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Abstract

We propose an on-line algorithm to extract a human by

foreground/background segmentation and estimate pose of

the human from the videos captured by moving cameras.

We claim that a virtuous cycle can be created by appropri-

ate interactions between the two modules to solve individ-

ual problems. This joint estimation problem is divided into

two subproblems, foreground/background segmentation and

pose tracking, which alternate iteratively for optimization;

segmentation step generates foreground mask for human

pose tracking, and human pose tracking step provides fore-

ground response map for segmentation. The final solution is

obtained when the iterative procedure converges. We eval-

uate our algorithm quantitatively and qualitatively in real

videos involving various challenges, and present its out-

standing performance compared to the state-of-the-art tech-

niques for segmentation and pose estimation.

1. Introduction

Foreground/background segmentation and human pose

estimation have been studied intensively in recent years and

significant performance improvement has been achieved so

far. However, these problems are still known to be very

challenging, especially in unconstrained videos, due to vari-

ous issues in observation and inference. Existing algorithms

typically assume stationary camera environment, or suffer

from low accuracy with high computational cost.

Although foreground/background segmentation and hu-

man pose estimation are potentially related and comple-

mentary, the majority of algorithms attempt to solve the two

problems separately and the investigation of a joint estima-

tion technique is not active yet. We introduce an algorithm

to address foreground/background segmentation and human

pose tracking simultaneously in a video captured by a mov-

ing camera. The former determines shape and position of
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(a) (b)

Figure 1: Sample results of the proposed algorithm. Our

joint estimation algorithm is accurate and robust to back-

ground noise and significant camera motion. (a) Fore-

ground/background segmentation. (b) Pose estimation.

human body area in each frame, and the latter estimates

temporally coherent human body configurations. Sample

results of our algorithm are illustrated in Figure 1.

Foreground/background segmentation problem in mov-

ing camera environment has been studied actively these

days. Sheikh et al. [21] proposes an algorithm to construct

foreground and background appearance models for pixel-

wise labeling based on a sparse set of motion trajectories.

Similarly, a matrix factorization is employed in [6] to de-

compose a dense set of trajectories into foreground or back-

ground via low rank and group sparsity constraints. In this

work, motion segmentation is also integrated to provide pix-

els with the binary labels. In [9], a sparse set of trajectories

are clustered in a low dimensional space and labeled as fore-

ground or background. These labeled trajectories are used

to compute pixel-wise motion and appearance models for

both foreground and background. In [14, 15], each frame

is divided into regular grid blocks, and each block mo-

tion is estimated to propagate foreground and background

models in a recursive manner. On the other hand, [17, 16]

study techniques to extract human body areas from videos

through the combination of various algorithms.
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Several interesting approaches for pose estimation and

tracking have been proposed. Pictorial structure [10] is a

widely adopted model for human pose estimation, which

computes the Maximum A Posteriori (MAP) estimate of

body configuration efficiently by dynamic programming.

A variation of the pictorial structure model is introduced

in [19], where part-specific appearance models are learned

and the pose of an articulated body is estimated by mes-

sage passing in a Conditional Random Field (CRF). This

approach is extended to video in [11], which improves per-

formance by reducing search space progressively and by

integrating spatio-temporal parsing. Andriluka et al. [1]

present a discriminatively trained appearance model and a

flexible kinematic tree prior on the configurations of body

parts. Yang and Ramanan [23] propose a mixture-of-parts

model, where a mixture of non-articulated small patches

approximates various transformations of each body part

effectively. Most of these approaches assume that fore-

ground/background segmentation is given, or do not utilize

the segmentation labels at all.

There are several prior studies related to the joint for-

mulation of foreground/background segmentation and pose

estimation. ObjCut [13] tackles a joint problem of segmen-

tation and pose estimation in an image, where shape model

is obtained from pose and segmentation is estimated given

the shape model, and a similar approach is proposed by [5].

