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Abstract

This paper introduces an automatic method for remov-
ing reflection interference when imaging a scene behind a
glass surface. Our approach exploits the subtle changes in
the reflection with respect to the background in a small set
of images taken at slightly different view points. Key to this
idea is the use of SIFT-flow to align the images such that
a pixel-wise comparison can be made across the input set.
Gradients with variation across the image set are assumed
to belong to the reflected scenes while constant gradients
are assumed to belong to the desired background scene.
By correctly labelling gradients belonging to reflection or
background, the background scene can be separated from
the reflection interference. Unlike previous approaches that
exploit motion, our approach does not make any assump-
tions regarding the background or reflected scenes’ geom-
etry, nor requires the reflection to be static. This makes
our approach practical for use in casual imaging scenar-
ios. Our approach is straight forward and produces good
results compared with existing methods.

1. Introduction and Related Work

There are situations when a scene must be imaged behind

a pane of glass. This is common when “window shopping”

where one takes a photograph of an object behind a win-

dow. This is not a conducive setup for imaging as the glass

will produce an unwanted layer of reflection in the resulting

image. This problem can be treated as one of layer separa-

tion [7, 8], where the captured image I is a linear combi-

nation of a reflection layer IR and the desired background

scene, IB , as follows:

I = IR + IB . (1)

The goal of reflection removal is to separate IB and IR from

an input image I as shown in Figure 1.

This problem is ill-posed, as it requires extracting two

layers from one image. To make the problem tractable ad-

ditional information, either supplied from the user or from

Input images

�� �� �� ��

�� ���

Fig. 1. Example of our approach separating the background (IB)

and reflection (IR) layers of one of the input images. Note that the

reflection layer’s contrast has been boosted to improve visualiza-

tion.

multiple images, is required. For example, Levin and Weis-

s [7, 8] proposed a method where a user labelled image

gradients as belonging to either background or reflection.

Combing the markup with an optimization that imposed a

sparsity prior on the separated images, their method pro-

duced compelling results. The only drawback was the need

for user intervention. An automatic method was proposed

by Levin et al. [9] that found the most likely decomposition

which minimized the total number of edges and corners in

the recovered image using a database of natural images. As
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with example-based methods, the results were reliant on the

similarity of the examples in the database.

Another common strategy is to use multiple images.

Some methods assume a fixed camera that is able to capture

a set of images with different mixing of the layers through

various means, e.g. rotating a polarized lens [3, 6, 12, 16,

17], changing focus [15], or applying a flash [1]. While

these approaches demonstrate good results, the ability of

controlling focal change, polarization, and flash may not al-

ways be possible. Sarel and Irani [13, 14] proposed video

based methods that work by assuming the two layers, reflec-

tion and background, to be statistically uncorrelated. These

methods can handle complex geometry in the reflection lay-

er, but require a long image sequence such that the reflection

layer has significant changes in order for a median-based

approach [21] to extract the intrinsic image from the se-

quence as the initial guess for one of the layers.

Techniques closer to ours exploit motion between the

layers present in multiple images. In particular, when the

background is captured from different points of view, the

background and the reflection layers undergo different mo-

tions due to their different distance to the transparent layer.

One issue with changing viewpoint is handling alignment

among the images. Szeliski et al. [19] proposed a method

that could simultaneously recover the two layers by assum-

ing they were both static scenes and related by parametric

transformations (i.e. homographies). Gai et al. [4, 5] pro-

posed a similar approach that aligned the images in the gra-

dient domain using gradient sparsity, again assuming static

scenes. Tsin et al. [20] relaxed the planar scene constraint

in [19] and used dense stereo correspondence with stereo

matching configuration which limits the camera motion to

unidirectional parallel motion. These approaches produce

good results, but the constraint on scene geometry and as-

sumed motion of the camera limit the type of scenes that

can be processed.

Our Contribution Our proposed method builds on the

single-image approach by Levin and Weiss [8], but removes

the need for user markup by examining the relative motion

in a small set (e.g. 3-5) of images to automatically label

gradients as either reflection or background. This is done

by first aligning the images using SIFT-flow and then ex-

amining the variation in the gradients over the image set.

Gradients with more variation are assumed to be from re-

flection while constant gradients are assumed to be from

the desired background. While a simple idea, this approach

does not impose any restrictions on the scene or reflection

geometry. This allows a more practical imaging setup that

is suitable for handheld cameras.

The remainder of this paper is organized as follows. Sec-

tion 2 overviews our approach; section 3 compares our re-

sults with prior methods on several examples; the paper is

concluded in section 4.

