trade-off between recognition accu-
racy and computational efficiency, it is often needed to re-
duce high-dimensional visual data to medium-dimensional
ones. For this task, even applying a simple full-matrix-
based linear projection causes significant computation and
memory use. When the number of visual data is large, how
to efficiently learn such a projection could even become a
problem. The recent feature merging approach offers an ef-
ficient way to reduce the dimensionality, which only requires
a single scan of features to perform reduction. However,
existing merging algorithms do not scale well with high-
dimensional data, especially in the unsupervised case.

To address this problem, we formulate unsupervised fea-
ture merging as a PCA problem imposed with a special
structure constraint. By exploiting its connection with k-
means, we transform this constrained PCA problem into a
feature clustering problem. Moreover, we employ the hash-
ing technique to improve its scalability. These produce a
scalable feature merging algorithm for our dimensional-
ity reduction task. In addition, we develop an extension
of this method by leveraging the neighborhood structure in
the data to further improve dimensionality reduction perfor-
mance. In further, we explore the incorporation of bipolar
merging – a variant of merging function which allows the
subtraction operation – into our algorithms.

Through three applications in visual recognition, we
demonstrate that our methods can not only achieve good
dimensionality reduction performance with little computa-
tional cost but also help to create more powerful represen-
tation at both image level and local feature level.

1. Introduction

The recent advances in visual recognition intro-
duce many high-dimensional representations, e.g. high-
dimensional histograms or pooled coding vectors [2],

Fisher vectors [15] and histogram of local binary patterns
with a large-sized neighborhood [7]. Although higher-
dimensional representations help achieving better recogni-
tion performance, it is often desirable to reduce the di-
mensionality for the sake of saving computational load and
memory usage. To achieve a good trade-off between recog-
nition performance and computational efficiency, we of-
ten need to reduce the high-dimensional data to medium-
dimensional ones, e.g. from 65536 to 1024. However,
this requirement makes traditional dimensionality reduc-
tion methods, even the simple full-matrix linear projec-
tion, inefficient in performing the reduction in terms of
computational load and memory usage. For instance, the
above example needs one million multiplication operations
to project a single sample and incurs 500MB memory to
save the double-precision projection matrix. As a result,
the dimensionality reduction may become unaffordable for
the applications requiring real-time performance, e.g. real-
time detection and tracking, and in the systems with limited
memory, e.g. embedding systems. Moreover, when both
the number of feature dimensions and samples are large,
how to efficiently learn the reduction function will become
a problem.

The recent feature merging approach offers an efficient
way to perform the dimensionality reduction. The idea of
feature merging is to group features into clusters and use the
sum of the features within each cluster as each reduced fea-
ture. As shown in the recent literature [6, 18, 13], this sim-
ple strategy can achieve good performance for histogram-
alike data. Compared with traditional dimensionality re-
duction, merging is much more efficient in performing the
reduction and incurs much lower memory usage. It only
needs a scan over all D features to accomplish the reduc-
tion and a 1×D sized table to store the merging indexes.

However, existing feature merging, especially the unsu-
pervised merging algorithms do not scale well with high-
dimensional data. Their poor scalability is caused by two
factors: (1) the clustering frameworks adopted in these
methods incur super-linear computational load growth with
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the feature dimensions, e.g. hierarchical clustering [6, 18,
13, 10] and spectral clustering [11]. (2) besides the scala-
bility issue in their clustering frameworks, the existing un-
supervised merging algorithms [10, 11] require the calcula-
tion of pairwise feature similarity by some measures whose
computational cost grows linearly with the number of sam-
ples, e.g. point-wise mutual information. Thus these meth-
ods become computationally impractical in dealing with a
large number of samples, say, one million samples.

Compared with supervised merging, unsupervised merg-
ing has much wider applications (e.g. dictionary learning,
image retrieval). However, many of those applications in-
volve a large number of samples and thus the scalability is-
sue of existing unsupervised merge methods severely limits
their applications.