Kohli et al. [12] introduce PoseCut for simultaneous 3D

pose tracking and segmentation. However, its results may

be sensitive to initial pose estimation and background clut-

ter due to weak foreground/background appearance mod-

els. Brox et al. [4] couple pose estimation and contour ex-

traction problems in a multi-camera environment. In [22],

the multi-level inference framework for pose estimation and

segmentation from a single image is proposed. Recently, a

technique for segmentation and pose estimation of human

is presented in [8], where foreground area is first separated

by grab-cut [20] given a bounding box, and human pose is

estimated based on the foreground region. Note that most

of approaches are developed for a single image or limited to

naı̈ve extension to video data.

We propose a unified probabilistic framework for fore-

ground/background segmentation and pose tracking in

videos captured by moving cameras. Our algorithm is an it-

erative approach that combines foreground/background seg-

mentation and pose tracking. In each iteration of our al-

gorithm, segmentation module propagates foreground and

background models, and provides pose tracking module

with foreground mask using the estimated labels. In pose

tracking module, the configuration of each body part is es-

timated by multiple part detectors with label constraint, and

gives shape prior represented by probabilistic foreground

response map back to segmentation module. The refined

segmentation result and the estimated pose configuration

are utilized to update foreground/background motion and

shape prior in the next iteration, respectively. Such iterative

procedure is repeated until convergence in each frame.

Our joint human segmentation and pose tracking algo-

rithm has the following contributions and characteristics:

• We formulate a probabilistic framework of a joint

and iterative optimization procedure for foreground-

background segmentation and pose tracking.

• We propose an online algorithm based on a recursive

foreground/background appearance modeling and se-

quential Bayesian filtering for pose tracking.

• Our algorithm is applied to natural videos and im-

proves both segmentation and pose tracking perfor-

mance significantly.

The rest of paper is organized as follows. We first de-

scribe the objective and main formulation of our algorithm

in Section 2. Foreground/background segmentation in a

moving camera environment is discussed in Section 3, and

our pose estimation technique is presented in Section 4.

Section 5 describes model update strategy in each frame.

Section 6 illustrates experimental results and evaluates the

performance of the proposed algorithm.

2. Objective and Main Formulation

Our goal is to perform foreground/background segmen-

tation and human pose tracking jointly and sequentially in

a video captured by a moving camera. For the purpose, we

estimate the MAP solution over pose parameters and seg-

mentation labels at each frame given observation history,

which is formally given by

(X∗t ,L
∗
t ) = arg max

Xt,Lt

p(Xt,Lt|I1:t), (1)

where Xt and Lt denote human body configuration and

pixel-wise segmentation labels at time t, respectively, and

I1:t represents all image evidence. The human body con-

figuration denoted by Xt � {x1,t, . . . ,xm,t} is composed

of a set of pose parameters for individual body parts, where

m is the number of parts1. The pose of each body part, xi,t,

is represented by location, orientation and scale informa-

tion. The segmentation of an image with n pixels is given

by Lt � {�1,t, . . . , �n,t}, where the label in the k-th pixel

�k,t is either 0 (background) or 1 (foreground).

The optimization problem in Eq. (1) involves a very high

dimensional search space, and Xt and Lt have significant

mutual dependency. Therefore, we divide the original prob-

lem into two subproblems—foreground/background seg-

1The number of parts is 10 in this work: head, torso, left/right upper

arms, left/right lower arms, left/right upper legs, and left/right lower legs.
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Figure 2: Overview of our algorithm, which is composed

of two modules: foreground/background segmentation and

pose tracking. Segmentation is refined with shape infor-

mation given by pose tracking while pose tracking utilizes

segmentation mask. These two tasks are optimized jointly

in a single framework.

mentation and pose tracking—and solve the following en-

ergy minimization problem:

min
Lt,Xt,Yt

Eseg(Lt,Yt, It) + Epose(Xt,Lt, It), (2)

where Eseg(Lt,Yt, It) and Epose(Xt,Lt, It) denote energy

functions for segmentation and pose tracking, respectively.

