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Abstract

This paper demonstrates how the nonlocal principle
benefits video matting via the KNN Laplacian, which
comes with a straightforward implementation using motion-
aware K nearest neighbors. In hindsight, the fundamen-
tal problem to solve in video matting is to produce spatio-
temporally coherent clusters of moving foreground pixels.
When used as described, the motion-aware KNN Lapla-
cian is effective in addressing this fundamental problem,
as demonstrated by sparse user markups typically on only
one frame in a variety of challenging examples featur-
ing ambiguous foreground and background colors, chang-
ing topologies with disocclusion, significant illumination
changes, fast motion, and motion blur. When working
with existing Laplacian-based systems, our Laplacian is ex-
pected to benefit them immediately with improved clustering
of moving foreground pixels.

1. Introduction
The goal of video matting is to pull out a moving fore-

ground matte from a single video:

I = αF + (1− α)B (1)

where I is the observed pixel color, F is the unknown fore-

ground, B is the unknown background, and α is the un-

known alpha matte which should be spatially and tempo-

rally coherent.

Successful works rely on generating dense trimaps or

precise strokes in all frames to ensure good color samples

for solving the alpha. On the other hand, if we can produce

spatially and temporally coherent clusters of moving fore-

ground pixels, then ideally the user only needs to specify a

single pixel in each cluster to drive the automatic algorithm

to produce a spatio-temporally coherent video matte.

Recent state of the arts center around the construction of

graph Laplacians which have a direct impact on the qual-

ity of pixel clustering. The matting Laplacian has been
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Figure 1. Comparison with nonlocal video matting [8] (middle

row) on rabbit. KNN video matting (bottom row) produces signif-

icantly better results in the presence of ambiguous background and

foreground colors. The use of optical flow as motion cue is partic-

ularly helpful in disambiguating complex situations where texture

information is similar. (see electronic version)

widely adopted since closed-form matting and spectral mat-

ting [16, 17]. Its definition is based over a small local win-

dow, and it was shown in nonlocal image matting [14] that

the matting Laplacian produces scattered matting compo-

nents with the use of the local color line model. Later,

nonlocal video matting [8] demonstrated good matting re-

sults, but the implementation is complicated involving sev-

eral steps with specialized data structure and a matte regu-

larization step in order to produce coherent video mattes.

This paper contributes to video matting by incorporat-

ing motion information in the so-called KNN Laplacian to

make it motion-aware. This is the first attempt to empir-

ically show this simple strategy is effective in producing

spatio-temporally coherent pixel clusters of moving pixels.

In principle, unlike nonlocal movie denoising [6] which ar-

gued against motion information, we utilize optical flow re-

sults when computing the motion-aware KNN Laplacian.

Compared with other Laplacians that use motion, motion-

aware KNN Laplacian has a simpler implementation and

produces better quantitative results. When used on its own,

it allows for sparse user markups and alpha constraints to

be incorporated in a closed-form solution to produce com-

petitive matting results, as shown in our qualitative as well

as quantitative evaluation. The simplicity of motion-aware

KNN Laplacian should make it easy to be incorporated into
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Two Frame Input Matting Laplacian KNN Laplacian Two Frame Input Matting Laplacian KNN Laplacian
Figure 2. Two-frame motion-aware KNN Laplacian achieves excellent clustering results compared with the widely adopted matting Lapla-

cian with the local color line model [17] which makes it difficult to incorporate bidirectional motion information to enhance temporal

consistency, where optical flows often straddle beyond a local (3 × 3) window. This figure shows the representative eigenvectors of the

respective Laplacian matrix.

existing video matting systems based on graph Laplacian,

thus benefiting them immediately with improved clustering

of moving foreground pixels.

2. Related Work

See [29] for a comprehensive survey on image and video

matting before 2008.

Nonlocal principle. The nonlocal principle was success-

fully applied to image and video denoising [6] where the

authors argued against the use of motion in video denois-

ing. Two recent contributions [7, 14] applied the nonlocal

principle in natural image matting. For video matting, the

first attempt tapping into the nonlocal principle is [8] which,

similar to [6], does not employ explicit motion information.