To overcome this problem, in this paper we propose an
unsupervised feature merging algorithm which scales well
with both high feature dimensionality and large sample size.
In this algorithm, we formulate unsupervised feature merg-
ing as a principal component analysis (PCA) problem im-
posed with a special structure constraint. By exploiting
its connection with k-means, we transform this constrained
PCA problem into a feature clustering problem. However,
directly solving this clustering problem is time-consuming
when the sample size is large. To handle this situation, we
employ the hashing technique to improve its scalability. The
combination of the above two techniques finally gives us a
scalable feature merging algorithm. Also, inspired by ker-
nel alignment which is commonly used in supervised learn-
ing, we further propose an extension of the above basic
method. More specifically, we integrate the neighborhood
structure in data to generate ‘pseudo-supervised’ informa-
tion and utilize this information with kernel alignment to
formulate a new merging function learning problem, which
can be efficiently solved by our basic algorithm with a slight
modification. In addition, we explore to incorporate a vari-
ant of merging function called bipolar merging which al-
lows the subtraction operation in the merging process.

To show the significance of our methods, we introduce
three applications – dimensionality reduction of the bag-of-
features (BoF) based image representation, learning better
compact local binary pattern and dimensionality reduction
of high-dimensional local features. Through the compari-
son with other alternatives in each application, we demon-
strate that our methods can not only achieve good dimen-
sionality reduction performance with little computational
cost but also help to create more powerful representation
at both image level and local feature level.

2. Related Work

Dimensionality reduction is a classic topic in machine
learning and has many applications in computer vision. The
related literature is just too many to review. Related to effi-

cient dimensionality reduction, the existing methods [5, 1]
mainly focus on the time and space complexity of learn-
ing the reduction function rather than that of performing
the reduction. For example, the popular random projection
method [1] almost has zero cost in learning the projection
function but still has high storage and computational com-
plexity in performing the reduction. One recent work on
reducing the complexity in performing dimensionality re-
duction is Hashing [16]. It calculates the projection matrix
via hash function and results in a algorithm which has both
low time and space complexity in performing the reduction.

Feature merging can be categorized into supervised and
unsupervised approaches. Examples of supervised merging
algorithms include the methods in [19, 18, 6, 13]. The use
of feature merging as an efficient dimensionality reduction
is well demonstrated in [6], where the merging reduction
is employed to accelerate the integral histogram calculation
for object detection. Unsupervised merging algorithms have
been also developed in [11, 10]. The method in [10] directly
extends the supervised merging method in [6] by substitut-
ing the class-conditional probability with the probability of
a word occurring in each image. This substitution makes the
pairwise feature similarity calculation required in its hierar-
chical clustering framework grow linearly with the sample
size. The method in [11] also needs to calculate the same
feature similarity to construct the Laplacian matrix for their
spectral-clustering-alike method. As discussed in the intro-
duction section, this feature similarity evaluation together
with the inefficient clustering framework significantly af-
fect their scalability and limit their potential applications.

3. Our Methods

3.1. The Basic Method

Formulation: Our basic algorithm is inspired by PCA
– the most popular unsupervised dimensionality reduction
method. In a nutshell, we express the merging operation
as a linear projection operator with a special structure con-
straint and try to incorporate this structure constraint into
the PCA formulation.

Recall that PCA solves:

max
W

trace
(
WXX

T
W

T
)

s.t. WW
T = I (1)

whereX ∈ RD×N is the centralized data matrix consisting
ofDN -dimensional samples. W ∈ Rd×D is the projection
matrix, where d is the reduced dimensionality. We also de-
note the ith column and the (j, i) entry of X as xi and xj,i

respectively. Similar notations are applied to other matrices.
Let Y ∈ Rd×N represent the data obtained by apply-

ing the merging operator over X. In conventional feature
merging, yj,i =

∑
k∈Gj

xk,i, where Gj denotes a set of in-
dexes assigned to the jth group. This merging operation is
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also equivalent to multiplying X with a special structured
W: (1) each entry of W is either ‘0’ or ‘1’. (2) each col-
umn of W has at most one ‘1’ entry. This implies that
WW