Yt denotes a foreground response map for human body area

generated from the pose variable Xt. The energy terms in

Eq. (2) are defined probabilistically as follows:

Eseg(Lt,Yt, It) = − log (p(Lt|Yt, It)) , (3)

Epose(Xt,Lt, It) = − log (p(Xt|Lt, I1:t)) . (4)

For the optimization of the problem in Eq. (2), we employ

an EM-style iterative method; we first fix Epose and mini-

mize Eseg, and then minimize Epose with Eseg fixed. This

iterative procedure is repeated until convergence. The out-

line of overall system is illustrated in Figure 2.

3. Foreground/Background Segmentation

We first need to identify foreground/background label

for each pixel by minimizing Eseg(Lt,Yt, It), equivalently

maximizing the segmentation posterior p(Lt|Yt, It), which

is given by

p(Lt|Yt, It) ∝ p(It|Lt,Yt)p(Lt|Yt), (5)

where p(It|Lt,Yt) = p(It|Lt) is an observation likelihood

given segmentation label, and p(Lt|Yt) is a prior of seg-

mentation given pose. To the end, we employ a slightly

modified version of [15]; spatial model composition step

is removed but pose tracking feedback is taken into ac-

count for the joint formulation. Foreground and background

models in the previous frame are propagated to the current

frame using motion information through an iterative proce-

dure. The segmentation labels, L∗t , are obtained efficiently

by graph-cut algorithm [2, 3] based on p(Lt|Yt, It), which

depends on the two terms—observation likelihood and seg-

mentation prior given pose. We mainly discuss how these

two components in Eq. (5) are estimated in the rest of this

section, and recommend to refer to [15] for more details

about foreground/background modeling and segmentation.

3.1. Estimation of Observation Likelihood

We obtain the observation likelihood p(It|Lt) from the

probabilistic models of foreground and background appear-

ances. We divide a frame into N regular grid blocks2

and construct foreground and background models in each

block by kernel density estimation. Suppose that fore-

ground model ϕ
k
f,t−1 and background model ϕ

k
b,t−1 for

the k-th block Bk
t−1 at time t − 1 are already given, where

{y1
ξ,t−1, . . . ,y

nξ

ξ,t−1}, ξ ∈ {b, f}, are sample data compris-

ing the models. The foreground and background likelihoods

of an observed pixel zt−1 are respectively given by

p(zt−1|ϕ
k
f,t−1) =

αU(zt−1) +
1− α

nf

nf∑
i=1

KH(zt−1 − yi
f,t−1), (6)

p(zt−1|ϕ
k
b,t−1) =

1

nb

nb∑
i=1

KH(zt−1 − yi
b,t−1), (7)

where U(·) is a uniform distribution, α ∈ [0, 1] is a mixture

weight for the uniform distribution, and KH(·) denotes a

kernel function with bandwidth H.

To construct foreground and background models at time

t based on the earlier ones, we compute foreground and

background motion vectors in each block, and propagate

models from the previous frame using the block motions. A

block motion at time t, Vk
ξ,t, is given by

Vk
ξ,t =

1

|χk
ξ,t|

∑
vi
t∈χ

k
ξ,t

vi
t, (8)

where vi
t denotes the backward motion of the i-th pixel and

χk
ξ,t is a set of backward motions of the pixels labeled as ξ

in Bk
t . If the motion observation in a block is insufficient

due to occlusion, background block motion is estimated by

the average motion of adjacent blocks and foreground block

motion is set to zero. Note that χk
ξ,t depends on the segmen-

tation labels and is updated in each iteration due to potential

label changes of the pixels within the block.