The method uses the multi-frame nonlocal matting Lapla-

cian proposed in [14] defined over a nonlocal neighborhood

in the spatio-temporal domain. Similar to [14] specialized

implementation in [8] is needed to cope with the prohibitive

memory and running time requirements, with an additional

postprocessing step to clean up results.

Video matting. To produce a video matte, classical video

matting [10] requires the user to paint a dense trimap to

be propagated to all video frames before single image mat-

ting is applied on each of them. Bayesian video matting [1]

extends Bayesian image matting [9] by defining proper pri-

ors using natural image statistics. Spatio-temporal infor-

mation is integrated so as to produce temporally-coherent

video mattes, but the method requires the background to

be estimated reliably. Hardware-assisted systems [13, 19]

automatically generate and propagate trimaps in all video

frames before image matting is applied on each frame.

Without using motion information or optical flows, their

emphasis is on complete automation rather than temporal

consistency of the resulting mattes. On the other hand,

the following methods rely on accurate optical flows to en-

hance temporal consistency: spectral video matting [12]

warps matting components using optical flows; robust mat-

ting [28] was extended in [15] to include optical flows in

defining an anisotropic kernel for producing temporally-

coherent video mattes; affine motion was used in [11] to

extend Grabcut to video matting. Recent work [3] addresses

temporally-coherent video matting by adaptive trimap prop-

agation and matte filtering in the temporal domain. Since

the matting Laplacian [17] was used, the trimap needs to be

precise and dense to cluster relevant but scattered matting

components.

Video segmentation. To maintain spatio-temporal consis-

tency of the object cutout, 3D meanshift was employed in

interactive video cut [27] to cluster relevant pixels. The

geodesic framework was extended in [2] in spatio-temporal

volume for video segmentation. Rather than early commit-

ment to optical flow vectors, which may be inaccurate, mul-

tiple candidates were kept in [18] in their graph construc-

tion to embed temporal consistency without committing to

any motion vectors. In LIVEcut [21] a learning-based video

segmentation algorithm was proposed that weights a range

of useful cues. But the cues can only be accumulated from

previous frames and defined over local regions, such as

color gradient and color adjacency. Motion vectors were

used in [4] to shift local windows/classifiers which does not

require highly accurate optical flow information. While we

also use optical flows, we embed at each pixel several mo-

tion candidates (specifically, K of them) when encoding our

affinity matrix.

3. Nonlocal Principle for Video Matting

Rather than sampling reliable albeit unknown fore-

ground/background color pairs, we advocate good pixel
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clustering for video matting. Good spatio-temporal clusters

for moving foreground is essential for high quality results

when only sparse inputs are available.

To produce good clusters we leverage the nonlocal prin-

ciple in video denoising [6] but argue for the use of mo-

tion information in video matting. For completeness, we

include a concise summary of the nonlocal principle while

highlighting its motion-awareness for video matting.

In [6], a denoised pixel i is a weighted sum of the pixels

with similar appearance with the weights given by a kernel

function k(i, j) in a local search window:

E[X(i)] ≈
∑

j∈N (i)

X(j)k(i, j)
1

Di
(2)

k(i, j) = exp(− 1

h2
1

‖X(i)−X(j)‖2g −
1

h2
2

d2ij) (3)

Di =
∑

j∈N (i)

k(i, j). (4)

where X(i) is a feature vector computed using the RGB

information at/around pixel i,N (i) is a local search window

around pixel i, and dij is the distance between pixels i and

j, ‖ · ‖g is a Gaussian-weighted norm, and h1 and h2 are

empirical constants. By analogy of (2), the expected value

of alpha matte:

E[αi] ≈
∑
j

αjk(i, j)
1

Di
or Diαi ≈ k(i, ·)Tα (5)

where α is the vector of all α values over the input image.