Warped ���
  

Warped ���

Recovered ����

Recovered ����

Recovered ����

Recovered ����

Fig. 2. This figure shows the separated layers of the first two input

images. The layers illustrate that the background image IB has lit-

tle variation while the reflection layers, IRi , have notable variation

due to the viewpoint change.

2. Reflection Removal Method
2.1. Imaging Assumption and Procedure

The input of our approach is a small set of k images taken

of the scene from slightly varying view points. We assume

the background dominates in the mixture image and the im-

ages are related by a warping, such that the background is

registered and the reflection layer is changing. This rela-

tionship can be expressed as:

Ii = wi(IRi
+ IB), (2)

where Ii is the i-th mixture image, {wi}, i = 1, . . . , k are

warping functions caused by the camera viewpoint change

with respect to a reference image (in our case I1). Assuming

we can estimate the inverse warps, w−1
i , where w−1

1 is the

identity, we get the following relationship:

w−1
i (Ii) = IRi

+ IB . (3)

Even though IB appears static in the mixture image, the

problem is still ill-posed given we have more unknowns

than the number of input images. However, the presence

of a static IB in the image set makes it possible to identify

gradient edges of the background layer IB and edges of the

changing reflection layers IRi
. More specifically, edges in

IB are assumed to appear every time in the image set while

the edges in the reflection layer IRi are assumed to vary

across the set. This reflection-change effect can be seen in

Figure 2. This means edges can be labelled based on the fre-

quency of a gradient appearing at a particular pixel across

the aligned input images. After labelling edges as either

background or reflection, we can reconstruct the two layers

using an optimization that imposes the sparsity prior on the

separated layers as done by [7, 8]. Figure 3 shows the pro-

cessing pipeline of our approach. Each step is described in

the following sections.
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Fig. 3. This figure shows the pipeline of our approach: 1) warping functions are estimated to align the inputs to a reference view; 2) the

edges are labelled as either background or foreground based on gradient frequency; 3) a reconstruction step is used to separate the two

layers; 4) all recovered background layers are combined together to get the final recovered background.

2.2. Warping

Our approach begins by estimating warping functions,

w−1
i , to register the input to the reference image. Previous

approaches estimated these warps using global parametric

motion (e.g. homographies [4, 5, 19]), however, the planari-

ty constraint often leads to regions in the image with mis-

alignments when the scene is not planar.

Traditional dense correspondence method like optical

flow is another option. However, even with our assump-

tion that the background should be more prominent than the

reflection layer, optical flow methods (e.g. [2, 18]) that are

based on image intensity gave poor performance due to the

reflection interference. This led us to try SIFT-flow [10]

that is based on more robust image features. SIFT-flow [10]

proved to work surprisingly well on our input sequences

and provide a dense warp suitable to bring the images into

alignment even under moderate interference of reflection.

Empirical demonstration of the effectiveness of SIFT-flow

in this task as well as the comparison with optical flow are

shown in our supplemental materials.

Our implementation fixes I1 as the reference, then us-

es SIFT-flow to estimate the inverse-warping functions

{w−1
i }, i = 2, . . . , k for each of the input images I2, . . . , Ik

against I1. We also compute the gradient magnitudes Gi of

the each input image and then warp the images Ii as well as

the gradient magnitudes Gi using the same inverse-warping

function w−1
i , denoting the warped images and gradien-

t magnitudes as Îi and Ĝi.

2.3. Edge separation

Our approach first identifies salient edges using a simple

threshold on the gradient magnitudes in Ĝi. The resulting

binary edge map is denoted as Ei. After edge detection,

the edges need to be separated as either background or fore-

ground in each aligned image Îi. As previously discussed,

the edges of the background layer should appear frequently

across all the warped images while the edges of the reflec-

tion layer would only have sparse presence. To examine the

sparsity of the edge occurrence, we use the following mea-

surement:

Φ(y) =
‖y‖22
‖y‖21

, (4)

where y is a vector containing the gradient magnitudes

at a given pixel location. Since all elements in y are

non-negative, we can rewrite equation 4 as Φ(y) =∑k
i=1 y

2
i /(

∑k
i=1 yi)

2. This measurement can be consid-

ered as a L1 normalized L2 norm. It measures the sparsity

of the vector which achieves its maximum value of 1 when

only one non-zero item exists and achieve its minimum val-

ue of 1
k when all items are non-zero and have identical val-

ues (i.e. y1 = y2 = . . . = yk > 0). This measurement is

used to assign two probabilities to each edge pixel as be-

longing to either background or reflection.

