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Abstract

This paper addresses real-world challenges in the mo-
tion segmentation problem, including perspective effects,
missing data, and unknown number of motions. It first for-
mulates the 3-D motion segmentation from two perspective
views as a subspace clustering problem, utilizing the epipo-
lar constraint of an image pair. It then combines the point
correspondence information across multiple image frames
via a collaborative clustering step, in which tight integra-
tion is achieved via a mixed norm optimization scheme. For
model selection, we propose an over-segment and merge ap-
proach, where the merging step is based on the property of
the �1-norm of the mutual sparse representation of two over-
segmented groups. The resulting algorithm can deal with
incomplete trajectories and perspective effects substantial-
ly better than state-of-the-art two-frame and multi-frame
methods. Experiments on a 62-clip dataset show the signif-
icant superiority of the proposed idea in both segmentation
accuracy and model selection.

1. Introduction
Previous approaches to the 3D motion segmentation

problem can be roughly separated into the multi-frame and

the two-frame methods. Multi-frame methods have been s-

tudied mostly under the affine assumption, because under

this assumption the trajectories of a rigid motion across

multiple frames lie in an affine subspace with a dimen-

sion of no more than 3, or a linear subspace with a dimen-

sion of at most 4. One can then solve the problem using

either a factorization or a subspace separation framework

[2, 7, 9, 10, 11, 14, 19, 22, 27, 28, 31, 34]. Two-view meth-

ods are usually based on the epipolar geometry, and are thus

capable of handling perspective effects. The motion mod-

el fitting and selection are carried out by either statistical

methods [13, 16, 24, 29] or algebraic methods [23, 32, 33].

The multi-frame methods have been better developed,

partly due to the elegance of its formulation and partly due

to the release of the Hopkins155 database [30], which con-

tains largely clips with little perspective effects. However,

(a) (b) (d)(c)

Figure 1. Motion segmentation results of two sequences with

strong perspective effects using SSC. The ground truths are shown

in (a) and (c), and the SSC results in (b) and (d) respectively.

we argue that the current crop of multi-frame affine method-

s does not confront several real world issues, despite ever-

decreasing and near perfect classification rate on Hopkin-
s155. There are three major drawbacks of the multi-frame

affine methods when compared to the two-frame methods.

Firstly, multi-frame affine methods suffer from their in-

ability to deal with perspective effects, while this presents

no problem in the two-frame method; it becomes a signif-

icant consideration when using shorter lenses for shooting

outdoor sequences. Figure 1 shows the results of two se-

quences with perspective effects from Hopkins155; these

results are produced by the state-of-the-art clustering algo-

rithm – sparse subspace clustering (SSC) [9]. Compared to

the near zero errors achieved by SSC for the other sequences

in Hopkins155 without strong perspective effects, the erro-

neous segmentation results in these clips are especially no-

table: in Figure 1(b), part of the green object is classified as

belonging to the background, and in Figure 1(d) the green

object captures some of the background points.

Secondly, multi-frame affine methods generally require

the trajectories to have full-length. If one simply filters

out the trajectories which are absent in some frames, the

density of the trajectories is likely to be significantly de-

creased, resulting in lack of coverage of many parts of the

sequence. The full-length requirement also makes it diffi-

cult to deal with objects entering into or departing from the

scene and suffering from temporary occlusion. Figure 2(a)

shows the feature points of the “delivery van” data with the

full-length requirement on the trajectories. It is observed

that they are much sparser than the density of those in Fig-

ure 2(b), which only requires the trajectories to appear in

at least two frames. Clearly, two-frame methods suffer to a

much lesser extent from the missing entry issue. One may
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(a) (b)

(c)

Figure 2. (a) 60 trajectories obtained with the full-length require-

ment, and (b) 524 trajectories without the full-length requirement.

(c) The data matrix, with black area indicating missing entries.

argue that matrix completion techniques can help to fill in

the missing entries [5]. However, Candès and Tao [4] have

proven a lower bound on the necessary number of uniformly

distributed samples, below which no algorithm can guaran-

tee correct recovering of the missing entries. Unfortunately,

motion segmentation data often violate this condition. Fig-

ure 2(c) shows the data matrix of the “delivery van” data,

which has about 50% missing entries and is non-uniformly

distributed. Even it is by no means the most challenging

data, it is difficult to recover the missing entries.

