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Abstract

Occlusion presents a challenge for detecting objects in
real world applications. To address this issue, this paper
models object occlusion with an AND-OR structure which
(i) represents occlusion at semantic part level, and (ii) cap-
tures the regularities of different occlusion configurations
(i.e., the different combinations of object part visibilities).
This paper focuses on car detection on street. Since anno-
tating part occlusion on real images is time-consuming and
error-prone, we propose to learn the the AND-OR structure
automatically using synthetic images of CADmodels placed
at different relative positions. The model parameters are
learned from real images under the latent structural SVM
(LSSVM) framework. In inference, an efficient dynamic pro-
gramming (DP) algorithm is utilized. In experiments, we
test our method on both car detection and car view estima-
tion. Experimental results show that (i) Our CAD simula-
tion strategy is capable of generating occlusion patterns for
real scenarios, (ii) The proposed AND-OR structure model
is effective for modeling occlusions, which outperforms the
deformable part-based model (DPM) [6, 10] in car detec-
tion on both our self-collected street parking dataset and the
Pascal VOC 2007 car dataset [4], (iii) The learned model
is on-par with the state-of-the-art methods on car view esti-
mation tested on two public datasets.

1. Introduction
Handling occlusion is a challenging problem in object

detection since occlusion increases the intra-class variations

of an object category significantly. Taking the car-to-car

occlusion as an example illustrated in the left of Fig.1, the

occlusion configurations (i.e., the combinations of visible

parts) are all different for each car. This poses a difficult

problem on learning an object model, as the model needs to

encode a large number of occlusion configurations.

Modern object models such as DPM [6] and its 2D and

3D extensions [10, 34, 24] are fairly successful in detect-
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Figure 1. Illustration of our discriminative AND-OR structure for

frontal-side view cars. It organizes object parts into consistently

visible parts and optional part clusters, and then represents an ob-

ject with the consistently visible parts (i.e., AND) and one of the

optional part clusters (i.e., OR).

ing objects. Our objective is to extend these models so that

their parts can be re-configured to represent objects with

different occlusion configurations. Inspired by the expres-

sive power of AND-OR graph [35], we propose a simple

AND-OR structure (which is a directed and acyclic graph)

to model the occlusion configurations effectively.

Fig.1 illustrates the AND-OR structure on frontal-side

view cars. In this structure, a valid occlusion configuration

can be generated by composing (AND) the consistently vis-

ible parts together with one of (OR) the optional part clus-

ters. This structural representation is more compact than

plainly remembering individual configuration, yet it effec-

tively constrains the space of occlusion configurations as no

other unobserved configurations are allowed.

Because manually labelling views, parts and part occlu-

sion on real images are time-consuming and error-prone,

we propose to learn the AND-OR structure using a large set

of occlusion configurations generated by car CAD models

and a graphics rendering engine. By directly incorporat-

ing the appearance and deformation formulations from the

DPM [6] model, the parameters of this AND-OR structure
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can be discriminatively trained with real images under the

latent structure SVM (LSSVM) framework [32]. Because

the parts are shared by multiple occlusion configurations,

we can use images with different occlusion configurations

collectively to train them, which would be more efficient

and robust than training them individually. As the proposed

AND-OR structure is a directed and acyclic graph (DAG),

the efficient DP algorithm can be used in inference.

In experiments, we test our method on both car detection

and car view estimation. We use 5 different datasets includ-

ing (1) our synthetic dataset generated from car CAD mod-

els, (2) our street parking dataset collected for evaluating

the performance of handling occlusion (which will be re-

leased with this paper), (3) Pascal VOC 2007 [4] car dataset

for evaluating detection performance in general situation,

(4) Pascal VOC 2006 car dataset [5] and (5) 3D Car dataset

[26] for testing view estimation. The experimental results

show that (i) The proposed AND-OR structure is capable of

modeling occlusions effectively, which outperforms DPM

[6] with the latest implementation [10] significantly on our

street parking dataset and remains comparable on the PAS-

CAL VOC 2007 car dataset (which does not have many

occlusions between cars as pointed out by [15]). (ii) The

learned model is on-par with the state-of-the-art methods

on car view estimation.