Notice the similarity between (5) and bilateral filtering [24]

except that we find the neighbors nonlocally. In nonlocal

image matting [14]:

• the nonlocal principle applies to α as in (5);

• the conditional distribution α given X is E[αi|X(i) =
X(j)] = αj , that is, pixels with the same appearance

are expected to share the same alpha value.

3.1. KNN Laplacian

Applying the nonlocal principle in KNN video matting,

we assume the alpha at pixel i is a weighted average of the

alphas of its K nearest neighbors in the feature space which

may not be necessarily spatially close to each other:

E[αi] ≈
∑

j∈KNN(i)

αjk(i, j)
1

Di
(6)

k(i, j) = 1− ‖X(i)−X(j)‖
C

(7)

Di =
∑

j∈KNN(i)

k(i, j) (8)

Figure 3. Left shows K nearest neighbors (red) of the selected

point (green); note the nonlocal distribution of the neighbors; right

shows a typical sparse nonlocal two-frame affinity matrix A in

KNN video matting.

where k(i, j) here uses the linear kernel which was shown

in [7] to be conducive to soft segmentation. C is a normal-

ization constant.

Following the derivation Dα ≈ Aα in (5), where A =
[k(i, j)] is the affinity matrix and D = diag(Di) is an 2N ×
2N diagonal matrix, where N is the total number of pixels

in one frame where two are used here. Thus, (D−A)α ≈ 0
or αTLα ≈ 0 where L = (D −A)T (D −A) is called the

KNN Laplacian in this paper, noting that L is a positive

semi-definite matrix.

3.2. Motion Awareness in Clustering
It remains to define the appropriate X for constructing

the KNN Laplacian (section 4). In hindsight, the funda-

mental problem to solve is to cluster similar pixels together.

In video matting, similar pixels should have similar appear-

ance and motion, which agrees in principle with classical

perceptual grouping or specifically, grouping by common

fate [25].

Figure 2 shows that our KNN Laplacian is conducive to

good graph clusters when motion information is encoded

in feature vector X . We note for most video matting ap-

proaches, optical flow is almost exclusively used in trimap

generation only. In contrast, as we will shortly see, optical

flow is directly used in constructing our Laplacian, making

our method fundamentally different because temporal con-

sistency is considered in the matte optimization rather than

the trimap generation stage.

Specifically, suppose we are given an image patch p and

two candidate matches p1 and p2. They have identical tex-

ture; the only difference is that p1 is moving but p2 is not.

We prefer to match p to the candidate with consistent (ap-

parent) motion, since it is likely that both of them end up

moving to (or remain stationary on) the same background

in two consecutive frames, and thus likely to have the same

alpha as they already have the same foreground colors.

In contrast to nonlocal denoising [6] where noise to be

removed is white noise without temporal consistency, our

goal is to pull out a temporally-coherent foreground matte

and so motion information is considered in constructing a
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x× y × t λs λf λp time

kim 720× 480× 111 2 0.001 1 34.5

amira 720× 480× 91 2 0.001 1 34.1

surfer 564× 320× 83 3 1 3 12.2

talk 504× 269× 70 2 1.5 3 11.3

walk 640× 360× 50 3 0.6 3 15

rabbit 800× 340× 33 5 2 3 35.6

jurassic 720× 480× 120 3 1 3 28

waving 720× 480× 35 3 1 3 29.1

Table 1. Parameters and running times in secs for KNN video mat-

ting on a machine with an Intel i7 2.6GHz CPU. The running time

includes collecting K nearest neighbors and solving the huge lin-

ear system per frame. We set K = 15 for all of the examples.

motion-aware KNN Laplacian. Despite that, it is not at odds

with nonlocal video denoising (see Figure 8 of [6]): both

nonlocal methods define proper feature vector and match

similar and moving pixels to compute optimal solutions.

4. KNN Video Matting
This section applies motion-aware KNN Laplacian in

what we call KNN video matting. With improved pixel

clustering shown in Figure 2, we expect the motion-aware

KNN Laplacian can immediately benefit existing state of

the arts that are Laplacian-based.

