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Abstract

This paper addresses the novel and challenging prob-
lem of aligning camera views that are unsynchronized
by low and/or variable frame rates using object trajec-
tories. Unlike existing trajectory-based alignment meth-
ods, our method does not require frame-to-frame synchro-
nization. Instead, we propose using the intersections of
corresponding object trajectories to match views. To find
these intersections, we introduce a novel trajectory match-
ing algorithm based on matching Spatio-Temporal Con-
text Graphs (STCGs). These graphs represent the distances
between trajectories in time and space within a view, and
are matched to an STCG from another view to find the cor-
responding trajectories. To the best of our knowledge, this
is one of the first attempts to align views that are unsyn-
chronized with variable frame rates. The results on simu-
lated and real-world datasets show trajectory intersections
are a viable feature for camera alignment, and that the tra-
jectory matching method performs well in real-world sce-
narios.

1. Introduction

Networks of wireless cameras are very useful in appli-
cations such as surveillance and intelligent environments
[1] because they require less infrastructure. However, a
wireless channel typically has less bandwidth and more
disruptions such as dropped frames. These limits can be
compensated for by varying both the quality of the image
and the frame rate of the video according to the needed
and available bandwidth.

These compromises make camera calibration and
alignment more difficult. Low image quality hinders com-
mon approaches based on finding strong feature points,
such as SIFT [8]. Variable frame rates affect methods that
match points in trajectories, since these methods typi-
cally require frame-to-frame synchronization [19, 11, 16]
and/or fixed frame rates [7, 3].

In this context, we contribute one of the first meth-

ods to align unsynchronized videos that have variable
frame rates. We propose the novel use of the intersec-
tions of ground plane trajectories to find the homography
between cameras. Additionally, to find corresponding in-
tersections, we propose a new method for matching tra-
jectories that represents trajectories in a Spatio-Temporal
Context Graph (STCG).

Our method, see Figure 1, starts with the ground plane
trajectories of two views. Then, the spatial and tempo-
ral relationships between trajectories in one view are cap-
tured in an STCG, which we use to find the best matching
trajectories in another view. Finally, the corresponding in-
tersections of corresponding trajectories are used to com-
pute a homography. Experiments show that our method
performs as well as state-of-the-art methods on synchro-
nized videos, and better on unsynchronized videos.

The paper is divided as follows: Section 2 overviews
prior work in calibration, alignment, and synchroniza-
tion. Section 3 describes STCGs and how to use them to
match trajectories. Section 4 describes the procedure for
using trajectory intersections to align camera views. In
Section 5, we present results on both simulated and real-
world datasets, and then discuss the advantages and dis-
advantages of the method in Section 6.

2. Prior Work

Camera calibration, image alignment, and synchro-
nization has been well covered in the literature. Cam-
era calibration and image alignment typically follows a
pattern of finding a set of potential corresponding points
across views, and then extracting a geometric model, e.g.
a homography or fundamental matrix, using a RANSAC-
based method. These corresponding points are usually
found in static images, and matched using feature de-
scriptors such as SIFT [8], SURF [2], and MSER [9]. Ex-
amples of this systems are explored by Mikolajczyk et al.
[12] and Snavely et al. [18].

In videos with low image quality or wide-baselines, im-
age features do not work well. Another class of methods
finds corresponding points in the tracks of moving ob-
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(a) Camera View 1 (b) Camera View 2

Find Trajectories

Build Spatio-Temporal
Context Graphs

Match Trajectories

Compute Homography
from Intersections

(c) Method flowchart

Figure 1: To find the homography between two camera views, such as these from the PETS 2001 Dataset [20], we find
corresponding trajectory intersections across views by matching trajectories using Spatio-Temporal Context Graphs.

jects. Lee et al. [7] select object centroids across camera
views that occur simultaneously in a small time window
as potential corresponding points. Stauffer and Tieu [19]
probabilistically match simultaneous points that have
similar appearances. Both of these methods treat each
object observation separately.

Other methods consider trajectories as a single unit.
Caspi et al. [3] use a RANSAC variant to select correspond-
ing trajectories and compute a homography or funda-
mental matrix from the observations in the trajectories.
Meingast et al. [11] use bipartite graph matching to com-
pute the epipolar constraints of synchronized cameras
using the trajectories as features. Sheikh and Shah [16]
also use a graph framework. They create a digraph that
finds the maximum likelihood estimate of the inter-frame
homographies.

Two of the these methods handle one form of synchro-
nization: a constant time shift. Lee et al. [7] re-align the
videos with different time shifts and select the shift with
the least error. Caspi et al. [3] estimates the homography
and time shift simultaneously in RANSAC.