T = Λ, where Λ is a diagonal matrix with its jth

diagonal component λj equal to the cardinality of the set
Gj (denoted as |Gj |). From (1), we can easily verify that
yj,i = w(j,:)xi =

∑
{k|wj,k=1} xk,i. So each row ofW, de-

noted byw(j,:), corresponds a group and the entries with ‘1’
indicate the features that should be merged into that group.
The property (2) effectively requires that each feature can
only be assigned to one group. However, if we replace the
constraint in Eqn. (1) with the aforementioned constraints,
it will result in a mixed-integer problem which is difficult to
solve. Fortunately, if we slightly modify the merging func-
tion, we could arrive at a formulation which is equivalent
to k-means clustering. Specifically, we propose to calcu-
late yj,i = 1√

|Gj |
∑

k∈Gj
xk,i instead of simply summing

the feature values in one group. Translating this merging
function into the structure constraint onW, we obtain:

W ∈ Ω = {W|wi,j ∈ {0, 1√
λi

} ∀i, WW
T = I} (2)

λi = ‖w(i,:)‖0 = |Gj |,
where ‖ · ‖0 denotes the zero norm (number of nonzero en-
tries). Incorporating this constraint into PCA, we obtain:

max
W∈Ω

trace
(
WXX

T
W

T
)
. (3)

For the purpose of finding a better solution for k-means,
the work in [23, 4] show that if we treat W as the cluster
membership indicator, the following problem is equivalent
to the k-means formulation with data matrixA.

max
W∈Ω

trace
(
WA

T
AW

T
)
. (4)

To apply their conclusion, we can defineA = X
T which in

effect treats each row of X, a vector indicating the feature
values in each sample, as a sample. Thus, there are D N -
dimensional samples to be clustered. Once the clustering is
accomplished, we can readily translate the cluster member-
ship to W according to the relationship discussed above.
Remark: (1) The clustering tends to group the features
whose values in each sample are similar. Thus, we can infer
that features within one group are positively correlated.
(2) Applying the proposed normalization factor 1√

|Gj |
on

the merging function is actually beneficial in the sense
of preserving the pairwise data distance which is desir-
able for dimensionality reduction. To see this let’s con-
sider a toy example, suppose each sample has n du-
plicate features {xk, k = 1, · · · , n}, then according to
(1) they will be merged together. Before the merging,
the expectation of the distance (ED) between two differ-
ent samples E

(‖xi − xj‖2
)
=

∑n

k=1 E
(
(xk

i − xk
j )

2
)
=

2nVar{xk}, where E and Var denote expectation and vari-
ance respectively. If we apply the traditional merging func-
tion, the above ED after merging becomes 2Var{nxk} =
2n2Var{xk}, that is, the ED is enlarged by the group size
n. However, if we apply our modified merging function,
the ED after merging will be 2Var{nxk√

n
} = 2nVar{xk}

which is identical to the one before merging. Thus, we
can see that for the traditional merging function the distance
between the merged data will be distorted by the different
group sizes but the proposed normalization factor can al-
leviate this issue. (3) Running a k-means algorithm on a
N ×D data matrix can still be difficult if bothN andD are
large. It is even impossible to load such a large data matrix
into memory in some cases.

Algorithm 1 Our basic merging algorithm

1: Set S← 0, where 0 is a ds ×D all ‘0’ matrix.
2: for i = 1 to N do
3: for seed index s = 1 toM do
4: k ← hs(i, ds), α← 2hs(i, 2)− 3.
5: s(k,:) ← s(k,:) + αxi

6: end for
7: end for
8: Run k-means on S to obtain the merging indexes.