Through the iterative model propagation with respect to

backward block motion Vk
ξ,t, the likelihood of an observed

2The size of each block is 24× 24 in our experiment.
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pixel zt in Bk
t is determined by the new model, which is

given by a mixture of block models at time t− 1, as

p(zt|ϕ̃
k
ξ,t) =

∑
B

j
t−1
∈Ak

ξ,t−1

ω
j
ξp(zt|ϕ

j
ξ,t−1), (9)

where Ak
ξ,t−1 is a set of blocks at time t − 1 overlapped

with transformed block, T (Bk
t ;V

k
ξ,t), and ω

j
ξ is the nor-

malized mixture weight. Note that the mixture weight

ω
j
ξ is determined by the relative overlapping ratio between

T (Bk
t ;V

k
ξ,t) and B

j
t−1.

Once foreground and background models are con-

structed at time t, we can compute p(It|Lt). Assuming that

the pixels z1,t, . . . , zn,t in It are conditionally independent

given Lt, the observation likelihood is finally computed by

p(It|Lt) =
N∏

k=1

nk∏
j=1

p(zj,t|ϕ̃
k
b,t)

(1−�j,t)p(zj,t|ϕ̃
k
f,t)

�j,t , (10)

where nk is the number of pixels in the k-th block.

3.2. Prior of Segmentation Given Pose

For the alternating procedure between segmentation and

pose tracking, feedback from pose tracking needs to be in-

corporated for label estimation. In this work, pixel-wise

foreground response map Yt plays this role, and the prior

of segmentation given human pose introduced in Eq. (5) is

given by

p(Lt|Yt) ∝
n∏

i=1

n∏
j=1

p(�i,t|�j,t)

︸ ︷︷ ︸
spatial smoothness

n∏
i=1

p(�i,t|Yt)

︸ ︷︷ ︸
pose consistency

, (11)

where spatial smoothness term defines the relationship be-

tween adjacent pixels and pose consistency term corre-

sponds to the coherency between the labels from segmen-

tation and pose tracking.

The spatial smoothness term penalizes inconsistent la-

bels of neighboring pixels3 in the MRF framework as

n∏
i=1

n∏
j=1

p(�i,t|�j,t) ∝

exp

⎛
⎝ n∑

i=1

n∑
j=1

(�i,t�j,t + (1− �i,t)(1− �j,t))

⎞
⎠ , (12)

where �i,t denotes the label of the i-th pixel adjacent to the

j-th pixel.

On the other hand, pixel-wise foreground response map,

Yt, is estimated based on the response maps of individual

3We used the standard four neighborhood system.

Head Torso 

Legs 

Arms 

(a) (b) (c) (d)

Figure 3: Foreground response map. (a) Input image. (b)

Detector response of each body part (head, torso, upper and

lower legs, upper and lower arms). (c) Marginalized part

response in 2D image space. (d) Foreground response map

is generated by the sum of the marginalized response and

the segmentation mask in the previous iteration.

body parts obtained from pose tracking as well as the seg-

mentation mask inferred in the previous iteration. To con-

struct the foreground response map, we marginalize the re-

sponses of all body parts in a 2D image space, and then

normalize the marginalized responses with the maximum

value. Also, the label likelihood given the foreground re-

sponse, p(�i,t|Yt) in Eq. (11), is computed by distance

transform [12] as

p(�i,t = 1|Yt) =
1

1 + exp(ν · d(i,Yt))
, (13)

p(�i,t = 0|Yt) = 1− p(�i,t = 1|Yt), (14)

where d(i,Yt) is the distance from the i-th pixel to the clos-

est pixel that have non-zero value in Yt, and ν controls the

penalty of foreground misdetection. Figure 3 visualizes the

construction of the foreground response map.