We estimate the reflection edge probability by examining
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the edge occurrence, as follows:

PRi
(x) = s

(
∑k

i=1 Ĝi(x)2

(
∑k

i=1 Ĝi(x))2
− 1

k

)
, (5)

where, Ĝi(x) is the gradient magnitude at pixel x of Îi. We

subtract 1
k to move the smallest value close to zero. The s-

parsity measurement is further stretched by a sigmoid func-

tion s(t) = (1 + e−(t−0.05)/0.05)−1 to facilitate the sepa-

ration. The background edge probability is then estimated

by:

PBi(x) = s

(
−
(

∑k
i=1 Ĝi(x)2

(
∑k

i=1 Ĝi(x))2
− 1

k

))
, (6)

where PBi(x) + PRi(x) = 1. These probabilities are de-

fined only at the pixels that are edges in the image. We con-

sider only edge pixels with relatively high probability in ei-

ther the background edge probability map or reflection edge

probability map. The final edge separation is performed by

thresholding the two probability maps as:

EBi/Ri
(x) =

⎧⎨
⎩

1, Ei(x) = 1 and PBi/Ri
(x) > 0.6

0, otherwise

Figure 4 shows the edge separation procedure.

2.4. Layer Reconstruction

With the separated edges of the background and the re-

flection, we can reconstruct the two layers. Levin and Weis-

Warped gradients �	
Graphs show magnitude of gradi-
ents for each image at a given pixel  

���
�� 
�� ���

1           2           3           4          5

Fig. 4. Edge separation illustration: 1) shows the all Ĝ gradient

maps – in this case we have five input images; 2) plots the gradient

values at two position across the five images - top plot is a pixel on

a background edge, bottom plot is a pixel on a reflection edge; 3)

shows the probability map estimated for each layer; 4) Final edge

separation after thresholding the probability maps.

s [7, 8] showed that the long tailed distribution of gradi-

ents in natural scenes is an effective prior in this problem.

This kind of distributions is well modelled by a Laplacian

or hyper-Laplacian distribution (P (t) ∝ e−|t|
p/s, p = 1 for

Laplacian and p < 1 for hyper-Laplacian). In our work,

we use Laplacian approximation since the L1 norm con-

verges quickly with good results. For each image Îi , we

try to maximize the probability P (IBi
, IRi

) in order to sep-

arate the two layers and this is equivalent to minimizing

the cost − logP (IBi
, IRi

). Following the same deduction

in [7], with the independent assumption of the two layer-

s (i.e. P (IBi , IRi) = P (IBi) · P (IRi)), the objective func-

tion becomes:

J(IBi) =
∑
x,n

|(IBi
∗ fn)(x)|+ |((Îi − IBi

) ∗ fn)(x)|

+ λ
∑
x,n

EBi
(x)|((Îi − IBi

) ∗ fn)(x)|

+ λ
∑
x,n

ERi
(x)|(IBi

∗ fn)(x)|,
(7)

where fn denotes the derivative filters and ∗ is the 2D con-

volution operator. For fn, we use two orientations and t-

wo degrees (first order and second order) derivative filters.

While the first term in the objective function keeps the gra-

dients of the two layer as sparse as possible, the last two

terms force the gradients of IBi at edges positions in EBi

to agree with the gradients of input image Îi and gradients

of IRi
at edge positions in ERi

agree with the gradients of

Îi. This equation can be further rewritten in the form of

J = ‖Au− b‖1 and be minimized efficiently using iterative

reweighted least square [11].

2.5. Combining the Results

Our approach processes each image in the input set inde-

pendently. Due to the reflective glass surface, some of the

images may contain saturated regions from specular high-

lights. When saturation occurs, we can not fully recover the

structure in these saturated regions because the information

about the two layers are lost.

In addition, sometimes the edges of the reflection in

some regions are too weak to be correctly distinguished.

This can lead to local regions in the background where the

reflection is still present. These erroneous regions are often

in different places in each input image due to changes in

the reflection. In such cases, it is reasonable to assume that

the minimum value across all recovered background layers

may be a proper approximation of the true background. As

such, the last step of our method is to take the minimum of

the pixel value of all reconstructed background images as

the final recovered background, as follows:

IB(x) = mini IBi
(x). (8)

24352435



Warped �� Recovered ���

Warped �� Recovered ���

Combined
��

Patches 
in ���

Patches 
in ��

Patches 
in ���

Patches 
in ��

. . .

. . .

Fig. 5. This figure shows our combination procedure. The recov-

ered background on each single image is good at first glance but

may have reflection remaining in local regions. A simple mini-

mum operator combining all recovered images gives a better result

in these regions. The comparison can be seen in the zoomed-in re-

gions.