2. Related Work and Our Contributions
Performance of generic object models [2, 6, 34, 14] de-

grades once the objects are partially occluded. For example,

many part-based deformable models compute object detec-

tion score as the summation over that of its parts [6, 31]. As

a consequence, if some parts are occluded, scores of these

part detectors would be very low, thus drags down the over-

all object score and might cause false negatives.

To extend these models for handling object occlusion,

one important issue is to estimate the visibilities of object

parts. Towards this problem, various occlusion models es-

timate the visibilities of parts from image appearance, us-

ing assumptions that the visibility of a part is independent

from other parts [30, 29, 13], is consistent with neighbour-

ing parts [7, 9], or is consistent with its parent or child parts

describing object appearance at different scales [3]. An-

other essential problem is to organize part configurations.

Recently, [9, 13] explored two different ways to deal with

this problem. In particular, [13] modelled different part con-

figurations by the local mixtures. [9] used a more flexible

grammar model to infer both the occluder and visible parts

of a occluded person.

We utilize the fact that parts are not occluded at random,

and model the overall structures or regularities in the visibil-

ity of all object parts. While the idea of modelling occlusion

structure is similar to [16], our paper is aimed at modelling a

strong occlusion prior for an entire object class, instead of a

generic prior suitable for regular objects on a table. For our

application, the latter one will be less informative as it av-

erages out the contribution of the object shape information

to the occlusion structure.

The AND-OR structure used in this paper is inspired by

the AND-OR graph [35], where most of the object mod-

els are generative with sparse image features. Our model

keeps the AND-OR structure for its compositional power,

but use semi-dense features [2] and discriminative learning

to achieve high performance in object detection and view

estimation. In the literature, [17] employed an AND-OR

Tree (AOT) for 3D car modelling, but not on occlusion.

The proposed approach uses CAD models to synthesize

the occlusion patterns under different object distances and

views. While several recent methods use the synthesized

images to learn part geometry [24] or detailed part appear-

ance [20], our method only uses them to learn the config-

uration structure of occlusion, where the appearance terms

are still trained using real images.

Finally, as this paper mainly concentrates on occlusion

modeling, we directly incorporate the ingredients of DPM

[6] for modeling object part appearance and deformation.

The main contributions of this paper include:

i) We propose a generic AND-OR structure to capture

the structure of various occlusion configurations by hierar-

chically composing a small number of object parts.

ii) We propose to simulate different occlusions using

weakly semantic parts of CAD models instead of manually

annotating them on real images.

iii) We introduce a street parking car dataset emphasizing

detection of cars with occlusions, as a benchmark for our

method and future methods.

3. The Discriminative AND-OR model
3.1. The AND-OR Structure and its Parameters
Fig.2 gives an overview of the learned full AND-OR

structure for the car category. The structure is a DAG which

encodes the patterns of visible part combinations observed

in occluded car images. Specifically, the structure is com-

posed of the following nodes:

i). A set of OR nodes VOR representing the options of se-
lecting one of their child nodes. There are two types of OR

nodes: a) the root OR node, which switches between object

models at different views. b) the occlusion OR nodes, which

connect to different optional part clusters that are visible

or occluded together in different occlusion configurations.

Each OR node O ∈ VOR has a branching variable denoted
by ω(O), indicating which one of its child nodes is selected,
and ω(O) will be inferred on-the-fly in detection.
ii). A set of AND nodes VAND denoting compositions

of object parts. According to their semantics, these AND

nodes are also organized into two groups: a) Object level

AND nodes, which collect all the parts in an occlusion con-

figuration. In the following, we treat the coarse overall ap-

pearance of an object (i.e. the ‘root’) as a generalized part of
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Figure 2. The learned AND-OR structure for cars. For clarity, we show a portion of the whole model. From the top to bottom, the root

node represents an object category (car) OR-node (dashed circle), which has a set of child AND-nodes (solid circle) representing different

view points. Each viewpoint AND-node consists of a small number of consistently visible parts (as terminal nodes plotted by rectangles)

and a occlusion OR-node. The occlusion OR-node represents optional parts subject to different occlusion patterns.

