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Abstract

Egocentric cameras can be used to benefit such tasks as
analyzing fine motor skills, recognizing gestures and learn-
ing about hand-object manipulation. To enable such tech-
nology, we believe that the hands must detected on the pixel-
level to gain important information about the shape of the
hands and fingers. We show that the problem of pixel-wise
hand detection can be effectively solved, by posing the prob-
lem as a model recommendation task. As such, the goal of
a recommendation system is to recommend the n-best hand
detectors based on the probe set – a small amount of la-
beled data from the test distribution. This requirement of a
probe set is a serious limitation in many applications, such
as ego-centric hand detection, where the test distribution
may be continually changing. To address this limitation, we
propose the use of virtual probes which can be automati-
cally extracted from the test distribution. The key idea is
that many features, such as the color distribution or rela-
tive performance between two detectors, can be used as a
proxy to the probe set. In our experiments we show that
the recommendation paradigm is well-equipped to handle
complex changes in the appearance of the hands in first-
person vision. In particular, we show how our system is
able to generalize to new scenarios by testing our model
across multiple users.

1. Introduction

Egocentric videos extracted from wearable cameras

(e.g., mounted on a person’s head, chest or shoulder) can

provide an up-close view of the human hands and their in-

teractions with the physical world. We believe that this

unique viewing perspective can be used to advance such

tasks as analyzing fine motor skills, recognizing gestures

and learning about hand-object manipulation. To enable

such technology, we also believe that the hands must be de-

tected on the pixel-level to gain important information about
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Figure 1. Ego-centric hand detection as a model recommendation

task. Virtual probe features are extracted at test time to recommend

the best detector performance.

the shape of the hands and fingers. Therefore, we aim to

extend the state-of-the-art in egocentric hand detection to

provide a more stable pixel-resolution detection of hand re-

gions. In particular, we will show that the problem of pixel-

wise hand detection can be effectively solved by posing the

problem as a model recommendation task. The role of our

proposed recommendation system is to suggest the n-best

hand detectors based on information extracted from the test

image.

In a typical recommendation task, information from the

test distribution is acquired through a small amount of la-

beled data from the test distribution called the probe set.
In the original context of recommendation systems such as

movie recommendation, that probe set can be easily ob-

tained by allowing a specific user to rank a small set of

movies, safely assuming that the preferences of the user

will not change drastically over time. In the case of egocen-

tric hand detection, the probe set would amount to a small

number of labeled pixels provided by the user. Based on

this information, the recommendation system could return

a set of scene appropriate detectors. However, in the case of

a first-person camera where the user is constantly moving,

the test distribution (i.e., appearance of the hands, imaging

conditions) is constantly undergoing change, rendering the

initial probe set invalid. It would be impractical to update

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.326

2624



the probe set dynamically, since this would require the user

to label new pixels very time he moves.

A major difference between our egocentric hand detec-

tion scenario and movie recommendation is that we have

access to a large amount of secondary information about the

test subject (i.e., the test image). While we do not have di-

rect information about hand regions, such information about

the brightness of the scene, objects in the scene and the

structure of the scene can give us clues about the imaging

conditions and help us infer what the hands might look like.

Our claim is that this secondary source of information can

be used to generate a virtual probe set to recommend the

best detector.

Based on this observation, we propose to frame hand re-

gion detection for egocentric videos as a model recommen-

dation task, where a dynamic virtual probe set is used to

recommend a set of detectors for a dynamically changing

test distribution. The contributions of this work are: (1) a

novel dynamic classifier selection methodology applied to

first-person hand detection and (2) a recommendation sys-

tem framework that does not require a labeled probe set.
In particular, we show that virtual probe features, namely

global appearance and detector correlation, can be use to

recommend the best detectors for test-time performance.

Moreover, we show the effectiveness of our approach by

showing improved performance on cross-user experiments

for egocentric hand detection.

2. Previous Work
Previously the extraction of hands for egocentric vision

has been posed as a figure-ground segmentation problem

using motion cues [15, 5, 13]. One of the major advan-

tages of motion-based hand detection approaches is that

they are robust to a wide range of illumination and imag-

ing conditions. A common feature among motion-based

segmentation techniques is that they need to compute the

dense [13] or sparse [15, 5] optical flow over a temporal

window to discover the motion subspace spanned by fore-

ground and background motion. A natural consequence of

motion-based approaches is that they have a hard time seg-

menting regions for cases of extreme motion (i.e. no motion

or large motion).