We first describe the feature vector X which results

in an asymmetric affinity A for embedding temporal bi-

directional motion consistency, and a two-frame L for min-

imizing the Laplacian energy to compute an optimal video

matte. KNN video matting has a straightforward implemen-

tation and produces comparable or at times better results

than state-of-the-art approaches [2, 4, 8].

4.1. Feature Vector X

Our feature vector should be conducive to grouping simi-

lar pixels together, that is, pixels sharing similar appearance

and similar motion should have similar α. The feature vec-

tor X(i) at a pixel i in frame t is:

Xt(i) = (λs(x, y) λf (uf , vf , ub, vb) P (i, λp))t (9)

where (x, y) are spatial coordinates of pixel i, (uf , vf ) and

(ub, vb) are respectively the forward and backward motion

vectors, P (i, s) is an RGB image patch of size s centered at

i in lexicographical order to make it one-dimensional. Thus

it is easy to incorporate motion information in constructing

motion-aware KNN Laplacian, not limited to trimap gener-

ation as done by many existing systems [3, 10, 12, 15].

There are three parameters: λs controls the amount

of spatial coherence, λf controls the influence of optical

flow [22], and λp controls the size of image patch, which is

inspired by PatchMatch [5]. Note the difference with [8],

their feature vector uses a constant 5 × 5 spatial patch

where spatial and temporal distance are considered sepa-

rately, which may not give optimally similar neighbors in

spatio-temporal grouping.

Figure 4. Temporal coherence: quantitative comparison with non-

local video matting [8] which uses the multi-frame nonlocal Lapla-

cian. KNN video matting uses the two-frame KNN Laplacian; our

video mattes not only give smaller error between consecutive α
but also show a more stable temporal coherence over [8] particu-

larly on kim.

4.2. Asymmetric Two-frame Affinity Matrix A

Once X is defined we can compute A by (7). Mathe-

matically, a fully connected affinity matrix A is symmetric

provided that the distance metric is commutative. In KNN

video matting, each pixel finds its K nearest neighbors in

the feature space, thus the resulting A is not necessarily

symmetric: pixel i finds pixel j as one of its nearest K
neighbors, but on the other hand, pixel j may have its own

K neighbors at smaller distance in the feature space than

pixel i.

In [8], in order to preserve temporal coherence, three

frames are used to construct their affinity matrix. Instead,

we use only two frames for the following reasons. When in-

tegrating temporal information, the 2-frame affinity matrix

with motion cues is more effective, since in defining X both

forward and backward flows are considered, we effectively

look into four frames at a time, while a smaller affinity ma-

trixA of size 2N×2N is built, where N is the total number

of pixels to be processed in one frame. This can drastically

reduce the running time. The 2-frame affinity matrix is de-

fined as:

A =

[ A11 A12

A21 A22

]
2N×2N

(10)

where A11 and A22 are intra-frame affinity matrix, com-

puted within frame 1 and frame 2 respectively, and A12

and A21 describe the inter-frame affinity information be-

tween the two frames under consideration. Figure 3 shows

a typical two-frame affinity matrix. In general, to enhance

temporal coherence by supplying more candidate nonlocal

matches, a larger affinity matrix involving n ≥ 2 frames

can be defined in a similar manner. In practice, memory and

running time will be an issue. To avoid kd-tree segmenta-

tion and other sophisticated post-processing as done in [8],

we choose n = 2 in our implementation which produces

competitive results in our experiments.
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Original K = 2 Zoom-in K = 6 Zoom-in K = 15 Zoom-in K = 20 Zoom-in K = 40 Zoom-in

Figure 5. Analysis on different K. For small K, insufficient information from neighbors gives a poor estimation, while a huge K introduces

speed and memory issues. We keep K = 15 constant in our experiments.

λs < 1 λs ≈ 10 λs > 50

Figure 6. Analysis on parameter λs. When λs is too small, the

matte becomes brittle since the affinity matrix is built using color

and motion information which are ambiguous for small λs. Ex-

cessively large λs tends to over-smooth the matte.