the object. b) Part cluster AND nodes. Each of these AND

nodes collects a subset of object parts that will become vis-

ible or invisible together in an occlusion configuration.

iii). A set of terminal nodes VT . These terminal nodes
encode the image appearance of the whole object as well

as its parts at different scales. Each terminal node t has its
own location, which will also be inferred during detection.

The inferred locations of the nodes represent positions of

the object and its visible parts. Each t also has a scale shift
parameter δst, denoting the difference of the feature scale
from that of its parent AND node. Currently, we fix the δs to
be 0 and 1 for generalized and object part node respectively,
which means they are always in neighbouring octaves in the

image pyramid.

These nodes define the structure of our AND-OR model,

and the parameters of this model include: 1.) A vector of

bias termsΘbias, each as a bias for an AND node. This term

balances the templates for different occlusion configura-

tions such that their scores are comparable. 2.) For terminal

nodes, there are parameters Θapp, Θgeo for modelling their

image appearance and geometry of a part. For simplicity,

we pack these parameters into Θ = (Θapp,Θgeo,Θbias).

Therefore, our AND-OR Structure model is defined as a

4-tuple:

AOT = (VAND,VOR,VT ,Θ) (1)

Our model could be transformed to a big mixtures-of-

DPM by removing part sharing and moving all OR nodes to

the root, which has more complexity and less robustness, as

there are no shared nodes (i.e. the consistently visible parts)

and shared training images in each view.

3.2. Scoring Functions of the AND-OR structure

Given an image I and its corresponding image feature
pyramid H such as HOG [2], the score S(·, ·) of a node in
the lattice Λ of the pyramid H is defined as follows:

i) For a terminal node t ∈ VT w.r.t. its placed parent

AND node A at u:

S(t|A, u) = maxv∈Λ(〈θappt ,Φapp(H, t, v)〉 −
〈θgeot|A ,Φ

geo
t|A(v, u)〉) (2)

where 〈·, ·〉 denotes the inner product, θappt and θgeot|A
are the parameters of node t, Φapp(H, t, v) retrieves
the appearance features cropped from pyramidH at lo-

cation v with the scale shifted according to δst. For the
geometry, we adopt the same quadratic penalty as in

DPM and thus Φgeo
t|A(v, u) = [dx2, dy2, dx, dy], where

dx and dy are the displacements of v from u.

ii) For an AND node A placed at u:

S(A, u) = S(O, u) +
∑

t∈T (A)
S(t|A, u) + θbA (3)

where O is the child OR node of A (if has), the func-

tion T (A) retrieves all the child terminal nodes of A,
and θbA is the corresponding bias.

iii) For an OR node O placed at u:

S(O, u) = max
A∈ch(O)

S(A, u) (4)

whereA denotes a child AND node ofO, and the func-
tion ch(O) retrieves all the child AND nodes of O.
Correspondingly, the branching variable is: ω(O) =
argmaxA∈ch(O) S(O, u).
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Figure 3. (a) To generate each occlusion configuration, we randomly choose values for the factors listed on the top-left corner, and generate
images using CAD models such as shown in the bottom-left. When generating images (shown in the second column), we use the color

coded model for the car instances in the center, and regular CAD models for the rest. The third column shows how to get the visible

annotation of a part (see text for details). Each of these images then contribute one row to the occlusion data matrix shown on the right,

where each column denotes if a part is visible (white) or not (gray). (b) An illustration of graph compression algorithm. Given the data
matrix D and the initial AOT which plainly remembering each occlusion configuration as a row in D, the algorithm iteratively pursues big

blocks of 1s (e.g. X,Y, Z). Here the biggest blockX corresponding to a subset of shared parts of the refined AOT (see the 1st subtree).