Traditional approaches to hand detection based on skin

color [7] require that the statistics of the appearance are

known in advance but have the benefit of being agnostic

to motion. However, a problem arises when the distribution

of hand skin color changes over time because a single skin

color classifier cannot account for these changes. Previous

work has explored the use of dynamic models to handle the

gradual change in appearance [17] but may be prone to drift-

ing when the change in the illumination is extreme.

In the case of an egocentric camera, the camera is mo-

bile and unconstrained (i.e. the user can walk indoors or

outdoors), so it is important that the hands can be detected

under a wide range of imaging conditions and also be ro-

bust to extreme motion. In a recent work, Li and Kitani [9]

have shown that hands can be detected at the pixel-level for

egocentric videos under different imaging conditions using

only appearance. In their framework, a global color his-

togram was used as a proxy feature to find a hand region

detector trained under similar imaging conditions. How-

ever, since a color histogram folds both the appearance and

illumination conditions onto a single feature space, it has

difficulty generalizing to new scenes with similar imaging

conditions but with different appearance (e.g. hand under

sunlight in a previously unseen environment).

Matikainen et al. [10] has shown that the recommenda-

tion system paradigm can be very effective for automated

visual cognition tasks such as action recognition, when only

a small amount of training data is available. However, in

their scenario the test distribution was assumed to be static.

As we have described above this is not the case for egocen-

tric hand detection where the test distribution is undergoing

constant change. We present a probe-free recommendation

approach over a dynamically changing test distribution.

A recommendation system approach differs from a stan-

dard supervised detection paradigm in that the detector is

given the ability to adaptively change its parameters based

on features extracted from the test distribution. Similar

ideas have been investigated in areas of domain adapta-

tion [14], transductive learning [6], kernel density ratio

estimation[18], multi-task learning [2] and list/sequence op-

timization [4]. While a full comparison of differing ap-

proaches is outside the scope of this paper, we believe that

leveraging the test distribution as part of the detection pro-

cess is a powerful approach when applied to many vision

tasks.

3. Preliminaries
Under our recommendation system paradigm, it is nec-

essary to define the (1) set of models, (2) set of tasks, (3) a

score (or ratings) matrix, (4) a set of probe models and (5)

the recommender system.

The set of tasks is a large set of labeled data

{xn,yn}Nn=1, where x is the data and y is the label. In

our scenario, each data sample x is a color image and y is

a pixel-wise labeling of the hand regions.

The set of models is a large pool of functions

{fm(x)}Mm=1, where each function generates a scalar value

response for each task. In our scenario, a model is a random

forest regressor that predicts a value between 0 and 1, where

the regressor has been trained on various subsets of an ego-

centric hand dataset using a specific set of image features

(e.g., color descriptors, texture descriptors). However, there

is no constraint on the type of classifier or input features, as

long as the features can be extracted from the test set and
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Figure 2. Sample images of the ego-centric videos used for evaluation.

models share a common output space.

The score matrix R ∈ R
M×N consists of the score

rmn = fm(xn) of the m-th model evaluated on the data

of the n-th task . The rows of the score matrix are indexed

by the models and the columns are indexed by the tasks. In

our scenario each element of the matrix contains the 0−1
loss computed by testing a regressor on a labeled image.

The set of probe models is a small number of models,

which are used to evaluate a small group of labeled data

from the test distribution (this small group of labeled data

is sometimes called the ‘training data’ but we will call it the

probe data to avoid confusion). The set of probe models

fp(x) is typically a subset of the collection of models. Later

we will introduce a disjoint set of models called the virtual

probe features as a proxy to this set of probe models.

The role of a recommendation system is to use the re-

sponse of the probe models on the probe data in order to

recommend the best model for evaluating the test set. The

recommendation system defines a mapping from probe re-

sponses to a model.

4. Detecting Pixel-wise Hand Regions
Due to the dynamic nature of first-person vision, we

would like to adaptively select an appropriate hand model

for every incoming image frame. In the following, we ex-

plain our use of virtual proxy features which can be used in

the place of a probe set, thereby allowing the model to re-

tain the predictive capabilities of a recommendation system

without the restriction of a labeled probe data set.

4.1. Virtual Probe Features

Since we do not have access to labeled probe data, we

would like to identify a set of proxy models or features

{f̂v(x)}Vv=1 to help define a mapping from the test image

to a list of high-performance detectors. We call this set

of proxy features as virtual probe features. We propose

two types of virtual probe features: (1) global appearance

features (extending the work of [9]) and (2) detector cross-

correlation features.