4. Pose Tracking

Pose tracking sequentially estimates p(Xt|Lt, I1:t), pos-

terior distribution over the current human body configura-

tion Xt at time t given segmentation result Lt and all image

evidences I1:t. The posterior probability is factorized by

Bayesian filtering as

p(Xt|Lt, I1:t) ∝ p(Lt, It|Xt)p(Xt|I1:t−1), (15)

where p(Lt, It|Xt) is the likelihood of image evidence

and segmentation given a particular body part configura-

tions, and p(Xt|I1:t−1) is the prior of Xt. The configu-

rations of body parts are estimated by tracking-by-detection

paradigm, in which the responses of part detectors serve as

observation for tracking.

We restrict search space for each body part to the in-

tersection of foreground area and predicted region corre-

sponding to each part area. The restricted search region

significantly reduces ambiguities and false positive detec-

tions caused by the features similar to human body part in

background clutter. Also, it obviously alleviates computa-

tional burden to obtain body part responses. The inference

836836



(a) (b) (c) (d)

Figure 4: The specific and general part models. (a) Result

of pose estimation at frame 125 in Skating sequence. (b)

Specific shape model for Skating sequence at t = 125. (c)

General shape model (d) General region model.

for finding the optimal body part configuration at time t is

performed by sum-product belief propagation [18].

4.1. Likelihood by Multiple Part Detectors

The likelihood term, p(Lt, It|Xt), is a crucial compo-

nent in our formulation. It is approximated with a product

of likelihoods of individual body parts, which is given by

p(Lt, It|Xt) ∝
m∏
i=1

p(Lt|xi,t)p(It|xi,t,Lt), (16)

where p(Lt|xi,t) and p(It|xi,t,Lt) denote region and shape

likelihood of each part, respectively. These likelihoods are

computed by the responses of three different kinds of filters,

which model general shape and region, and specific shape.

The general shape and region models, which are built

based on training dataset [19], represent common character-

istics in shape and region of each part, respectively. These

general models detect parts with unknown appearance in an

image, but are too generic to handle scene-specific varia-

tions. To overcome the limitation, we incorporate an addi-

tional part model, which represents scene-specific shape of

a part adaptively. The examples of the three part models are

illustrated in Figure 4. Note that the specific shape model is

updated online while the general models are fixed.

The shape likelihood of the part xi,t is computed by

the convolution of shape model filters and local foreground

edge map with respect to xi,t, which is given by

p(It|xi,t,Lt) ∝ exp (−ηi (f(It;xi,t,Lt) ∗ ρ
g
i )

−(1− ηi)
(
f(It;xi,t,Lt) ∗ ρ

s
i,t

))
,

(17)

where ρsi,t denotes the specific shape model at time t, ρ
g
i

denotes general shape model, and ∗ indicates convolution

operator. The relative weights of the two models are deter-

mined by ηi. To minimize the effect of the features simi-

lar to human body parts within background region, a local

foreground edge map f(·) is obtained by the intersection of

segmentation mask and edge map in the local region, which

is defined by

f(It;xi,t,Lt) = E(Iit) ∩ L
i
t, (18)

where Iit and Li
t denote image and foreground mask for

the area defined by xi,t and E(Iit) denotes an edge map

extracted within Iit .

On the other hand, the region likelihood of the part xi,t

is given by

p(Lt|xi,t) ∝ exp
(
−c · (Li

t ∗ ρ
region
i )

)
, (19)

where c is a constant and ρ
region
i is the general region model

of the i-th part. As mentioned earlier, the detector responses

for each body part, which correspond to Eq. (17) and (19),

are used to construct foreground response map Yt.

4.2. Pose Prediction

The prediction p(Xt|I1:t−1) is composed of a spatial

prior on the relative position between parts and a temporal

prior of an individual body part as

p(Xt|I1:t−1) ∝
∏

(i,j)∈E

p(xi,t|xj,t)×

∫
Xt−1

m∏
i=1

p(xi,t|xi,t−1)p(Xt−1|I1:t−1) dXt−1,

(20)

where p(xi,t|xj,t) corresponds to the spatial prior based

on the kinematic constraints between two adjacent parts

(e.g. upper arms must be connected to torso), p(xi,t|xi,t−1)
denotes the temporal prior for an individual part, and

p(Xt−1|I1:t−1) is the posterior of the pose parameters at

the previous time step t− 1.