4. AND-OR Structure Learning
We propose to learn the AND-OR structure automati-

cally from a large number of occlusion configurations. Be-

cause of the ambiguity of views and the relatively large

number of parts (17 in our case), manually labelling views
and parts are time consuming and error-prone. Thus, we

learn the AND-OR structure on CAD data for the ease of

getting these annotations. Note that the synthetic data is

only used to learn the occlusion structure, while the appear-

ance and geometry parameters are still learned from real

data. Taking the number of views as the only parameter,

this structure learning process can be divided to 3 steps: (i)
generating occlusion configurations, (ii) constructing data

matrix for an initial AND-OR Tree (AOT), and (iii) refining

the initial AOT structure.

4.1. Generating occlusion configurations
We choose to put 3 cars in generating each occlusion im-

age, as this is a basic unit that can be used to further com-

pose general car-to-car occlusions. Specifically, we choose

the center and 2 other randomly selected positions on a 3×3
grid, and put cars around these grid points to simulate oc-

clusion. For each set of the position triplet, we randomly

choose values for a few factors controlling the occlusion,

and then extract an occlusion configuration from the gener-

ated images. Sample images generated using a pool of 40

car CAD models1 for the scene of street parking are shown

in Fig.3(a).

We assume that the occlusion configurations are affected

by following factors: car type t, orientation ρ , relative po-
sition r and camera view Π. To generate a configuration,
we randomly choose corresponding values for these fac-

tors, where for each car with type i, ρi ∈ {frontal,rear},
1 from www.doschdesign.com and Google 3d warehouse

ri = r
(0)
i + dr, where r

(0)
i is the nominated position for

the i-th car on the 3 × 3 grid, and dr = (dx, dy) is the
relative distance (along x axis and y axis) between sampled
position and nominated position of the i-th car. We assume
the camera view is in the range of azimuth ∈ [0, 2π] and
elevation ∈ [0, π/4], and discretize the view space into B
view bins uniformly along the azimuth angle. By changing

values of these parameters, we can generate many different

occlusion images for further processing.

As is shown in Fig.3(a), we manually segment a car into

17 parts (considering symmetry and simplicity), which are

coded with different colors. We generate two images for

each of the factor value combination, one as shown on the

top of the third column in Fig.3(a), and the other using only

the color coded car in the center, which is shown immedi-

ately below. In this way, we can detect if a part is occluded

by simply comparing the areas of that part on the two im-

ages. We assume a part is occluded if 60 percent of that part
is not visible.

4.2. Constructing initial AOT
With the part-level visibility information, we could get

two vectors for each occlusion configuration. The first one

is a (17 parts×B views) dimension binary valued vector v
for the visibilities of object parts, and the second one is a

real valued (( 1 root +17 parts) ×B views×4) dimension
vector b for the bounding boxes of the object and its parts.
In both vectors, entries corresponding to invisible parts are

set to 0.
Denoting M as the dimension of the vector v, and by

stacking v for N occlusion configurations, we can get an

N ×M occlusion matrixD, where the first few rows of this
matrix for B = 8 is shown in the last column of Fig.3(a).
Note that we have partitioned the view space into B views,

so for each row, the visible parts always concentrate in a
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segment of the vector representing that view.

To get an initial AOT, we assume that each row in D
corresponds to a small subtree of the root OR node. In par-

ticular, each subtree consists of an AND node as root and

a set of terminal nodes as its children. An example of the

data matrix and corresponding initial AOT are shown on the

top of Fig.3(b). Here each row ofD represents an occlusion

configuration, and each column represents a part. The part

is either visible (white), or occluded (gray). For better view-

ing, we just show the sub-trees for the 1st and 9th rows.