Handle large N with hashing: To handle the issue in re-
mark (3), we propose to adopt hashing [16] to reduce the
dimensionality of XT . Hashing can be viewed as a special
form of random projection. Its advantage is that the pro-
jection matrix can be analytically worked out so we do not
need to allocate memory for storing the projection matrix.
In our case, we need a projection matrix H ∈ R

ds×N to
project XT from N × D to ds × D. Using hash function,
we can calculateH via:

hk,i =

{
2hs(i, 2)− 3, hs(i, ds) = k, ∀s ∈ {1 · · ·M}
0 otherwise,

(5)

where hs(i, ds) is a hash function which maps i to an integer
between 1 and ds. We use the hashing function provided
by the work in [16]. s is the seed of hashing function and
different seeds define different hashing functions. To ensure
good performance, multiple (M ) seeds are often used. In
our implementation, we use 30 seeds.

ApplyingH to reduce the dimensionality ofXT , we ob-
tained a matrix S = HX

T ∈ R
ds×D. We call it ‘signature

matrix’ and use it to approximateXT in the clustering step.
That is, we conduct the clustering directly on the signature
matrix. In general, larger ds produces better approximation
[1]. In our implementation, ds is set to 200-350 and we find
that this setting is sufficient to obtain good performance.
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Online algorithm to calculate signature matrix: In [16],
the authors propose an efficient way to calculate HX

T .
However, directly applying their method to compute S =
HX

T requires loading X into memory. This will be im-
practical for large sized X. To address this issue, we pro-
pose the following online algorithm which allows the data
to be processed in a sequential manner. Note that the kth

row of S can be calculated via:

s(k,:) = h(k,:)X
T =

N∑
i=1

hk,ixi (6)

where h(k,:) denotes the kth row of H. According to the
definition of H in Eqn. (5), there are at most M nonzero
values in {hk,i, k = 1 · · ·N}. Thus we can utilize the
following update rule to calculate S: once a xi is loaded
we update those rows of S that satisfy {k|hk,i �= 0} via
s(k,:) ← s(k,:)+hk,ixi. The detailed algorithm of our basic
merging method is shown in Algorithm 1.

3.2. Pseudo-supervised Kernel Alignment (PKA)

In the following, we make a further extension to the basic
algorithm by leveraging the neighborhood structure of data.
The key hypothesis employed here is the posteriori smooth-
ness assumption, that is, the posterior probability P (l|x)
varies smoothly over the data manifold. So the k nearest
neighbors of a sample tend to share the same class label
with it, where l is the class label. Before elaborating this al-
gorithm, we first introduce a kernel alignment formulation
which inspires this extension.

Assuming that the class label is available for each sam-
ple, we can design a merging criterion such that after merg-
ing the features, the linear kernel matrix of the reduced
data is maximally aligned with the ideal kernel LT

L, where
L ∈ RC×N (C is the number of classes) is the class label
indicator matrix. Each column is a binary vector with one
and only one ‘1’ entry, whose position indicates the class
label of the sample. To evaluate this alignment, we choose
unnormalized centralized kernel alignment [3] as the objec-
tive:

max
W∈Ω

〈XT
W

T
WX,LT

L〉
= max

W∈Ω
trace(WXL

T
LX

T
W

T ) (7)

where 〈A,B〉 = trace(AB
T ) is the inner product between

two kernel matrices. We assume that X is centralized.
Hence, the dimensionality-reduced data WX and its resul-
tant kernel matrix X

T
W

T
WX are centralized. As seen,

Eqn. (7) takes a very similar form as Eqn. (3). Thus we
can leverage its relationship with the k-means algorithm to
develop an efficient solution. Note that although in the liter-
ature normalized kernel alignment is more commonly used,
it cannot be related to the k-means alike algorithm. Thus

we choose the unnormalized centralized kernel alignment
which has also shown good performance in [3].

In the unsupervised case, the class label is unknown.
However we can still leverage the posterior smoothness
assumption to generate ‘pseudo-supervised information’.
More specifically, we assume that there are N classes for
N samples. For the ith sample, besides being assigned to
the ith class, it is also assigned to the classes of its k nearest
neighbors. Formally, we introduce a matrix L̂ ∈ RN×N and
set L̂i,j = 1 if j ∈ N (i, k) and otherwise 0, where N (i, k)
denotes a set of indexes which are the k + 1 nearest neigh-
bors of sample i (including sample i itself). Substituting L̂

into Eqn. (7), we obtain the following optimization problem
(we call it Pseudo-supervised Kernel Alignment (PKA)):

max
W∈Ω

trace
(
WXL̂

T
L̂X

T
W

T
)

(8)

Defining Z = XL̂
T , we can see that z(:,i) =

∑
j∈N (i,k) xj .