4.3. Alpha Constraint vs Trimap Propagation

Most recent methods [3, 8, 10, 13, 15, 19] require

trimaps for each frame be explicitly available to compute α
in a video sequence, either manually drawn or computed via

optical flow. In hindsight, trimap propagation has several

disadvantages. Accurate trimap propagation requires reli-

able optical flow estimation, because the trimap propagated

to the next frame is expected to be error free: wrongly-

propagated definite foreground or hard constraint is often

detrimental and hard to correct during optimization. How-

ever, this accuracy is not guaranteed even with the state-

of-the-art optical flow algorithms. On the other hand, one

may argue for trajectory estimation, which is more accu-

rate since sophisticated motion models (such as affinity ten-

sors [20]) are considered. However, the estimated trajecto-

ries are usually too sparse to be practical for trimap prop-

agation, typically around 200 trajectories in a 100-frame

video at 600× 400 resolution as in [20].

In KNN video matting, we make use of αt as soft con-

straint to optimize αt+1, which has the additional advan-

tage of refining αt after the optimization. Details are in the

following derivation.

4.4. Closed-Form Solution and Implementation

Denote m of size 2N × 1 as the binary indication vector
for the pixels that have definite alpha values (1 or 0), where

m = mf + mb, mf =

[
vf

0

]
mb =

[
vb

0

]
, where vb

and vf are N × 1 indication vectors respectively specify-
ing definite foreground and background in frame t, and 0 is
an N × 1 zero vector since αt+1 is unknown. In essence,

λp = 1 λp = 3 λp = 5

Figure 7. Analysis on parameter λp. Larger patch can collect use-

ful textural information by concatenating the neighboring pixels’

RGB value thus also making our method more robust to noise. One

exception is hairy foreground, where smaller patch is preferred as

most hair strand has width size of one pixel.

we apply αt as a soft constraint when we solve for αt+1

where no hard constraint (trimap or alpha) from frame t is
propagated to frame t + 1. Our energy function w.r.t. to

x =

[
αt

αt+1

]
is defined as following:

g(x) = xTLx+ λ

⎡
⎣ ∑

i∈mb

x2
i +

∑
i∈mf

(1− xi)
2

⎤
⎦

= xTLx+ λ

[∑
i∈m

x2
i − 2mT

f x+ |mf |
]

= xT (L+ λD)x− 2λmT
f x+ λ|mf |

where D = diag(m) and λ is a constant controlling our

confidence on the previous computed alpha. Differentiating

g(x) w.r.t. x and equating the result to zero:

∂g

∂x
= 2(L+ λD)x− 2λmT

f = 0 (11)

The optimal solution is

x = (L+ λD)−1(λmf ). (12)

After solving this linear system, we obtain not only αt+1

but also the refined αt for free. When erroneous alphas are

present, the K nearest neighbors are capable of nonlocally

averaging the alpha to ameliorate their effect. Unlike [12]

our alpha map on the previous frame is not motion-warped

to the current frame where the current alpha is being op-

timized. For moderate motion, αt is sufficient for provid-

ing the necessary soft constraint. For fast and rapid mo-

tion, optical flows tend to be inaccurate, thus the incorrectly
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surfer Optical Flow Too large λf Good λf walk Optical Flow Too small λf Good λf

Figure 8. Analysis on parameter λf . This parameter controls the influence of motion vectors. In videos such as surfer, λf should not be

too large because the optical flows are noisy and inaccurate, whereas in challenging example walk, larger λf can extract a clearer alpha

matte, since optical flow gives good estimation on the man’s movement.

warped alphas may introduce bad constraints, not to men-

tion that alpha warping introduces complication as the map-

ping is seldom one-to-one. When motion is inaccurate, we

can weaken the influence of optical flow (by adjusting λf )

so that color/texture information can dominate.