The spatial prior on body part configurations is based on

a tree structure and represents the kinematic dependencies

between body parts. To deal with various changes of pose

and appearance in image, we adopt the spatial prior model

by discrete binning [19], which is given by

∏
(i,j)∈E

p(xi,t|xj,t) ∝ exp

⎛
⎝ ∑

(i,j)∈E

β�i bin(xi,t − xj,t)

⎞
⎠ ,

(21)

where E is a set of edges representing kinematic relation-

ship between parts, bin(·) is a vectorized form of spatial

and angular histogram bins, and βi is a model parameter

that favors certain spatial and angular bins for the i-th part

with respect to the j-th part.

The temporal prior p(xi,t|xi,t−1) of each body part pre-

dicts the distribution of current configuration xi,t given the

previous configuration xi,t−1, which is modeled as

p(xi,t|xi,t−1) = N (xi,t|xi,t−1,Σi) , (22)

where N (·|μ,Σ) denotes a 4D Gaussian distribution with

mean μ and diagonal covariance matrix Σ.
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Algorithm 1: Joint segmentation and pose tracking

Input: It, ϕ
k
ξ,t−1

, Xt−1, ρsi,t−1

Output: Lt, ϕ
k
ξ,t, Xt, ρ

s

i,t

iterate

1 FG/BG Segmentation:

2 FG/BG model propagation (Eq. (9))

3 Labeling by graph-cut to maximize Eq. (5) based on

4 – FG/BG likelihood (Eq. (10))

5 – Prior of segmentation given pose (Eq. (11))

6 Pose Tracking:

7 Estimation of pose posterior (Eq. (15)) based on

8 – Pose likelihood (Eq. (16)): combination of shape

(Eq. (17)) and region (Eq. (19)) likelihoods

9 – Pose prediction (Eq. (20))

until converge;

11 Model Update:

12 FG/BG model update (Eq. (23))

13 Specific shape model update (Eq. (24))

5. Model Updates

After the iterative procedure at each frame, we obtain

foreground/background labels and human body configura-

tion. To propagate the labels and pose parameters accu-

rately, foreground/background models and specific shape

model should be updated in each frame based on the con-

verged segmentation labels. The foreground and back-

ground models are recursively updated using the propagated

models from the previous time step t − 1 and the observa-

tions in the current time step t, which are given by

p(zt|ϕ̂
k
ξ,t) =

τseg · p(zt|ϕ̃
k
ξ,t) +

1− τseg

nξ

nξ∑
i=1

KH(zt − yi
ξ,t), (23)

where τseg is a forgetting factor.

The specific shape model of each body part is also up-

dated incrementally based on the local foreground edge map

at the current time step t, which is given by

ρ̂si,t = τpose · ρ̂
s
i,t−1 + (1− τpose) · f(It;xi,t,Lt), (24)

where τpose is a forgetting factor for specific shape model.

The pseudo code of overall joint segmentation and pose

tracking algorithm is described in Algorithm 1.

6. Experiments

We evaluated the performance of our algorithm quali-

tatively and quantitatively in real videos downloaded from

public websites. Our results are compared with existing

methods for foreground/background segmentation and pose

estimation such as [15, 8, 19]. Since the proposed tech-

nique combines segmentation and pose estimation, the two

subproblems are evaluated separately.

6.1. Datasets and Evaluation Methods

We employ five challenging videos captured by a moving

camera for experiment. All the sequences involve various

pose changes and substantial camera motions. Additionally,

Skating and Dunk sequences contain scale and illumination

changes, Pitching and Javelin sequences suffer from self-

occlusions, and Jumping sequence involves scale changes

as well as self-occlusion.