Thirdly, the number of motion groups is usually assumed

to be known a priori for multi-frame affine methods. It is

indeed a strong indication that model selection is actually

difficult for motion segmentation. Related to this issue is

the fact that the number of motion groups in each clip of

the Hopkins155 dataset remains unchanged throughout the

frames, which makes it easy to indulge in the aforemen-

tioned assumption. In real videos, the number of motion

groups may change throughout a clip as moving objects en-

ter or leave the scene. Without coming to grips with this

fundamental issue, the application of these works to real

life problems will be severely hampered. By comparison,

the two-frame methods are much better-placed to estimate

exactly when moving objects enter or leave the scene.

Despite the relative merits of the two-frame methods

over the multi-frame affine methods, less effort is devoted to

the two-frame approach in recent years. On the one hand, it

is partly due to the belief that multiple frames contain much

more information that should be exploited. Contrary to such

belief, we will show in Section 4 that the performance of

the two-frame method is generally quite adequate; we may

indeed question the wisdom of abandoning the two-frame

method too hastily, especially in view of the information

we lost through these feature points discarded because of

the full-length requirement. On the other hand, there are

clearly scenes where an observation period as short as two

frames may confound the two-frame approach. For exam-

ple, two objects may be moving with the same motion for a

short while but diverge thereafter. In this paper, we propose

a multi-frame approach that is rooted in two-frame analysis,

with a mixed norm formulation that couples the multi-frame

information in an integrated manner. Beginning with a sin-

gle image pair, we revisit the epipolar constraint of two-

perspective-view (TPV), leading to a subspace segmenta-

tion problem formulation that segments the null spaces of

the appropriate equations. Thus, the idea of subspace sep-

aration applies and one can follow the SSC approach in

converting the motion segmentation problem into a graph

partitioning problem based on an affinity matrix. We pre-

fer the sparse self-expression affinity of SSC, because of

its good performance and some degree of tolerance to de-

pendent subspaces [26]. A more powerful formulation that

integrates multiple frames then follows, in which we derive

an aggregated affinity matrix from multiple image pairs and

seek a joint sparse coefficient recovery across multiple im-

age pairs, i.e., the sparse affinity coefficients of a particular

trajectory should be consistently distributed across multi-

ple image pairs in the sense that this trajectory should use

the same set of other trajectories to express itself across al-

l image pairs. This is formulated as a constrained mixed

norm minimization problem, whose relaxed version is con-

vex and can be solved efficiently with augmented Lagrange

multiplier (ALM) [18] method.

Another important contribution of our paper lies in it-

s robust model selection scheme. We first make a rough

model estimation by analyzing the Laplacian matrix of the

affinity matrix and over-segment the data into groups. Then

we perform merging by a scheme that takes advantage of

the loose grouping already available. Specifically, we use

the data points in one group to sparsely represent each data

point in another group. Based on Soltanolkotabi and Can-

dès’ scheme of outlier rejection [26], which declares a data

point to be an outlier if the �1-norm of its sparse coding

vector is above a fixed threshold, we can decide which data

points in the second group are inliers w.r.t. the first group

and which are outliers. Based on the statistics of the �1-

norm, they can be merged or left as they are.

When evaluated over a 62-clip dataset containing real

challenges such as missing data, unknown number of mo-

tions, and perspective effects, the results show that our joint

inference scheme can produce significantly more accurate

and reliable results than those methods individually estimat-

ing two-view motion models, followed by a loosely-coupled

fusion step, or those state-of-the-art multi-frame methods

such as SSC and LRR (low-rank representation [19]).

1.1. Related work

There have been a plethora of multi-frame approaches

[2, 7, 9, 10, 11, 14, 19, 22, 27, 28, 31, 34]. While many of

them perform very well with Hopkins155, significant prob-

lems remain, as reviewed in the preceding paragraphs. Our

key concern here is to tackle these challenges not well rep-

resented in Hopkins155. In contrast to the aforementioned

approaches, our modelling of the problem is based on the

epipolar constraint and does not make concession in terms
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of the camera projection, and its multi-frame extension does

not suffer from the restriction of requiring features to be

present in all frames. While projective factorization [17]

extends the camera model to perspective, it needs an iter-

ative process that alternates between the estimation of the

depths and the segmentation of the trajectories. Further-

more, it still requires full-length trajectories, and the depth

estimation is highly dependent on the initial segmentation.