Thus, once the knn graph N is known, we can efficiently
calculate Z and solve Eqn. (8) by using our basic method.

For high-dimensional data, it may be computationally
expensive to calculate the knn graph. To handle this prob-
lem, we can firstly apply the basic method to obtain inter-
mediate lower-dimensional data and then construct the knn
graph from it. After that, we can run the PKA algorithm to
attain the final reduction function. Certainly, this additional
knn graph construction step will hurt the scalability of this
algorithm in the case of large sample size. However, it may
be a suitable choice for the medium-sized dataset since its
performance is usually better than the basic method.

3.3. Exploring Bipolar Merging Function

Traditional merging functions only allow the addition
operation. In this section, we show that subtraction oper-
ation can be also incorporated via our method. The motiva-
tion of this extension is to handle negatively correlated fea-
tures. For example, let’s assume that the pth feature is the
flipped version of the qth feature, that is, xi,p = −xi,q ∀i.
Obviously one of these two features is redundant. How-
ever, if we merge (add) them, their values will be can-
celed out. However, if we subtract them the result will be
xi,p − (−xi,q) = 2xi,p. In this way, their information will
be preserved by one dimension and we can obtain a more
compact representation. Note that this extension is equiv-
alent to allowing the entries of W to be negative. We call
this scheme of feature merging ‘Bipolar Merging’. Apply-
ing this idea to Eqn. (3), we obtain a problem:

max
W

trace
(
WXX

T
W

T
)

(9)

s.t. |W||WT | = I, wi,j ∈ {0, 1/
√

λi,−1/
√

λi}
λi = ‖w(i,:)‖0 ∀i

where, | · | computes the element-wise absolute value.
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At the first glance, this problem is difficult to solve.
However, the following Theorem suggests that it can be re-
duced to Eqn. (3) with only one additional constraint onW
(Please refer to the supplemental material for the proof).

Theorem 1 Let W
+ and W

− denote the positive and
negative part of W respectively, that is, W = W

+ −
W
−, W

+
ij ≥ 0, W

−
ij ≥ 0. Define X̃ =

(
X

−X
)

and

W̃ =

(
W

+
W
−

W
−

W
+

)
. Then the problem in Eqn. (9) is

equivalent to the following problem:

max
W̃∈Ω∩S

trace
(
W̃X̃X̃

T
W̃

T
)
, (10)

where Ω is the structure constraint imposed in Eqn. (3)
and S is the underlying symmetry structure constraint in-
troduced by the definition of W̃. We prove that (see sup-
plemental material) Eqn. (10) can be solved by treating

X̃
T =

(
X

T ,−XT
)
∈ RN×2D as a data matrix with 2D

N -dimensional samples. Reducing the dimensionality of xi

from D to d is equivalent to clustering the 2D samples into
2d clusters in the following way:

• Randomly initialize the cluster assignment of the first
d clusters.

• Initialize the cluster assignment of the (i+d)th (∀i ≤
d) cluster from the assignment in the ith cluster by fol-
lowing the rule: if the ith (∀i ≤ d) cluster contains the
data indexes p ≤ D, q > D, then the (i+ d)th cluster
must contain the data indexes p+D and q −D.

• Run standard k-means on X̃T . Translate the clustering
result into W̃ and the merging function.

Note that hashing can be applied here too, that is, we can
replace X̃

T with the signature matrix (S,−S). Also, this
bipolar merging scheme can be readily applied to PKA.

4. Application and Experiment

To show the significance of the proposed methods, we
introduce three applications and compare our methods with
other alternative algorithms for each application.