According to the implementation of [7] which is pub-

licly available, their affinity matrix is forced to be symmet-

ric, so that they can solve the sparse system using the pre-

conditioned conjugate gradient method, which runs about 5

times faster than the conventional conjugate method used

in [16, 17]. We use the biconjugate gradients stabilized

method (available in Matlab as bicgstab) to solve our

system. It turns out that the speed is even faster, i.e. 15 sec-

onds for two-frame Laplacian matrix on a computer with

Intel i7 2.6GHz CPU, note that the huge Laplacian system

is twice as large as the image matting Laplacian. We use

the VLFeat [26] to compute K nearest neighbors running

in a few seconds in total. As will be shown in the result

section, unlike [8] where kd-tree segmentation is used to

handle memory problem, our Laplacian matrix of smaller

size produces competitive results, with a closed-form solu-

tion that can be solved directly in Matlab.

5. Experimental Results
Table 1 gives a summary of running times and the values

of parameters used, which shows a variety of challenging

examples also used in recent contributions. In all, with our

simple KNN strategy comparable results are obtained. At

times we are a bit worse as we used motion-aware KNN

Laplacian and nothing else. We thus expect that, when our

motion-aware KNN Laplacian is adopted in state-of-the-art

Laplacian-based methods [3, 4, 8, 12, 14, 16, 17, 28, 23, 30],

they can be immediately benefited from the improved pixel

clustering as shown in Figure 2. Optical flow computation

using [22] is around one minute per frame and is not in-

cluded in the table.

Figure 4 shows the quantitative comparison on temporal

coherence with nonlocal video matting which will be ex-

plained in the sequel.

5.1. Effect of Parameters

We use a furry example kim and an example with solid

boundary surfer to evaluate the effect of different parame-

ters. Recall from (9) that λs controls the amount of spatial

coherence, λf the influence of optical flow, and λp the size

of an image patch. K is the number of nearest neighbors

for nonlocal matching.

Fixed λs, λf and λp, varying K. Figure 5 analyzes the

effect of different values of K while fixing all of the λ pa-

rameters. This shows that K is not critical: although the re-

sults look similar, smaller K allows for faster running time

while an overly large K produces irrelevant matches mani-

fested as unsightly matting artifacts while the overall quality

is still maintained. Using an excessively small K gives poor

estimation. We keep K = 15 unless otherwise stated in the

following experiments.

Fixed K, λf and λp, varying λs. Figure 6 shows the effect

of different λs which controls the spatial inter-frame and

intra-frame coherence. While a small λs produces a brittle

matte and a large λs over-smooths the result, we found a

wide range of λs between the two extremes produces visu-

ally good results.

Fixed K, λf and λs, varying λp. Figure 7 compares the

effects using different patch sizes. In general, since a larger

patch collects more textural information, a smoother bound-

ary will be encouraged. However, for hairy objects (top

row of Figure 7), a smaller patch can preserve details better,

when most hair strands have width of one pixel or less. Tex-

tural information is less useful for hairy foreground kim and

amira as the local texture at each hair strand is similar with

a lot of color ambiguities. In the following experiments, we

will keep λp = 3 unless otherwise stated.

Fixed K, λp and λs, varying λf . When λf = 0, no motion

is considered in the feature vector, then the KNN Laplacian

is similar to the multiframe nonlocal Laplacian [8], except

in the number of frames used (three in [8]) and in the affinity

matrix construction (asymmetric here). Figure 8 shows two

typical scenarios where improper λf can considerably dete-

riorate the alpha mattes: optical flow serves as a beneficial

motion cue for grouping relevant pixels under color ambi-

guities, but since inaccurate flow is sometimes inevitable, a

large λf in such case will give undesired results.

5.2. Baseline and Challenging Examples

Please view the supplemental material for full video re-

sults. Unless otherwise stated, only one trimap on a single

frame is given for KNN video matting. We first tested on

baseline examples kim and amira from [10]. Comparison

on kim with the latest nonlocal video matting [8] is shown in

Figure 9, which demonstrates that our motion-aware feature
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Frame 41 Frame 42 Frame 43

Figure 9. Comparison with nonlocal video matting [8] on Kim.