Two-frame methods [13, 16, 23, 24, 29, 32, 33] are

based on the epipolar constraint. Our work is based on

the same constraint, though we do not explicitly estimate

the fundamental matrices but directly cluster the correspon-

dences. More importantly, our formulation allows multi-

frame extension in an integrated manner and can handle in-

complete and ambiguous features in a natural way. Thus,

compared to works like [8, 25] which are also based on

the two-view constraint but extend to multiple frames in a

loosely coupled way, our method tightly integrates informa-

tion from all frames by a global optimization scheme, and

is thus expected to achieve more optimal solutions.

Model selection remains very much an open problem in

motion segmentation. While the number of zero eigenval-

ues of the Laplacian matrix can be related to the number

of connected components of the affinity matrix, the chal-

lenge lies in determining the number of eigenvalues close

to zero in a robust manner [19, 26]. Some other methods

[6, 8, 13, 16, 25, 24, 29] explicitly generate motion hypothe-

ses and balance the goodness of fit against the complexity

of the model. In general, the hypothesis generation step

is crucial in determining its success. Models with a high

number of parameters face the predicament of generating a

sufficiently large number of hypotheses while coping with

the prohibitive computational cost. Bad samplings often re-

sult in failure for these methods, with the results varying

each time due to the sampling procedure. Moreover, it is

difficult, probabilistically speaking, to sample an all-inlier

minimal set when estimating a high order model, because

the number of samples required by the minimal set is rela-

tively larger. Thus, [13, 25] uses calibrated cameras and [8]

uses homography, both to reduce the number of points nec-

essary to estimate a motion. For the same purpose, [16, 24]

design guided sampling steps. Our method eschews this

costly hypothesis generation step but instead takes advan-

tage of the over-segmented grouping provided by the spec-

tral clustering. We then leverage on the recent theoretical

result [26] which provides a principled way to detect outlier

points based on the �1 norm of the sparse representation of

the point. This in turn allows us to perform merging of two

over-segmented groups in a very robust way.

Lastly, some recent research addresses the need to ob-

tain a denser set of trajectories [3, 15]. These works aim to

cover the image domain without too many large gaps. How-

ever, they only carry out the segmentation in the 2D domain,

mainly due to computational consideration. Thus, motions

that deviate from the simple 2D model may lead to a wrong

segmentation. Our work pays the price of a lower trajecto-

ry density for a more accurate motion model and a higher

quality data input.

The rest of this paper is organized as follows. Section 2

discusses the TPV subspace in detail. Section 3 describes

the joint clustering algorithm and the �1-norm based merg-

ing scheme. Then, our experimental results are illustrated

in Section 4. Finally, we draw the conclusion in Section 5.

2. The TPV Motion Subspace
Assume xp = (xp, yp, 1)

T and x′p = (x′p, y
′
p, 1)

T are the

homogeneous coordinates of two corresponding points of a

3-D point p in two frames. Their relationship is governed

by the epipolar constraint [12] expressed as follows:

x′p
T
Fxp = 0, (1)

where F
.
=

⎡
⎣

f11 f12 f13
f21 f22 f23
f31 f32 f33

⎤
⎦ ∈ R

3×3 is the fundamen-

tal matrix, which connects correspondences under the same

rigid motion in two views. A classic algorithm to compute

F is the 8-point algorithm [12], in which each correspon-

dence gives rise to one linear equation in the unknown en-

tries of F as follows:

( x′pxp x′pyp x′p y′pxp y′pyp y′p xp yp 1 )f = 0, (2)

where f = ( f11 f12 f13 f21 f22 f23 f31 f32 f33 )T

is the 9×1 vector made up of the entries of F in row-major

order. The coefficients of this equation are arranged in a

column vector, denoted as wp. Clearly, those wp under the

same rigid motion k form a hyperplane perpendicular to fk,

which we refer to as the TPV motion subspace. Since fk is

a 9×1 vector, the dimension of this subspace is at most 8.