Global appearance features such as a HSV histograms

can be used as a proxy to the imaging conditions. Similarly,

a large HOG [3] feature extracted of the entire image, sim-

ilar to [16, 11] can be used to capture the structure of the

scene. A full list of appearance-based virtual probe features

are given in section 6.1 in Table 1.

In an effort to capture the predicted performance of de-

tectors on the test image, we also propose the use of de-

tector cross-correlation. For example, given a pair of de-

tectors, where one is always better in bright scenes and the

other is always better in low lit scenes, we can use the rela-

tive performance difference to infer the illumination of the

scene. To compute the detector cross-correlation score, we

first evaluate a base detector (e.g., a mean detector) and a

secondary detector on the test image to produce two re-

sponse maps. The cross-correlation score is computed by

aggregating the difference between the two response maps.

Notice that this process does not require any labeled data

since the cross-correlation score only encodes the relative

performance of the two detectors. A similar representation

was used in [10] for the internal representation of the score

matrix but we are using it here as the virtual probe feature.

4.2. Augmented Score Matrix

Under the analogy of movie recommendation, a rank-

ings database tell us how a particular user has ranked dif-

ferent movies. In the same way, our score matrix tells us

how each model performed on each training image. Typi-

cally the recommendation system uses this score matrix to

suggest a set of detector based on the response of the probe

models. However, since we do not have access to a probe

set and therefore cannot evaluate the probe models, we will

use a set of virtual probe features as a proxy to the probe
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Figure 3. Structure of the augmented score matrix – a concatena-

tion of models and virtual probe features on the training images.

models. This requires that we also store the response of the

virtual probe features as part of the score matrix.

The standard score matrix is a large matrix R ∈ R
M×N

of values indexed by a training image index n and a model

index m. Each element rmn ∈ R contains a scalar output

of a model m when tested on training image n. In our ex-

periments, rmn is the normalized 0-1 loss computed from

the thresholded output of a random tree regressor evaluated

on a training image.

To incorporate the virtual proxy features, we augment

the score matrix with virtual probe feature responses r̂vn on

the training data with the feature matrix R̂ ∈ R
V×N , where

V is the number of virtual probes. Concatenating the score

matrix with the features matrix, we obtain an augmented

score matrix R̃ ∈ R
(M+V )×N . A visualization of the trans-

pose of the augmented score matrix is given in Figure 3,

where each row is indexed by training images n and the

columns are indexed by models and virtual probe features.

4.3. Recommendation System

We would like our recommendation system to tell us the

best performing hand detector given an arbitrary test im-

age. In our scenario our recommendation system defines

a mapping h(r̂) → r, from a set of probe feature values

r̂ = f̂(xtest) extracted from a test image xtest to the es-

timated scores of the all models r = f(xtest) on the test

image. Following [10], we describe several strategies we

evaluate for learning the recommendation (mapping) func-

tion h(r̂).

4.3.1 Factorization

Matrix factorization can be used to discover a latent low

dimensional representation of the augmented score matrix.

We use non-negative matrix factorization [8] to decompose

the augmented score matrix, R̃ = Ũ�W̃, where U is a

non-negative (M + V ) ×K matrix and W̃ a non-negative

K × N matrix. Ũ spans a K dimensional imaging sub-

space and W describes each of the N training images as a

K-dimensional mixture vector. Recall that the rows of the

augmented score matrix can be separated into the V virtual

probe responses and M model responses. At test time, the

virtual probe features of the test image r̂ can be used to

solve for the weight vector θ of the sub-matrix Û to satisfy

Û�θ = r̂. (1)

Then to predict the models response on the test image, we

solve r = U�θ.

4.3.2 Sparse Coding

A sparsity prior can also be enforced on the matrix R̂ via a

sparse weight vector α, which is used to select a sparse set

of virtual probe features to span the imaging conditions. An

optimal sparse weight vector is computed by

α∗ = argmin
α
‖r̂ − R̂α‖22 + τ‖α‖1, (2)

where r̂ are the responses of the virtual probe features on

the test image, R̂ are the rows of the augmented score ma-

trix corresponding to the virtual probe features, and α is

the vector of weights for the sparse reconstruction. τ is the

sparsity hyper-parameter. Once α∗ has been computed, the

predicted model responses r can be computed simply as the

weighted combination of columns of R.