To evaluate the performance of foreground/background

segmentation, we compute precision, recall, and F-measure

based on ground-truth annotation. On the other hand, pose

estimation is evaluated by the Percentage of Correctly esti-

mated body Parts (PCP) [7]. By this measure, an estimated

body part is considered correct if its segment endpoints lie

within the fraction of the length of the ground-truth seg-

ment; a larger value means a more accurate result. We com-

pute PCP values for individual body parts, and the perfor-

mance of entire human body is estimated based on the av-

erage of the PCP measures of all body parts. Note that we

annotated foreground/background masks and human body

poses manually in every 5 frame.

6.2. Results

We present our foreground/background segmentation

and human pose tracking results in Figure 5. The experi-

mental results illustrate that our algorithm produces accu-

rate and robust outputs in the presence of background clut-

ter, significant pose variations, fast camera motions, occlu-

sions, scale changes, and so on. Note that our algorithm

successfully handles dynamic human body configurations

involving foreshortening, full stretching, and self occlusion.

To demonstrate the effectiveness of our joint estimation

algorithm, we first compare our foreground/background

segmentation algorithm with other methods such as pro-

gressive pruning [8], motion segmentation, and our algo-

rithm with segmentation only. Then, our pose tracking al-

gorithm is also compared with progressive pruning [8], it-

erative learning algorithm with our foreground/background

segmentation [19], and our algorithm with pose tracking

only. As illustrated in Figure 6, our joint estimation algo-

rithm performs better than all other methods significantly

and is robust to the background features similar to human

body parts.

The quantitative performance of foreground/background

segmentation algorithm are summarized in Figure 7, where

our algorithm is compared with a simple motion segmenta-

tion, our algorithm with segmentation only and an existing

techniques [8]. Our algorithm outperforms all other algo-

rithms substantially in all three tested measures.

The quantitative performance of human pose estimation

is evaluated based on the PCP-curves, which are presented

in Figure 8. The PCP-curves are obtained by varying the

fraction (PCP-threshold) from 0 to 1, where the threshold
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Figure 5: Results of all video sequences. (Row1) Fore-

ground/background segmentation. (Row2) Pose estimation.

(Row3) Augmented likelihood maps for pose estimation.

denotes error allowance for correctness. Our algorithm per-

forms better than all other algorithms throughout the range

of all threshold values.

0046 0046 0046 0046

0029 0029 0029 0029

0015 0015 0015 0015

0038 0038 0038 0038

0101 0101 0101 0101

(a) Foreground/background segmentation algorithm comparison

0046 0046 0046 0046

0029 0029 0029 0029

0015 0015 0015 0015

0038 0038 0038 0038

0101 0101 0101 0101

(b) Pose estimation algorithm comparison

Figure 6: Qualitative comparisons of all five video se-

quences. (a) (Col1) Our full algorithm. (Col2) Our fore-

ground/background segmentation only. (Col3) Eichner et

al. [8]. (Col4) Motion segmentation. (b) (Col1) Our

full algorithm. (Col2) Our pose tracking only. (Col3)

Eichner et al. [8]. (Col4) Ramanan [19] with our fore-

ground/background segmentation.

7. Conclusion

We presented a unified probabilistic framework to per-

form foreground/background segmentation and human pose

tracking jointly in an on-line manner. The proposed al-

gorithm presents outstanding segmentation and pose es-

timation performance by mutual interactions between the

two complementary subsystems; they alternate each other

and improve the quality of solution in each iteration. We

showed the robustness of our foreground/background seg-

mentation and pose tracking algorithms to background clut-

ter, pose changes, object scale changes, and illumination

variations through qualitative and quantitative validation in

real videos.
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Figure 7: Quantitative performance evaluation results of foreground/background segmentation.
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Figure 8: Quantitative performance evaluation results of

pose estimation evaluation by PCP curves.
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