A fundamental matrix determines the relationship of a

camera pair uniquely [12]. Thus, in general the set of

wp for points undergoing the same rigid motion k form-

s a unique hyperplane perpendicular to fk. However, for

points in special configuration, they fail to uniquely deter-

mine the fundamental matrix. These include correspon-

dences lying on a plane in space or those only related by

a pure rotation about the camera center. In both cases,

point correspondences are related by a homography matrix

H
.
=

⎡
⎣

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦ ∈ R

3×3, i.e.,

[x′p]×Hxp = 0, (3)

where [x]× ∈ R
3×3 denotes the skew-symmetric matrix

associated with x. From equation (3), it can be shown that
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wp is related to a 9× 3 matrix H′:

wT
p H

′ = 0, (4)

where
H′ = [ h1 h2 h3 ]
h1 = ( 0 0 0 h31 h32 h33 −h21 −h22 −h23 )T ,
h2 = ( −h31 −h32 −h33 0 0 0 h11 h12 h13 )T ,
h3 = ( h21 h22 h23 −h11 −h12 −h13 0 0 0 )T .

It can be observed from (4) that those wp under the afore-

mentioned degenerate configurations fall on the intersection

of three hyperplanes, each of which is perpendicular to one

column of H′. Here, each column of H′ is independent of

one another in general and thus the rank of H′ is 3. Thus,

wp under these degenerate configurations live in a lower

dimensional subspace with dimension no more than 6. For-

tunately, there are various subspace separation algorithms

[9, 19] that can handle subspaces with different dimensions

and the above situation should pose no special problem.

3. Clustering Motion Subspaces
3.1. Sparse subspace clustering

The preceding section has reduced the motion segmen-

tation task to that of clustering subspaces of dimension at

most 8 in R
9 in general. The data are now collected in a

data matrix W = [w1 · · ·wP ]. The SSC algorithm can be

used directly to perform subspace clustering for the case of

single image pair; the case of multiple image pairs requires

joint sparsity and will be discussed in Section 3.1.2.

3.1.1 Single image pair

We briefly review the SSC algorithm in the context of the

TPV motion subspace: each column wp can be represented

as a linear combination of the other columns wq

wp =
P∑

q=1,q �=p

cqwq = Wp̂cp, (5)

where P is the number of correspondences, Wp̂ =
[w1 · · ·wp−1 wp+1 · · ·wP ] ∈ R

D×P−1 is the matrix ob-

tained from W by removing its p-th column and cp ∈
R

P−1 is the vector made up of the coefficients cq . Gen-

erally, the solution for (5) is not unique and the key idea of

SSC is to obtain a sparsest solution for cp via solving the

following relaxed �1 optimization problem

min ‖cp‖1 s.t. wp = Wp̂cp. (6)

The nonzero entries in the optimal solution cp indicate that

the corresponding trajectories in Wp̂ belong to the same

subspace as wp. The optimization problem for every trajec-

tory is collected and written succinctly in matrix form as

min ‖C‖1 s.t. W = WC, diag(C) = 0. (7)

Figure 3. Illustration of the �1,1,2 norm minimization. The entries

(i, j) of C(l) should be sparse and its support set should be con-

sistent across different C(l).

where diag(C) are the diagonal entries of the matrix C, and

diag(C) = 0 is introduced to avoid the trivial solution.

According to [9], since the optimal solution C∗ to prob-

lem (7) measures the pairwise linear correlations among tra-

jectories, it can be naturally used to construct an affinity

matrix A with Aij = |C∗ij | + |C∗ji|, after which spectral

clustering algorithms can be applied to obtain the desired

segmentation into the respective subspaces.

3.1.2 Multiple image pairs

A naive way to extend the SSC algorithm to multi-view case

is to compute results from many image pairs individually

and design a voting scheme to determine to which group the

data points should belong. An alternative way is to accumu-

late the individual affinity matrices or adopt the multi-view

spectral clustering method [36]. However, these methods

operate on each image pair separately, and have not exploit-

ed the linkage between the multiple image pairs in a more

integral manner. Here, we seek to incorporate all image

pairs into a unified optimization process.