4.3.3 Nearest Neighbor

Another simple way to map a set of virtual probe features

r̂ to model scores r, is to treat the virtual probe features

as a direct index into the augmented score matrix. At test

time, we extract the virtual probe features and then find the

training image with the most similar virtual probe feature

response distribution using a nearest neighbor search. This

is the same approach used in [9], where a HSV color his-

togram was used as an index to find the nearest image frame

in the database and then used a set of classifiers associated

with that image on the test image. It was shown that this

feature can be effective when the dataset is always a super-

set of the test images.

4.3.4 Non-linear Regression

Since our augmented score matrix is dense (no missing

data) we can take a step further and attempt to learn a non-

linear mapping between virtual probe features r̂ and model

scores r with a non-linear regressor g(r̂) → r. In our ex-

periments we evaluate a random forest regressor to estimate

test time model scores.

5. Hand Region Segmentation
While our proposed pixel-level detection of hand regions

is robust in various scenarios, it also important to ensure
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Figure 4. Hand region detection results: per-pixel likelihood (top), segmentation (middle) and final result (bottom).

global consistency between pixel-wise detections using top-

down cues. As in many segmentation techniques, we for-

mulate the task of hand region contour segmentation as an

energy minimization problem [1] over super-pixel regions

[13, 15, 5]. Our spatio-temporal super-pixel graph aims

to extract consistent regions by modeling temporal smooth-

ness, spatial smoothness and a spatial prior.

Our energy function is defined as

log p(L|x) =
∑
i

φlike
i li +

∑
i

θφpos
i li

+
∑
ij

λφspat
ij

[
2lilj − (li + lj) + 1

]

+
∑
ik

νφtemp
ik

[
2lilk − (li + lk) + 1

]
,

(3)

where i indexes the superpixels at time t, j indexes all spa-

tially neighboring super-pixel at time t, and k indexes all

temporally neighboring superpixels within a finite temporal

window. An illustration of the spatial and temporal poten-

tials are given in Figure 5. The optimization yields segmen-

tation results visualized in Figure 4.

The unary likelihood potential φlike is defined as the log

odds, the mean hand likelihood of all pixels within a super-

pixel belonging to the foreground class divided by the likeli-

hood of the background class. Likewise the unary position

prior φpos is computed from the mean position likelihood

of pixels (computed from a 2D Gaussian centered at the

centroid of the nearest connected component ). The spa-

tial binary potentials φspat
ij is defined as the probability of

the mean LAB values of super-pixel j, modeled by a Gaus-

sian centered at the mean of super-pixel i. Following [19],

t

φspat

φtemp φtemp

t-3 t+3

Figure 5. Visualization of the binary potentials of our spatio-

temporal graph used for segmentation.

the temporal binary potential φtemp
ik is an indicator function

that is unity when two super-pixels overlap, where overlap

is computed at the spatial intersection of two super-pixels i
and k, after super-pixel i has been shifted according to the

average optical flow between time t and t + w (the time

index of super-pixel k). We use a temporal window of ± 6.

6. Experimental Evaluation

We use three publicly available ego-centric datasets to

evaluate our proposed hand detection algorithm. The CMU

EDSH dataset contains three sequences, containing over

400 pixel-level image labels [9]. As this dataset was created

for hands under varying illumination, the hands of one per-

son is recorded under various imaging conditions but does

not contain a wide range of actions. We use videos from

6 different subjects from the UCI dataset [12], where users

are engaged in various activities of daily living (ADL). This
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dataset is the most challenging, as video is taken by a chest

worn camera (fingers are harder to detect) and taken in a

wide range of indoor imaging conditions. We also used the

Georgia Tech egocentric activities (GTEA) dataset [5] to

test our segmentation algorithm.

For all of our experiments, we use the local patch-based

random forest regressor used in [9] as our base detector us-

ing LAB, HSV and BRIEF features.

6.1. Evaluating Probe Features

In this experiment we are interested in the ability of vir-

tual probe features (global appearance features and detec-

tor cross-correlation features) to improve the performance

of hand detection. We tested 20 different variations of vir-

tual probe combinations over the CMU EDSH dataset and

the UCI ADL dataset. The set of models for the CMU

EDSH dataset were generated from the EDSH1 video, by

clustering images by their HSV histogram and training a

separate model for each cluster. We used the same proce-

dure for the UCI ADL dataset to generate a pool of models.

For the EDSH data the average of the top 19 models were

used to compute the F-measure and in the ADL dataset the

weighted average of the top 5 models were used to com-

pute the F-measure. NMF was used as the recommendation

technique. The results are summarized in Table 1.