4.1. Application I: Dimensionality Reduction for
BoF Based Image Representation

Problem Introduction: Large-sized codebooks and the use
of Spatial Pyramid (SPM) often make the dimensionality
of BoF image representation very high. In this application,
we evaluate various reduction methods via the classification
accuracy after reduction, time of performing reduction on

whole dataset and the memory usage. For the reason men-
tioned in Introduction, we mainly focus on reducing high-
dimensional data to medium-dimensional ones.
Experimental Setting: Two datasets, Scene-15 and Pascal-
2007, are used. For Scene-15, we follow the setting in [12]
to extract 21000-D image representation (1000-word dic-
tionary with a 21-grid SPM). For Pascal-2007, we follow
the setting in [17] to extract 32000-D representation (4000-
word dictionary with a 8-grid SPM). To compare with the
unsupervised AIB algorithm in [10] which does not scale
well, we also evaluate on Scene-15 by avoiding applying
SPM. Linear SVM is used as the classifier.

Seven methods are compared, including PCA, Hashing
[16], AIB [10], the proposed basic merging algorithm (BSC
in short), PKA and their bipolar variants (BSCB, PKAB in
short). For PKA and PKAB, we firstly create the interme-
diate representation by using our BSC algorithm to reduce
the dimensionality (to 200 for Scene 15 and 4000 for Pas-
cal). Then we build the knn graph based on the intermediate
features and re-run the dimensionality reduction with PKA
and PKAB. We set the neighborhood size k = 10 for all the
experiments.
Result Analysis: The results are shown in Fig. 1. As
seen: (1) Merging-based reduction requires much less com-
putational time than Hashing and PCA. For merging and
Hashing, their computational time is independent of the re-
duced dimensionality while the time used by PCA linearly
increases with it. (2) Merging-based reduction incurs less
memory usage, e.g. it needs less than 100K in all settings.
In contrast, the memory cost of PCA can be as large as over
1GB! (3) In terms of classification performance, PCA tends
to perform slightly better when the reduced dimensionality
is low while our methods outperform PCA at higher dimen-
sions. This result is probably because when targeted dimen-
sion is high, PCA needs to estimate too many parameters
(d × D) and this could become unreliable. Merging, how-
ever, only needs to infer 1×D parameters. (4) Our methods
significantly outperform Hashing which is the most com-
petitive method in terms of computational efficiency. This
is because hashing cannot leverage any data-dependent in-
formation for dimensionality reduction as our methods do.
(5) As seen in the experiment on Scene-15, our PKA makes
further improvement over its basic counterpart BSC. Partic-
ularly, in Scene-15 with SPM, the PKA and PKAB achieve
the overall best performance. PKA shows similar perfor-
mance as BSC on Pascal-2007. This is probably because
Pascal-2007 is a challenging dataset and the neighborhood
of a sample obtained via low-dimensional intermediate fea-
tures is less likely to share the same class label. As a result,
the posteriori smoothness assumption taken in PKA cannot
be well satisfied. However, we do not observe any adverse
impact by applying PKA on this dataset. 1

1Actually, we observe that the performance of PKA is comparable to
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Figure 1: Reduction performance comparison on Scene-15 and Pascal-2007. Top row: comparison on Scene-15 without
employing SPM. Middle row: comparison on Scene-15 with SPM. Bottom row: comparison on Pascal-2007.

4.2. Application II: Learning Better Compact Local
Binary Pattern

Problem Introduction: Local Binary Pattern [14] is a very
efficient image representation for texture classification and
scene classification [20]. It compares the binary relation-
ship (larger or smaller) of a center pixel intensity with its 8-
neighborhood to produce a binary code for the center pixel.
Then an image representation can be obtained by calculat-
ing the histogram of all possible binary patterns.

One improvement over LBP is to consider a larger neigh-
borhood, e.g. the neighborhood shown on the right of Fig. 2
(we call it LBP-D5). However, a larger neighborhood will
exponentially increase the number of possible binary pat-
terns and result in very high-dimensional histograms (the
number of possible patterns for LBP-D5 is 216 = 65536).
To handle this issue, in [7] the authors use a vector quan-
tization (VQ) based method to cluster different binary pat-

BSC even if we randomly select the k nearest neighbors for each sample.

terns. After the clustering, the binary patterns in the same
clusters are viewed as being equivalent and the total num-
ber of possible patterns is then reduced. This is essentially
a merging-based reduction. However, the clustering used in
their method is purely appearance-based and it largely ig-
nores the semantic correlation between the patterns having
different appearances in a given task.