Assuming we have L image pairs, and since each image

pair yields a correspondence matrix W(l), L corresponding

coefficient matrices C(l) will be constructed by SSC. The

key here is to solve for all C(l) together and require them to

share a common sparsity profile. In other words, the non-

zero entries of C(l) should be sparse and those columns cor-

responding to the same trajectory across the different C(l)

should share the same support set. This amounts to solv-

ing a joint sparse optimization problem [21], which can be

relaxed into the following mixed norm minimization prob-

lem:

min
∑P

i=1

∑P
j=1

√∑L
l=1(c

(l)
ij )

2

s.t. W(l) = W(l)C(l), diag(C(l)) = 0,
l = 1, . . . , L,

(8)

where c
(l)
ij is the (i, j)-th element of C(l) for the l-th image

pair. Referring to Figure 3, this operation can be visual-

ized as stacking all C(l) into a tensor C ∈ R
P×P×L, and

then minimizing the number of non-zero entries in the ag-

gregate matrix formed by summing all c
(l)
ij along the third

dimension l. In analogy to the �1,2 norm being the norm that
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approximately measures the number of non-zero columns,

we can call our norm the �1,1,2 norm. Denote C∗ as the op-

timal solution. We similarly construct an affinity matrix A

with its element Aij =
√∑L

l=1(c
∗(l)
ij )2 +

√∑L
l=1(c

∗(l)
ji )2.

Then spectral clustering is applied as in the two-frame case.

Notice that the correspondences can be missing in some

image pairs, here “missing” means a trajectory is invisible

in either one or both of the image pair. In this case, we fill

in with a 09×1 column vector for the missing data so as to

ensure that all W(l) have the same dimension. More specif-

ically, if a trajectory p is missing in the image pair l, then

in the l-th correspondence matrix W(l), the p-th column

w
(l)
p = 09×1. Our rationales for filling in with 09×1 are t-

wofold: 1) when we want to obtain the sparse coding for the

p-th point, the optimal solution for the missing data in the

l-th image pair is 0P−1×1, not incurring any cost in equa-

tion (8), nor biasing the solution for other C(l) in any way.

2) Conversely when we want to recover the sparse coding

for other points, e.g. q, the missing data will not be chosen

to represent the point q in the l-th image pair since it con-

tributes nothing to the representation of q. This allows us

to treat a trajectory with missing data in a uniform manner,

without affecting the joint optimization scheme.

3.1.3 Handling ambiguous matches

In real applications, feature trackers often bring in noisy or

even heavily corrupted trajectories, especially if we want to

seek a denser coverage of features over the entire image. In

order to recover the sparse coefficients from the corrupted

observations, it is straightforward to consider the following

regularized minimization problem:

min
∑P

i=1

∑P
j=1

√∑L
l=1(c

(l)
ij )

2 + λ
∑L

l=1 ‖E(l)‖�
s.t. E(l) = W(l) −W(l)C(l), diag(C(l)) = 0,

l = 1, . . . , L,
(9)

where λ is a weight used to adjust the effect of the two parts

and ‖ · ‖� indicates a particular choice of regularization s-

trategy. Here we choose �1,2 norm to model sample-specific

corruptions and outliers [19], whose minimization forces

E(l) to be column sparse.

After obtaining an optimal solution (C∗, E∗) (where

E∗ ∈ R
D×P×L is a tensor stacked from E∗(l)), we could

detect erroneous matches by looking for those columns with

large �2 norms in any of the E∗(l). If a corrupted match is

detected in E∗(l), we will delete it from image pair l but p-

reserve the correct matches of that trajectory in other image

pairs unless all matches of that trajectory are corrupted.

3.2. Merging via coefficient analysis

As the number of motion groups is usually not known a
priori in reality, we have to come to grips with the model

selection problem. In view of the difficulty of cluster detec-

tion, we propose to first over-segment the data based on the

number of zero eigenvalues of the Laplacian matrix of the

affinity matrix, and then attempt to merge the clusters later

via the following model selection scheme.