The baseline method is a single detector trained on all

the training data. This baseline represents a model without

any concept of model recommendation and therefore has no

virtual probe features. Since the model is forced to repre-

sent all hand features with a single model it yields the lowest

performance.

First, we evaluated HSV color histograms and global

HOG [3] over a variety of spatial bins as a virtual probe

feature. The HSV histogram is 64d (4 × 4 × 4) and the

HOG template is 81d. The F-measures of the appearance

features are given to the left of the slash symbol in Table

1. We can see from the distribution of scores in bold, that

the HSV-based virtual probes obtain the best performance

for the majority of datasets. Although in 4 of the 8 ADL

datasets the HOG feature also generates the best score. This

indicates that both the color of the scene and the structure

of the scene are helpful in determining the best selection of

models.

Second, we evaluated cross-correlation features. We

treat the output of a mean model f0 as ‘true’ and compute

the 0-1 loss of another model m with respect to the out-

put of the mean model. For each test of the CMU EDSH

dataset, the number of models was M = 242 (including

the mean model) and therefore has M − 1 cross-correlation

features. Each test of the UCI ADL dataset utilized 180

models. The F-measure obtained by the addition of the

cross-correlation feature is given to the right of the slash

symbol in Table 1. We see from the right-most column that

Table 1. Evaluating different variations of probe features. Left of

slash is the F-measure with only global feature and the right of

slash performance combined with cross-correlation features.

Virtual Probe EDSH2 EDSH-K ADL (avg.)

No Probe 0.788 0.806 0.265

HSV (1) 0.821 / 0.844 0.849 / 0.822 0.302 /0.351

HSV (top/bot) 0.822 / 0.847 0.846 / 0.822 0.229 /0.348

HSV (2 by 2) 0.825 / 0.845 0.839 / 0.822 0.212 /0.309

HSV (3 by 3) 0.824 / 0.848 0.837 / 0.82 0.215 /0.342

HSV (1+3) 0.820 / 0.846 0.841 / 0.823 0.264 /0.331

HoG (1) 0.752 / 0.836 0.801 / 0.814 0.285 / 0.358
HoG (top/bot) 0.768 / 0.838 0.807 / 0.811 0.235 /0.339

HoG (2 by 2) 0.777 / 0.843 0.807 / 0.813 0.200 /0.325

HoG (3 by 3) 0.774 / 0.836 0.808 / 0.814 0.200 /0.307

Corr. only 0.000 / 0.843 0.000 / 0.810 0.000 /0.339

Table 2. Evaluating recommendation strategies.

Recommendation EDSH2 EDSH-K ADL AVG

NMF 0.834 0.811 0.322

SC 0.781 0.812 0.252

KNN 0.843 0.805 0.384
RF 0.848 0.825 0.357

No Probe (single) 0.765 0.800 0.265

Sparse Feature [9] 0.781 0.808 0.346

the cross-correlation feature improves performance on av-

erage. This indicates that the cross-correlation feature is

indeed encoding useful information about performance on

the test distribution.

6.2. Comparing Recommendation Strategies

We now compare the four recommendation strategies ex-

plained in section 4.3 and two baseline models. For each

recommendation experiment, we use the same parameters

as the previous experiment but using the best combination

of virtual probe features (i.e. the best HSV, best HOG and

cross-correlation feature combination).

Table 2 shows that our recommendation approach beats

the state-of-the-art detection of [9]. Furthermore, we ob-

serve that the non-linear models (NN regression and RF re-

gression) perform better than the linear factorization (NMF

and SC) models on both datasets. Non-linear models have

the benefit of capturing more complex mappings between

the probe features and the unobserved features. However,

non-linear models also have two drawbacks. First, a large

number of virtual features increases the possibility of over-

fitting to the data in the score matrix. Second, in the case

of the RF model, the mapping from virtual probes to model

scores is expensive, since a single RF model is trained for

each entry of the score matrix. We will analyze and evaluate

these characteristics in the next section 6.3.

6.3. Minimizing Correlation Feature Usage

In the previous experiments, many cross-correlation fea-

tures were used as virtual probe features. However, since
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Figure 6. Performance versus number of correlation probe fea-

tures. Only a small number (around 10) of probes are necessary

for robust and efficient performance.

each cross-correlation requires the evaluation of the entire

test image, using a large number of cross-correlation fea-

tures can be expensive and not practical for real-time appli-

cations that require a fast response time. Also as mentioned

previously, a large number of probe features can also cause

the non-linear recommendation schemes to over-fit to the

data. In this section, we examine the tradeoff between com-

putation time and performance, by varying the number of

virtual cross-correlation probe features.