4.3. Refining AOT Structure
The initial AOT can be very large and redundant, since

it has many duplicated occlusion configurations (i.e. dupli-

cated rows in D) and a combinatorial number of part com-
positions. In the following, we will pursue a compact AND-

OR structure from the initial AOT. The problem can be for-

mulated as:

min

N∑
i

| vi − vi(AOT ) |22 +λ | AOT | (5)

where vi is the i-th row of the data matrix D, v(AOT ) re-
turns its most approximate occlusion configuration gener-

ated by the AOT, |AOT | is the number of nodes and edges
in the structure, and λ is the trade-off parameter balancing
the model precision and complexity. In each view, we as-

sume the number of occlusion branches is not greater than

K(= 4).
We solve Eqn.5 using a modified graph compression al-

gorithm similar to [27]. As illustrated in Fig.3(b), the algo-

rithm starts from the large initial AOT described above, and

iteratively combines branches as long as the introduced loss

is smaller than the decrements in complexity term λ|AOT |.
This process is equivalent to iteratively finding large blocks

of 1s on the corresponding data matrix through row and col-
umn permutations, where an example is shown on the bot-

tom of Fig.3(b). As there are consistently visible parts for

each view, the algorithm will quickly converge to the struc-

ture similar to Fig.2 (except the generalized parts in layer 1,

and they can be added afterwards).

With the refined AND-OR structure, we could get occlu-

sion configurations (i.e., the consistently visible parts and

optional occluded parts) in each view. Besides, the bound-

ing box sizes and nominal positions of each terminal node

w.r.t. its parent AND node can also be estimated by geo-

metric means of corresponding values in the vector b. These
information will be used to initialize the latent variables of

our model, which will be introduced later.

5. Parameters Learning and Model Inference
5.1. Discriminative Learning by LSSVM
We propose to learn the parameters of our model using

the LSSVM [34, 32]. The latent variables in our model and

the way to initialize them are listed as follows:

The view and occlusion configuration of each object
bounding box, which is related to the branching variable
V of the root OR node in layer 0 and the branching vari-
able ω(O) for OR nodes in layer 2 (see Fig.2). In practice,
there are two steps for initialization: (i) after the AND-OR

structure is learned, we train a temporary model just on syn-

thetic data. (ii) then we use the temporary model to “infer”

the view and occlusion configuration of each training posi-

tive on real data. This method is convenient and effective,

since these information are hard to annotate on real data and

synthetic data provides good gradient cues.

The location and bounding box for each visible part
under corresponding occlusion configuration. In training,
we initialize them using the corresponding attributes in the

learned AND-OR structure, which is described in the end

of Section 4.3.

All the latent variables will be re-estimated during train-

ing by solving argmax instead of max in Eqn.(4)(2). We
use the concave-convex procedure (CCCP) [33] to solve our

problem, where the details can be found in [33, 32, 34].

For the task of view estimation, to cope with the prob-

lem that objects are correctly localized but by wrong view

branches, we extend the loss function L in [1] as:

L(yn, y, z) =

⎧⎨
⎩

0, yn = y = −1

1− A(yn)∩A(y)
A(yn)∪A(y) , (yn = y = +1) ∧ (Vn = V )

1, otherwise

(6)

where A(·) is the area of a window, z is the latent variable
in our model, yn and Vn are the groundtruth label and view
annotation for the n-th training positive, y and V are the

accordingly predicted values.

5.2. Inference by Dynamic Programming (DP)
Since our AND-OR structure is a DAG, the inference can

be efficiently accomplished by DP. The algorithm consists

of a bottom-up pass and a top-down pass. The bottom-up

pass places our model at all positions and scales of the im-

age to compute appearance and geometry score maps for

every terminal node, as well as these for the AND and OR

nodes. This could be efficiently done by using the general-

ized distance transform [6]. Then on the score map of root

OR nodeG, we find the positions u that S(G, u) are greater
than a threshold and execute the top-down pass to retrieve

the latent variables. To eliminate multiple detections of the

same object instance, we use the non maximum suppression

(NMS) to get the final detection.