Given a data point q ∈ R
D and a group of points

{pi}Mi=1 stacked as the columns of the matrix P ∈ R
D×M

and spanning the subspace S, if we use P to represent q,

i.e. q = Pc, we can obtain a coefficient vector c ∈ R
M .

According to Theorem 1.3 of [26], the data point q has

a high probability of being an outlier w.r.t. S if the �1-

norm of the sparsest solution c is larger than a threshold

ε = λ(M−1
D )

√
D (λ is a threshold ratio function; for detail-

s, see [26]). Based on this theorem, we can determine the

relationship between two groups.

Now consider two groups of points obtained from the

over-segmentation step, P ∈ R
D×M and Q ∈ R

D×N ,

whose columns {pi}Mi=1 and {qi}Ni=1 are extracted from

subspaces Su and Sv respectively. If we sparsely represent

the points in P using the points in Q:

min ‖C‖1
s.t. P = QC,

(10)

the columns of C ∈ R
N×M are the coefficient vectors cor-

responding to the data points in P. Based on the afore-

mentioned outlier determination scheme, if u = v and Q
adequately represents Sv , the points in P should be inliers

w.r.t. Q, and thus the �1-norms of columns {ci}Mi=1 in C are

expected to be small. For robustness, we compare the medi-

an value of all �1-norms of {ci}Mi=1 against the threshold ε
to decide if P should be merged into Q. For notational con-

venience, we denote the above using a relationship matrix

R with its elements defined as

Rpq = medianM
i=1(‖ci‖1). (11)

Similarly, we can obtain C′ ∈ R
M×N by representing Q

using P and compute the relationship Rqp. Note that this

relationship is oriented, and in general, Rpq �= Rqp.

The above analysis can be extended to the case for the

multiple image pairs in a manner analogous to the collabo-

rative clustering algorithm in (8). Assuming L image pairs,

we rewrite (10) as

min
∑N

i=1

∑M
j=1

√∑L
l=1(c

(l)
ij )

2

s.t. P(l) = Q(l)C(l), diag(C(l)) = 0,
l = 1, . . . , L,

(12)

where P(l) and Q(l) are the data matrices of the two groups

in the l-th image pair, C(l) is the corresponding coefficient

matrix, and c
(l)
ij is the (i, j)-th element of C(l). The rela-

tionship Rpq (11) is also changed accordingly:

Rpq = medianM
i=1(medianL

l=1(‖c(l)i ‖1)). (13)
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We iteratively merge two groups according to the aforesaid

threshold ε until there is no more merging possible. The

details of the merging step are summarized in Algorithm 1.

Algorithm 1 �1-norm based merging

Input: Set of motion groups {Pk}k=1...K , ε
P0 ← Current set of groups

for k = 1→ (K − 1) do
for each group pair do

Compute relationship matrix R according to (13).

end for
if min(R) < ε then

1.(i, j) = find(min(R))
2.Merge the groups i and j
3.Pk ← Current set of groups

else
return Pk

end if
end for
return Pk

One might question what if some of the groups are too

small or degenerate such that they do not adequately rep-

resent the underlying subspace S. Clearly, such groups are

common occurrences, but it is also true that there invariably

exist some other groups whose points fully span the sub-

space S. In such cases, the former will be judged to belong

to and merged into the latter. 1

4. Experiments
4.1. Results on single image pairs

In this subsection, we evaluate the performance of the

two-frame version of our algorithm on the Hopkins155
database (denoted as TPV in Tables 1) to gauge the effec-

tiveness of our two-frame method. We compute the classi-

fication error as the percentage of misclassified points w.r.t.

the ground truth and list the average classification errors.

We choose the first and the last frames of all sequences as

the image pair for the testing, which ensures that all cor-

respondences in the scene have sufficient displacements in

the image plane. For the sake of comparison, we assume the

number of motion groups is known in this experiment, like

what many algorithms did. We also list the classification er-

rors when applying ALC[22], GPCA[31], LSA[34], SSC[9]

and LRR[19] to the affine motion subspace for comparison.

It can be seen from Table 1 that TPV yielded average

classification errors of less than 5% for the two and three

motions, which is only slightly worse off than those of SSC

and LRR applied to multiple views assuming affine model.