We plot the change in performance on the EDSH dataset

by increasing the number of cross-correlation probe fea-

tures. The number of global appearance probe features

(combination of HSV and HOG features) remains con-

stant throughout. When the number of probes is 0, only

the global appearance features are being used. Figure 6

shows the results for the top performing non-linear recom-

mendation strategies using the random forest (RF) and k-

nearest neighbors (KNN). The dotted lines indicate the per-

formance when all 241 cross-correlation features are used.

Although we expected the RF recommendation approach

to overfit to the data, we observed that the RF is relatively

stable. We believe this robustness comes from the built-in

random features selection process of the RF model. When

the set of models is smaller than the number of pixels in

the test image, the RF model will be the most efficient ap-

proach. It is interesting to note that the simple KNN ap-

proach can obtain the same level of performance as the RF

approach when about 30 cross-correlation features are used

but it also quickly overfits as more features are introduced.

6.4. Evaluating Potentials for Post-Processing

In our segmentation step we introduced an energy func-

tion based on three potential functions and a label bias pa-

rameter. Table 3 shows the results of ablative analysis by

removing one potential at a time. F-measures values are

given for the EDSH dataset and GTEA dataset. We ob-

served that the temporal potential provided the greatest con-

tribution, especially on the EDSH dataset which contains

Table 3. Time-Space MRF with one parameter fixed in zero

EDSH2 EDSH-K GT-T GT-P

All parameters 0.828 0.883 0.911 0.800

No position prior (θ = 0) 0.812 0.874 0.898 0.791

No temporal smoothing (ν = 0) 0.806 0.872 0.897 0.784

No spatial smoothing (λ = 0) 0.827 0.863 0.894 0.784

All parameters (keep 3 contours) 0.828 0.886 0.942 0.825

Figure 7. Segmentation results on the GTEA dataset.

Table 4. Cross-User Performance on the UCI ADL dataset. Leave-

one-out style training where probe includes global appearance and

detector cross-correlation features.

Probe User1 User2 User3 User4 User5 User6 avg.

No probe 0.204 0.209 0.326 0.172 0.342 0.337 0.265

NMF 0.199 0.291 0.572 0.169 0.288 0.413 0.322

SC 0.186 0.321 0.386 0.135 0.068 0.418 0.252

KNN 0.254 0.414 0.569 0.358 0.232 0.480 0.384
RF 0.274 0.298 0.650 0.232 0.327 0.362 0.357

large degrees of ego-motion, where the user is walking for

most of the sequence. The best performance was achieved

by using all potentials. We also obtain a small improve-

ment when we use a simple post-process step to keep only

the top 3 largest contours. Examples of segmentation from

the GTEA dataset are given in Figure 7 and results for the

EDSH dataset are given in Figure 4.

6.5. Cross-user Performance

Many first-person vision systems can be personalized to

a single user since the camera will only be used for one per-

son. However, in other applications, it may not be possible

to gather labeled pixel-wise ground truth data of a specific

user. Therefore, we would like to know the performance of

our proposed approach when we are not given any training

data for the test user. For this experiment we use only the

ADL dataset, since the EDSH dataset only contains data for

a single person.

Table 4 shows the performance of cross-user perfor-

mance on the UCI ADL dataset, where training data from

5 users are tested on single held out user in a leave-one-out

style rotation of the data. We use the same no probe sin-

gle detector baseline to show how our recommendation ap-

proach can be used to adapt to new users in various lighting

conditions. A sample of the final output is given in Figure

8. The absolute scores and segmentations (Figure 9) are far

from perfect. This shows the challenging nature of detect-

ing hands in real life scenarios especially in very dim lit

scenes where it is hard to detect skin texture.
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Figure 8. Sample results on the UCI ADL dataset.

Figure 9. Incomplete detections.

7. Conclusion

In this work it was our aim to extend the state-of-the-

art in egocentric hand detection to provide a more stable

pixel-resolution detection of hand regions. In particular, we

showed that the problem of pixel-wise hand detection can

be effectively solved, by posing the problem as a model

recommendation task. Through quantitative analysis we

showed that our proposed approach is able to retrieve the

best hand detectors based on global appearance features

and cross-correlation feature extracted from the test im-

age. We also evaluated the role of proper post-processing

and showed that pixel-level detections should be verified

by a top-down post-processing step to ensure certain global

properties about the hands. In our experiments we showed

robust hand detection by testing our model across multiple

users and showed that our proposed approach attains state-

of-the-art performance.
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