The literature on synchronization overlaps with our
goal of aligning unsynchronized videos. They also tend to
assume videos with constant frame rate, and often require
calibration. Whitehead et al. [21] formalize temporal syn-
chronization in cases when different cameras have differ-
ent constant frame rates. Their proposed synchronization
method requires the camera geometry of 3 views, and first
roughly synchronizes cameras using the points of max-
imum curvature. Then, they refine the synchronization
to subframe accuracy using the epipolar lines of the in-
flection points. Pundik and Moses [15] also use epipo-
lar lines from calibrated cameras by matching temporal
signals along the epipolar lines. Wolf and Zomet [22] do
not assume an existing calibration, but assume the videos
have equal and constant frame rates. They synchronize

views by rank constraints on matrices that capture either
the linear combination between points in two views or the
brightness measurements of image patches. Sinha and
Pollefeys [17] simultaneously calibrate and synchronize
cameras in a network, but require the silhouette of a per-
son instead of the trajectory alone.

These methods are not designed for unsynchronized,
variable frame rate videos. Most of the alignment meth-
ods require manual synchronization or only handle a
constant time shift. Most of the synchronization meth-
ods assume constant frame rates or are dependent on an
existing alignment.

This paper addresses unsynchronized cameras with
variable frame rates. It proposes the novel use of trajec-
tory intersections as corresponding points to align these
views, and a method to match trajectories based on the
the spatial and temporal context between neighboring
trajectories. Unlike, the existing methods, these do not
required constant frame rates or frame-to-frame synchro-
nization.

3. Trajectory Matching using STCGs

Our approach requires as input ground plane object
trajectories in each camera view. We express each tra-
jectory j in camera i as a sequence of observations T i

j =
{(x i

j [n ], y i
j [n ], t i

j [n ])}n∈�, where x i
j [n ] and y i

j [n ] are the

image coordinates of an observation and t i
j [n ] is the

timestamp of an observation. Typically, t i
j [n ]−t i

j [n−1] is
not constant for all n , nor is it synchronized across views.

Methods for obtaining these trajectories are numerous
and outside the scope of this work. In our experiments,
we use Visual Tracking Decomposition (VTD) [6] and the
Struck tracker [5].

Given the trajectories detected in each view, we match
them across cameras in order to find corresponding tra-
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Figure 2: An STCG is an attributed, fully connected multi-
graph with vertices that represent trajectories T i

j and
two edges between each vertex pair that represent the
spatial distance (green, dashed lines) and the tempo-
ral distance (red, dotted lines) between the trajectories.
We match trajectories across views by applying Balanced
Graph Matching [4] on the graphs of the views.

jectory intersections that can be used to compute the ho-
mography. Our novel trajectory matching technique first
codifies for each view the spatio-temporal relationships
between the trajectories using a graph. Then we use ex-
isting graph matching techniques to match trajectories
across views.

For each camera i , we build a fully-connected, at-
tributed multi-graph G i = (V i , E i , Ai ) with vertices V i =
{1, . . . , N i }, edges E i = {(j , k )} ∀j , k ∈ {1, . . . , N i }, and at-
tributes Ai

j k = a ∈ � , like the example shown in Fig-

ure 2. The vertices are the trajectories in a camera, T i
j ,

and each edge, (j , k ), has an attribute that is the distance
between trajectories j and k , d (T i

j , T i
k ). There are two

edges between each pair of vertices. One represents a spa-
tial distance, d spatial and the other a temporal distance,
d temporal. The graphs are matched using the Balanced
Graph Matching method by Cour et al. [4].

3.1. Spatial Trajectory Distances

Spatial trajectory distances measure the distance be-
tween trajectories in a view. Intuitively, trajectories that
are near each other should remain nearby. However,
different viewpoints may reveal different relationships
between the trajectories, and some homographies may
severely affect the arrangement of distances. In most
surveillance networks where cameras are mounted with
similar heights and orientations, these types of homogra-
phies are less likely.

We experimented with four commonly used spatial
distance metrics [13]. They are defined in Table 1.

The Euclidean distance is computed as the average Eu-
clidean distance between points on two trajectories. This
requires that they have the same number of points, and
thus the trajectory has to be resampled. In our experi-
ments, we resample to 100 evenly-spaced points.

In the PCA+Euclidean distance, the (x , y ) coordinates
of the trajectories are transformed using PCA to capture
95% of the variation. The distance is the Euclidean dis-
tance between these coefficients. The trajectories must
again be of equal length and so are resampled to 100
points.

Dynamic Time Warping (DTW) finds the optimal
time warping that minimizes the total distance between
matching points. Unlike the previous distances, DTW
does not require that trajectories have the same length.

The Longest Common Subsequence (LCSS) distance
determines the longest subsequence that is common to
both trajectories. It also handles sequences of different
lengths. The distance in Table 1 is based on the LCSS,
which is found using the algorithm in Equation 1.

LCSS(A, B ,δ,ε) = (1)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if A or B is empty

1+LCSS(Head(A), if ||a n −bm ||<ε
Head(B ),δ,ε) and |N −M |<=δ

max(LCSS(Head(A), B ,δ,ε), otherwise

LCSS(A, Head(B ),δ,ε))

In this equation, A and B are trajectories, Head(A) =
A[0], the first element of the trajectory, and θ and ε are
the temporal and spatial thresholds that denote when two
trajectory points are close to each other.