1Even if a motion group consists of say, just two walls, the degener-

ate case of the over-segmentation yielding two walls cleanly (and thus not

mergeable) seldom arises; instead, the points of the two walls are usually

segmented non-exactly by our over-segmentation step.

Table 1. Classification errors (%) on Hopkins155
Method ALC GPCA LSA SSC LRR TPV

2 motions: 120 sequences
Mean 2.40 4.59 3.45 0.82 1.33 1.57

3 motions: 35 sequences
Mean 6.69 28.66 9.73 2.45 2.51 4.98

All: 155 sequences
Mean 3.36 10.02 4.86 1.18 1.59 2.34

The results indicate that segmentation from two properly

chosen views is almost as good as segmentation from the

multiple views. What is noteworthy is that the 2-frame T-

PV algorithm outperforms the multi-frame GPCA and LSA

algorithms on all categories. We believe that this is due to

a combination of factors such as the better modeling of per-

spective effect and the choice of better clustering methods.

4.2. Results on multiple image pairs

We now evaluate the complete algorithm using multiple

image pairs without knowing the number of motion groups

and with challenges like missing data and perspective ef-

fects. The data used in this evaluation comprise 62 video

sequences, of which 50 are from Hopkins155. Since Hop-
kins155 has a very unbalanced number of 2-motion and 3-

motion clips (120 and 35 respectively), we retain only the

50 original seed videos (the other 105 2-motion clips are

created by splitting off from the 3-motion clips). More im-

portantly, to evaluate the performance under missing data

and perspective effects, we added 12 clips with incomplete

trajectories, of which 4 are from [25] and the other 8 are

captured by us using a handheld camera with a wide an-

gle lens. The newly captured sequences contain about 100

frames each, some of which experience heavy occlusions,

posing significant challenge to the matrix completion task,

as we shall see later. Of the resultant 62 motion clips, 26

contain two motions, 36 contain three motions, 12 suffer

from missing data, and 9 have strong perspective effects

(some of these categories are not mutually exclusive). We

refer to this combined dataset as the 62-clip dataset.

We denote our complete algorithm as M-TPV for

multiple-TPV. We compare the performance of M-TPV to

seven state-of-the-art approaches: ALC[22], GPCA[32],

LBF[35], LRR[19], MSMC[8], ORK[6] and SSC[9]. For

ALC, we use the provided rather simple matrix completion

method and test 101 different values from 1e−5 to 1e3 for

the noisy level as in [22], and then we record the best seg-

mentations with the smallest average error rate. For MSM-

C, since the default scales (the number of interval frames

between an image pair, with the default scales being h1,

h5 and h25) did not perform well in these sequences, we

tried several combinations and report the error rates cor-

responding to the following scales: h5, h10 and h25. For

SSC, since the model selection method based on spectral

gap[26] performed poorly in these real data, we choose the

1374



Table 2. Classification results on 62-clip dataset

Method ALC GPCA LBF LRR MSMC ORK SSC M-TPV

Classification error (%) - clips with perspective effect: 9 clips
Mean 16.18(0.35) 43.66(40.83) 20.00(12.14) 16.31(14.83) 19.17(0.58) 22.94(20.24) 25.68(9.68) 8.20(0.46)

Classification error (%) - clips with missing data: 12 clips
Mean 25.38(0.43) 39.64(28.77) 20.17(18.47) 26.03(29.46) 14.64(1.06) 24.11(22.33) 27.41(17.22) 7.71 (0.91)

Classification error (%) - clips without missing data: 50 clips
Mean 22.03(18.28) 16.89(16.20) 15.66(1.90) 9.82(5.26) 14.19(2.59) 12.98(4.15) 13.09(2.01) 7.56(2.78)

Classification error (%) - all: 62 clips
Mean 22.67(14.88) 21.29(16.58) 16.53(5.90) 12.98(5.95) 14.27(2.34) 15.13(8.08) 15.86(5.17) 7.59(2.37)

Group number estimation - all 62 clips
# correct 21 33 29 35 25 37 33 46

second order difference (SOD) method as in LBF. Note that

the SOD method is also used in a similar manner to sup-

port SSC in [35]. For those algorithms which do not ex-

plicitly handle missing data, such as LBF, LRR, ORK and

SSC, we recover the data matrix using Chen’s matrix com-

pletion approach[5], which in our experience has the best

performance among various competing algorithms (such as

OptSpace[20], GROUSE[1] and etc.). For those algorithms

which have a random element in their results, such as ORK

and MSMC, we repeat 100 times and record the best results.