6. Experiments
6.1. A Street Parking Car Dataset
There are several datasets featuring a large amount of

car images [18, 26, 23, 4, 5], but they are not suitable to

evaluating occlusion handling, as the proportion of (mod-

erately or heavily) occluded cars is marginal. The recently
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proposed KITTI dataset [8] contains occluded cars parked

along the streets, but it is not a good dataset for our task

either, as 1) the car views are rather fixed as the video se-

quences are captured from a car driving on the road, and 2)

the evaluation protocol only counts cars with no or mild oc-

clusion (< 20%) in the testing set. To evaluate our model on
occlusion handling, we developed a large scale car dataset

emphasizing street parking cars with a large amount of oc-

clusions and diverse viewpoint changes (see Fig.7(b)). The

dataset is composed of 881 images, most of which are col-
lected by searching the internet and capturing cars on the

streets around our campus, besides, we also collect and an-

notate some street scene images from [25, 4]. Fig.4 shows

the bounding box overlap distribution and average number

of cars per image on our dataset. These two statistics can be

viewed as the summary of car occlusion distribution. For

image annotation, we adopt the weak annotation strategy,

and just label the bounding boxes of cars in each image. We

split the dataset into training and testing sets containing 440
and 441 images, respectively. This dataset will be released
to the public.

6.2. Detection
To evaluate our model on car detection task, we train and

test our model on three datasets. In all cases, we use the

DPM as the baseline model for comparison, as this is a very

competitive model with source code publicly available. In

practice, we use an experimental method to select the num-

ber of components for DPM2 and the number of views for

our model. Specifically, we train DPM with (2, 4, . . . , 24)
components, and our model with (6, 8, 10) views on each
of the following datasets. We use the best models of each

method for comparison.

Synthetic Dataset: In the first experiment, we test the
effectiveness of our AND-OR structure in representing dif-

ferent part occlusion configurations. For this purpose, we

generate a synthetic dataset using 5040 3 cars synthetic im-
ages as our training data, and a mixture of 3000 3 cars and
7 cars (we generate the 7 cars in a 1× 7 grid) synthetic im-
ages as our testing data. For each generated image, we add

the background from the category None of the TU Graz-02
dataset [22] and apply Gaussian blur to reduce the bound-

ary effects. Samples of both training and testing data can be

seen in Fig.7(a). On this dataset, the best DPM has 16 com-
ponents and the best AND-OR structure has 8 views with
19 occlusion branches, 5 layers and 111 nodes. As can be
seen on the left of Fig.5, our model outperforms the DPM

by 7.2% in AP. This experiment validates that our AND-OR

model builds a flexible structure that can be used to explic-

itly model occlusion.

Street Parking Dataset: We further compare our model
with the DPM on our self-collected dataset. On this dataset,

2We use source code from [10], and fix the number of latent parts to 8.

Pascal[4] KITTI[8] Street Parking

Avg. cars 1.75 ≈ 3 6.67
Figure 4. Top: we show the distribution of overlap ratio and cars

per image on our dataset. Bottom: we compare our dataset with

[4, 8] by the average number of cars within an image.

we directly use the AND-OR structure learned in previous

experiment (but retrain the model parameters using the real

images), and the best DPM has 20 components. We show
the results of both models in the middle of Fig.5. From the

figure, we can see that our model also outperforms the DPM

by 5.8% in AP, demonstrating that the AND-OR structure

learned from synthetic data could be applied to the real

scenarios. This also suggests that the occlusion configura-

tions in the synthetic data matches the real occlusion cases.

Compared with the previous experiment, our model shows

smaller performance increase from the DPM method. We

attribute this to the more cluttered background.

Fig.7(b) shows some examples of car detection results

by our model. The red rectangle shows the successful

cases, the blue bounding boxes show the missing detections

(we omit the cars smaller than 1000 pixels), and the green
bounding box shows the false alarms. From these examples,

it can be seen our model is able to detect the cars with small,

moderate occlusions as well as a considerable amount of

cars with severe occlusions. The failure cases are mainly

caused by severe occlusions (greater than 60% of the car

area is occluded), other occluders (e.g., trucks, trees, etc.),

and too large or too small bounding boxes (i.e., bounding

boxes includes more than one car or only a part of one car).