Based on this, the reflection layer of each input image

can be computed by IRi
= Îi − IB . The effectiveness of

this combination procedure is illustrated in Figure 5.

3. Results

In this section, we present the experimental results of

our proposed method. Additional results and test cases can

be found in the accompanying supplemental materials. The

experiments were conducted on an Intel i7� PC (3.4GHz

CPU, 8.0GB RAM). The code was implemented in Matlab.

We use the SIFT-Flow implementation provided by the au-

thors 1. Matlab code and images used in our paper can be

downloaded at the author’s webpage 2. The entire procedure

outlined in Figure 3 takes approximately five minutes for a

500×400 image sequence containing up to five images. All

the data shown are real scene captured under various light-

ing conditions (e.g. indoor, outdoor). Input sequences range

from three to five images.

Figure 6 shows two examples of our edge separation re-

sults and final reconstructed background layers and reflec-

tion layers. Our method provides a clear separation of the

edges of the two layers which is crucial in the reconstruc-

1http://people.csail.mit.edu/celiu/SIFTflow/SIFTflow.zip
2http://www.comp.nus.edu.sg/ liyu1988/

tion step. Figure 9 shows more reflection removal results of

our method.

We also compare our methods with those in [8] and [5].

For the method in [8], we use the source code 3 of the au-

thor to generate the results. The comparisons between our

and [8] are not entirely fair since [8] uses single image to

generate the result, while we have the advantage of the en-

tire set. For the results produced by [8], the reference view

was used as input. The required user-markup is also pro-

vided. For the method in [5], we set the layer number to

be one, and estimate the motions of the background layer

using their method. In the reconstruction phase, we set the

remaining reflection layer in k input mixture images as k
different layers, each only appearing once in one mixture.

Figure 8 shows the results of two examples. Our result-

s are arguably the best. The results of [8] still exhibited

some edges from different layers even with the elaborate

user mark-ups. This may be fixed by going back to further

refine the user markup. But in the heavily overlapping edge

regions, it is challenging for users to indicate the edges. If

the edges are not clearly indicated the results tend to be over

smoothed in one layer. For the method of [5], since it uses

global transformations to align images, local misalignment

effects often appear in the final recovered background im-

age. Also, their approach uses all the input image into the

optimization to recover the layers. This may lead to the

result that has edges from different reflection layers of d-

ifferent images mixed and appear as ghosting effect in the

recovered background image. For heavily saturated regions,

none of the two previous methods can give visually plausi-

ble results like ours.

4. Discussion and Conclusion

We have presented a method to automatically remove

reflectance interference due to a glass surface. Our ap-

proach works by capturing a set of images of a scene from

slightly varying view points. The images are then aligned

and edges are labelled as belonging to either background

or reflectance. This alignment was enabled by SIFT-flow,

whose robustness to the reflection interference enabled our

method. When using SIFT-flow, we assume that the back-

ground layer will be the most prominent and will provide

sufficient SIFT features for matching. While we found

this to work well in practice, images with very strong re-

flectance can produce poor alignment as SIFT-flow may at-

tempt to align to the foreground which is changing. This

will cause problems in the subsequent layer separation. Fig-

ure 7 shows such a case. While these failures can often be

handled by cropping the image or simple user input (see

supplemental material), it is a notable issue.

Another challenging issue is when the background scene

3http://www.wisdom.weizmann.ac.il/ levina/papers/reflections.zip
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Fig. 6. Example of edge separation results and recovered background and foreground layer using our method

has large homogeneous regions. In such cases there are no

edges to be labelled as background. This makes subsequent

separation challenging, especially when the reflection inter-

ference in these regions is weak but still visually noticeable.

While this problem is not unique to our approach, it is an

issue to consider. We also found that by combining all the

background results of the input images we can overcome

Input �� (ref. view)

Estimated ���

Estimated ���

Recovered ��

Recovered ���

Fig. 7. A failure case of our approach due to dominant reflec-

tion against the background in some regions (i.e. the upper part

of the phonograph). This will cause unsatisfactory alignment of

the background in the warping procedure which further lead to

our edge separation and final reconstruction failure as can be seen

in the figure.

local regions with high saturation. While a simple idea, this

combination strategy can be incorporated into other tech-

niques to improve their results. Lastly, we believe reflection

removal is an application that would be welcomed on many

mobile devices, however, the current processing time is still

too long for real world use. Exploring ways to speed up the

processing pipeline is an area of interest for future work.
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Fig. 9. More results of reflection removal using our method in varying scenes (e.g. art museum, street shop, etc.).
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