Table 2 shows the performance of these methods on

the 62-clip dataset. Since the estimated number of motion

groups may not be the same as the ground truth number, we

exhaustively test all the cluster pairings to obtain the best

error rates. Furthermore, to investigate if good model selec-

tion results in good segmentation, the error rates obtained

by only considering sequences where the number of mo-

tions is correctly estimated are shown in the bracket. We

also show some qualitative results obtained with the newly

captured clips in Figure 4.

The evaluation in Table 2 can be divided into three parts.

In the first part, the classification error rates of the 9 clips

with strong perspective effects are presented. Our method

is the only one with an error rate of less than 10%, which

shows the superiority of the proposed approach. Although

ALC and MSMC also reported good results when the num-

ber of motion groups is correctly estimated, perspective ef-

fects have a significant detrimental impact on their model

selection steps, resulting in substantially higher error rates

of ALC and MSMC. In the second part of Table 2, the im-

pact of missing data is investigated. Our approach again

outperformed the other methods with a less than 10% error

rate. GPCA broke down mainly due to the instability of the

Power Factorization method used for filling in missing da-

ta. Those methods based on the matrix completion of [5]

for filling in, such as LBF, ORK and SSC, performed well

in some sequences, but the overall deleterious impact is ev-

ident, attesting to the difficulty faced by a general-purpose

matrix completion algorithm in dealing with the structured

pattern of the missing data. Among these methods, it is al-

so remarkable that the so-far top-performing LRR failed in

the model selection of 11 sequences, which implies that the

model selection step in LRR is very sensitive to how the

spectral values have been changed in the recovered matrix.

Of the only sequence whose motion number is correctly es-

timated (the “Van” clip, last row of Figure 4), LRR has a

very poor classification error rate. MSMC failed in those

sequences with complicated objects and backgrounds due to

its simple motion model based on homography. Even if this

method uses a higher-order motion model, the significant

increase in model complexity will pose a lot of difficulties

for the sampling procedure, rendering its performance very

much suspect. The last comparison is based on the 50 seed

videos from the Hopkins155’s dataset. These clips are rel-

atively easy, because they have complete trajectories. The

average classification error of our method on all 50 clips

is 7.56%, while that considering only cases having correct

motion number estimation is 2.78%. The more meaningful

figure of 7.56% is clearly the best compared to other state-

of-the-art motion segmentation algorithms. These figures

also demonstrate that model selection remains a recalcitrant

problem, and to achieve real progress in motion segmenta-

tion, we must meet this challenge heads-on.

The last two rows of metrics in Table 2 measure the over-

all performance, from which it can be seen that our method

outperformed the rest in all significant aspects. It has 46

correct motion number estimation out of 62 clips (next best

is 37), and the average classification error of all clips is

7.59% (next best is 12.98%). These overall performances

demonstrate that our method is capable of handling the var-

ious real challenges in the motion segmentation problem.

5. Conclusions
We solve the 3D motion segmentation problem of multi-

ple frames rooted in the epipolar geometry of two perspec-

tive views via a collaborative clustering algorithm. This ap-

proach highly integrates multiple frame information with a

mixed norm optimization, which is able to avoid the dis-

advantages of multi-frame methods and enjoy the rich in-

formation provided by multiple frames. We also propose a
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ALC GPCA LBF LRR MSMC ORK SSC M-TPV

Figure 4. Qualitative results of the real data with missing entries. The segmentation results of the 50-th frames of the sequences are

presented. From top to bottom are the “Bus”, “Girl”, “Swing” and “Van” clips.

method to evaluate the relationship of two groups based on

a similar optimization scheme. Leveraging on this, we first

over-segment the motion groups, and then merge them ac-

cording to the relationships. The experiments on the Hop-
kins155 database and the new sequences showed that the

proposed algorithm outperforms the state-of-the-art meth-

ods in meeting the various challenges.
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