By implementing their VQ method, we find that its per-
formance is good for texture classification but less satis-
fying for scene classification. This is probably because in
scene images many visually dissimilar patterns are seman-
tically correlated. For example, the patterns in ‘sky’ and
‘cloud’ are not visually similar but they are frequently co-
occurred. This motivates us to apply our merging methods
to this problem since they can exploit the co-occurrence in-
formation between features.

Experimental Setting: We compare the performance of
our methods with VQ, PCA and Hashing in reducing the
dimensionality of LBP-D5 histogram. The performance
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Figure 2: The neighborhood
structure of LBP and LBP-
D5.

of LBP is also included as the baseline. In particular, to
test their generalization performance we learn the reduc-
tion function (PCA projection and merging indexes) on a
separate dataset and evaluate the classification performance
on Scene-15. For the separate dataset, we use Holiday
dataset [8] – a popular image retrieval dataset which con-
tains around 1600 trip photos.
Result Analysis: The result is shown in Table 1. As seen,
the reduced LBP-D5 histogram obtained via our methods
achieves much better performance than the LBP baseline
and its advantage is more pronounced with the increase
of the targeted dimensions. VQ-based reduction, however,
does not bring much improvement over LBP. In fact, its per-
formance is even worse than LBP when d = 256. As ex-
pected, the performance of hashing is not good enough due
to its data-independent nature. Interestingly, PCA does not
perform well for this task either. This is probably due to the
same reason discussed in section 4.1 (too many parameters
to be estimated). For the two proposed methods, the use of
PKA (PKAB) again shows its advantage over BSC (BSCB),
especially when the reduced dimension is low.

4.3. Application III: Dimensionality Reduction for
High-dimensional Local Feature

Problem Introduction: High-dimensional image represen-
tation e.g. a pooled coding vector + SPM or a histogram of
LBP-D5, often has better descriptive power than the low-
dimensional ones, e.g. SIFT and LBP. Thus better classifi-
cation performance is expected if we apply them to describe
a local patch/region. However, directly applying them will
generate very high-dimensional local features (HDLF in
short) which will cause many problems in implementing the
BoF model. For example, it will be difficult to load a large
number of HDLF into memory to learn a dictionary (20K
LBP-D5 feature will need 9.7G RAM). Thus, dimensional-
ity reduction on HDLF is necessary. Moreover, since each
image generates a large number of HDLF, the efficiency of
performing dimensionality reduction becomes very impor-
tant. Thus, the proposed merging methods will have sig-
nificant advantages. However, what is performance of the
dimensionality-reduced HDLF? How to choose the dimen-
sionality reduction methods for this task? In the following
parts, we answer these questions by conducting two experi-
ments with two types of HDLF.
Experimental Setting: In the first experiment, we create
the HDLF by using the pooled coding vector plus SPM (we

Table 2: Classification performance of the color-SIFT base-
lines and the methods using HDLF-I with different dimen-
sionality reduction approaches on Caltech-USD Birds-200-
2011 dataset. Evaluated by mean average precision (mAP).

Methods Base-I Base-II Hashing BSC BSCB
mAP 46.5 42.8 44.6 52.6 52.6

Table 3: Classification performance of the LBP baselines
and the methods using HDLF-II with different dimension-
ality reduction approaches on Scene-15 dataset.