Second row is from [8], bottom row is ours. Based on the same

trimaps, we produce more accurate alpha mattes without additional

post-processing and matte regularization. We use λp = 1 to cap-

ture fine hairy details.

vector is effective in discerning ambiguous texture informa-

tion. We also perform quantitative comparison on tempo-

ral coherence, by measuring the difference in alpha values

between successive frames to quantify the amount of tem-

poral flicker [15]: D(i) = αi(t+1)−αi(t)
Ii(t+1)−Ii(t)

. Figure 4 shows

that motion-aware KNN Laplacian compares favorably to

the multi-frame Laplacian used in [8], given our straight-

forward implementation and that no matte regularization as

postprocessing is done in KNN video matting. This mea-

sure is by no means perfect, for example, in the case where

consecutive frames stay the same. Nonetheless, it is still

adopted here for simplicity and fairness. Better means for

quantitative comparison will be future work.

Color ambiguity and low contrast. When the foreground

and background have similar colors thus producing low

contrast edges, and in situations where texture falls short of

being discriminating, motion cues are useful in extracting

good nonlocal matches. Figure 1 shows that our motion-

aware feature vector works well in this complex situation.

In [8] their multi-frame nonlocal Laplacian does not ex-

plicitly consider optical flow information, which results in

blurry and unclear boundary.

Disocclusion and changing topology. Figure 10 demon-

strates that our method can naturally handle disocclusion

and changing topology via KNN search for nonlocal neigh-

bors, while video snapcut [4] produces a hard segmentation.

Sparse inputs. Figure 11 compares with geodesic video

matting [2] which also only needs sparse scribbles from the

user. Since motion-aware KNN Laplacian produces good

clusters, only sparse user markups are needed on the first

frame. The results in subsequent frames are automatically

computed via our closed-form solution.

Significant illumination changes. Figure 12 demonstrates

the robustness of our soft alpha constraints and motion-

aware feature vector in KNN video matting. Since the shad-

ing condition is changing over the sequence, color informa-

tion alone gives an inaccurate estimation on the foreground,

whereas the combination with motion vector is shown to be

effective in matting out the walking man, without the addi-

surfer Frame 21 Frame 22 Frame 23 Frame 24 Frame 25

Figure 10. Comparison with video snapcut [4] on surfer. This ex-

ample demonstrates that KNN video matting can handle disocclu-

sion and topological changes. Similar to [4], we do not apply any

user input on Frame 21 to 27; specifically, the only trimap pro-

vided is on the first frame. Notice the fine details (e.g. Frame 24)

we recovered compared to the hard segmentation in [4].

tional strokes needed in [4].

Fast motion and motion blur. We show in Figure 13 our

method’s ability to handle fast moving foreground where

the man stands up and then walks briskly away. With only

motion-aware KNN Laplacian, while our result is not visu-

ally as good as that in [10], no trimap propagation is done in

KNN video matting: only several trimaps on the keyframes

are supplied. This figure also shows a failure mode using

a challenging example on motion blur from [4]. A blurry

image/video in general is modeled by image convolution

rather than the image compositing equation (1) assumed in

alpha matting. Our system degrades gracefully although it

is hard to delineate the boundary between the foreground

and background.

6. Conclusion
We study the nonlocal principle applied to video mat-

ting and use motion to disambiguate complex situations

where colors and/or texture alone would fail. Conse-

quently, our motion-aware KNN Laplacian produces im-

proved pixel clustering. This allows for less user input (or

one trimap) and simple alpha constraint being incorporated

in the closed-form solution to handle significant illumina-

tion changes among other challenging cases. We analyzed

a handful of parameters which are quite easy to set while

we are looking for effective ways to automatically optimize

them. With its flexibility in defining feature vectors, KNN

Laplacian can be easily extended to include other useful in-

formation (e.g., depth) to improve results. With its simple

implementation, we expect that motion-aware KNN Lapla-

cian can be readily incorporated into Laplacian-based video

matting systems to benefit them with better moving pixel

clustering.
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