Pascal VOC 2007 Car Dataset: On the popular Pas-
cal VOC 2007 dataset [4], car-to-car occlusions are much

less frequent. This dataset is considered as a challenging

dataset, but as is analyzed in [15], there will be very slight

performance gain even if all the occlusions can be handled

successfully. So we mainly use this dataset to show that our

model can also be used in the general car detection task.

To approximate the occlusion configurations observed

on this dataset, we generate synthetic images with car-to-car

occlusion as well as with only car self-occlusions. For the

car-to-car occlusions, we use the full 3×3 grid instead of the
special case in the street parking dataset. Correspondingly,

the learned AND-OR structure contains branches for self-

occlusions as well as those for car-to-car occlusions. On

this dataset, the DPM has 6 components and the AND-OR
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Figure 5. Car detection performance comparisons in terms of Precision-Recall curves on synthetic dataset, street parking dataset and VOC

2007 car dataset [4].

structure has 6 views with 10 occlusion branches, 5 layers
and 109 nodes.
As is shown on the right of Fig.5, we can see that the per-

formance of our AND-OR structure model is comparable

with DPM. In detailed analysis, our model gets only a lit-

tle more recall than DPM, which meets the analysis in [15].

This experiment demonstrates that our AND-OR structure

method does not lose performance in general dataset.

6.3. View Estimation
To verify the capability of our model on view estimation,

we report the mean precision in pose estimation (MPPE) on

both Pascal VOC 2006 car dataset [5] and 3D Car dataset

[26] following the protocol in [12] and [26], respectively.

Since for view estimation, these two popular datasets both

emphasize visible cars, we model our AND-OR structure

using images only with self-occlusion. Table 1 shows a

comparison of our model with state-of-the-art methods on

these two datasets. We can see, our model is comparable or

better than recently proposed models.

7. Discussion
This paper presents a discriminative AND-OR structure

to model occlusions. The AND-OR structure is a DAG with

each subtree consisting of consistently visible parts and op-

tional part clusters. The structure of our model is learned

with the help of CAD simulation, where its parameters can

be trained using LSSVM. Experiments show that our CAD

simulation strategy is effective and our model is better than

the state-of-the-art model [6, 10] in terms of car detection

and view estimation. In future work, we would like to fur-

ther speed up the inference algorithm, and apply this model

to other categories such as pedestrians.

Beyond Bounding Box Localization. As our model

uses weakly semantic parts from synthetic training images,

the trained model can also be used to estimate the view and

visible parts, even though such supervision is not provided

in the training set. By simply tracking down the hidden

variables V and O that supports the object bounding box,

Fig.6 shows the estimated views and visible part locations

of a sample testing image. Here, string x-y means the car is
in view x with occlusion configuration y, corresponding to

Pascal VOC 2006 Car Dataset[5]

DPM [21] [12] [28] ours

MPPE 0.69 0.73 0.86 0.57 0.73

3D Car Dataset [26]

DPM [21] [19] [11] [24]1 [24]2 ours

AP 99.6 96 76.7 99.2 99.9 99.7 99.9
MPPE 86.3 89 70 85.3 97.9 96.3 94

Table 1. View Estimation on Pascal VOC 2006 Car Dataset [5] and

3D Car Dataset [26]. [24]1 and [24]2 refer to DPM-VOC+VP and

DPM-3D-Constraints, respectively.

4-24-1
4-34-2

Figure 6. For each predicted window, our algorithm is also capa-

ble of estimating the view and occlusion configuration (left), and

localizing object parts (right). Parts are colored as in CAD models

in Fig.3(a). See text for details.

the x-th AND node in layer 1 and y-th AND node within

the corresponding subtree in layer 3 in our AND-OR struc-

ture. The small bounding boxes with different colors on the

right image shows the locations of different semantic parts,

where the parts are colored in the same way as in Fig.3(a).

As a joint hierarchical representation, we believe our model

could be applied to other vision tasks such as modeling ac-

tivities involving object and human interactions.
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