Methods LBP VQ Hashing BSC BSCB
Accuracy 82.2 82.5 80.5 83.63 83.50

call it HDLF-I for short) and evaluate its performance on
the 14-class subset of Caltech-USD birds-200-2011 dataset
[22]. We make such a choice because we find that HDLF-I
achieves better performance for fine-grained image classifi-
cation. To extract HDLF-I, We firstly follow [22] to extract
color-SIFT feature and encode them by LSC coding [12]
with a 1000-word dictionary. Then we crop a 40× 40 sub-
region around each densely sampled point as a local patch
and describe it by pooling the coding vectors within. A sim-
ple 1 + 2 × 2 SPM is also applied to encode the local ge-
ometry which gives us a 5000-D HDLF. We then reduce its
dimensionality to 512 and encode it with sparse coding [21]
since we find that it significantly outperforms other coding
methods in encoding HDLF-I. As for the lower-dimensional
local feature baselines, we use the color-SIFT and encode it
by LSC (Base-I) and sparse coding (Base-II).

For the second experiment, we extract the LBP-D5 his-
togram on 16 × 16 pixel-sized local patches and this pro-
duces 65536-dimensional HDLF (we call it HDLF-II for
short). Again, its dimensionality will be reduced to 512 for
later processing. We apply the recently developed VLAD
[9] coding to create the image representation. We use linear
SVM and conduct the evaluation on Scene-15. We apply
the same coding and classifier on LBP as our baseline.

These two problems involve both high feature dimen-
sions and large sample size (the total number of local fea-
tures in the training set is over one million.) Thus PCA
and PKA are not suitable for this task and we only compare
Hashing, BSC and VQ (only in HDLF-II) here.
Result Analysis: The result for the first experiment is
shown in Table 2. As seen, the use of HDLF-I significantly
outperforms the baseline algorithms (color-SIFT with LSC
and sparse coding). It achieves around 6 percent improve-
ment over the best baseline (color-SIFT with LSC). We em-
phasize that this achievement relies on the right choice of
dimensionality reduction method. For example, if we sim-
ply apply Hashing instead of our methods, the performance
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Table 1: Reduction performance of PCA, VQ, Hashing and proposed methods on Scene-15 dataset with LBP-D5 Feature.

Dimension LBP PCA VQ Hashing BSC PKA BSCB PKAB
256 76.1 72.7 72.6 63.0 77.4 78.1 76.8 78.0
512 - 72.9 75.5 68.9 77.9 78.5 78.6 79.1
1024 - 73.3 76.8 72.9 79.4 79.5 79.6 79.7

of the reduced HDLF is even inferior to the best baseline.
The result for the second experiment is shown in Table

3. As seen, the reduced LBP-D5 feature can outperform
LBP if BSC/BSCB is applied. In contrast, the other three
dimensionality reduction methods (PCA, VQ and Hashing)
fail to maintain the good descriptive power of LBP-D5 after
the reduction.

In sum, we conclude that applying the proposed meth-
ods on HDLF can produce better local feature than the tra-
ditional lower-dimensional local feature.

4.4. Discussion

The bipolar merging is designed to further group the neg-
atively correlated features together and thus ‘save more di-
mensions’ for the informative features. However, in the
above experiments, we do not observe significant improve-
ment over the BSC and PKA by using their bipolar vari-
ants. This is probably due to two reasons: (1) Our data do
not have many negatively correlated features. (2) We do not
reduce the feature to very low dimensions and thus the ad-
vantage of ‘saving more dimensions’ is not pronounced. To
verify our explanation, we create a synthesized data set by
concatenating the original feature xi with their flipped ver-
sion −xi on Scene-15 (with SPM). Thus, the dimension-
ality of each sample becomes 42000. We then reduce the
feature dimension to 50 by using BSC and BSCB. Exam-
ining their classification performance, we do observe clear
advantage of BSCB – BSCB achieves the accuracy 72.49%
while BSC only attains 70.8%. This result and the compara-
ble performance of BSC and BSCB in the previous experi-
ments also suggest that utilizing bipolar merging function is
a safe choice: it will not decrease the performance and may
obtain additional improvement in certain circumstances.

5. Conclusion

In this paper, we propose a scalable unsupervised merg-
ing algorithm and one extension to achieve the efficient
dimensionality reduction. Through three applications, we
demonstrate their superior performance in creating more
powerful image representation.
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