3.2. Temporal Trajectory Distances

The temporal distance measures the time between tra-
jectories, and, in the STCG, provides the temporal context
between trajectories such as the approximate order. Intu-
itively, the trajectories should maintain a rough tempo-
ral order across views. The measurements may deviate,
however, as different viewpoints may change the timing
between trajectories.

The temporal distances are summarized in Table 1.
The Start Time metric finds the absolute difference be-
tween the timestamps of the first observation in the tra-
jectory. The Mean Time metric finds the absolute differ-
ence between the average times of each trajectory.

3.3. Balanced Graph Matching

To match the trajectories across views, we must find
the one-to-one mapping between the trajectories that
best preserves the spatial and temporal context between
views. This is the goal of graph matching, and one of the
start-of-the-art algorithms for graph matching is the Bal-
anced Graph Matching method by Cour et al. [4]. It takes
as input a compatibility matrix, W , that captures the sim-
ilarity between edges.
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Euclidean d Euclidean(T i
j , T i

k ) =
1

N i

∑N i

n=1

�
(x i

j [n ]−x i
k [n ])

2+(y i
j [n ]− y i

k [n ])
2

PCA+ Euclidean
d PCA(T i

j , T i
k ) =

1
N i

∑N i
λ

n=1 d Euclidean(a i ,n , a j ,n )
where a n is the PCA coefficients and Nλ is the number of eigenvalues retained

DTW
d DTW(T i

j , T i
k ) =

1
N i

∑N i

n=1 d Euclidean(φi ,n ,φj ,n )αn ,φ

whereφi is a time warping function, and α is a weighting and normalization constant

LCSS d LCSS(T i
j , T i

k ,δ,ε) = 1− LCSS(T i
j ,T i

k ,δ,ε)

m a x (N j ,N k )

Start Time d Start Time(T i
j , T i

k ) = |t i
j [0]− t i

k [0]|
Mean Time d Mean Time(T i

j , T i
k ) = |mean(t i

j )−mean(t i
k )|

Table 1: Spatial and temporal distances and their mathematical expressions

For cameras i and i ′ with M and M ′ number of edges
respectively, W is an M M ′ ×M M ′ matrix with each row
representing the match j to j ′ and each column repre-
senting the match k to k ′. In our method, W is defined
by Equation 2, with each distance a value between 0 and
1.

Wj j ′,k k ′ =S(E i
j k , E i ′

j ′k ′ ) (2)

= f (Ai
j k , Ai ′

j ′k ′ )

=mean
�

s spatial, s temporal
	

With s spatial and s temporal defined by Equations 3 and 4.

s spatial =min



d spatial

i

d spatial
i ′

,
d spatial

i ′

d spatial
i

�
(3)

s temporal =min



d temporal

i

d temporal
i ′

,
d temporal

i ′

d temporal
i

�
(4)

Balanced Graph Matching formulates the graph
matching problem as the Integer Quadratic Program
that is relaxed to a spectral matching with an affine
constraint. It also normalizes the compatibility matrix
such that scores for each edge sums to one, i.e. the
bistochastic normalization of the edge similarity matrix.

4. Calibration using Trajectory Intersections

Using the trajectory matches determined from the pre-
vious section, we find the set of corresponding trajectory
intersections across views. We use these intersections to
find the homography using RANSAC.

To our knowledge, this is the first attempt to use the
intersections of object trajectories to align cameras in a
network. Intuitively, this method works since the ground
plane intersections correspond to the same 3D point in
different views, and can be found without perfectly syn-
chronizing the observations of a trajectory.

To find the intersections of two ground plane trajecto-
ries, we use dynamic time warping to find the best dis-
tance between points in the trajectories. Next, we find lo-
cal minima in the sequence of distances that are close to
zero. These are potential intersections, that we then ver-
ify by fitting a third-degree polynomial to the matching
points and their four neighbors in each trajectory. If the
intersection of these polynomials is in this neighborhood,
then this point is defined as an intersection.

Corresponding intersections are determined by the
matched trajectories, i.e. if trajectories T i

j and T i ′
j ′ match

and trajectories T i
k and T i ′

k ′ match, then the intersection
of T i

j and T i
k matches the intersection of T i ′

j ′ and T i ′
k ′ .

These intersections are inputted into a RANSAC-based
method that finds the best homography. RANSAC takes 4
points, computes a homography, and then finds the set of
inliers. The homography with the most inliers is the best
estimate. Using this method helps to remove incorrect in-
tersection matches that may have arisen from incorrect
trajectory matches.

5. Results

Our methods are validated on several datasets. In the
first dataset, we simulate trajectories in order to find the
best combination of distance metrics. These metrics are
applied to real world datasets. On synchronized datasets,
(PETS 2001 and 2009), we hypothesize that our method
should perform similar to existing methods. On unsyn-
chronized datasets (wireless camera dataset), we hypoth-
esize that our method will perform better than existing
methods. Our method is compared against manually
matched trajectory and Lee et al. [7] with given synchro-
nization. Lee et al. is one of the state-of-the-art methods
for camera alignment using object trajectories.

5.1. Simulated Dataset

Our initial experiments are on two simulated cameras
that are pointed straight down. The camera views have a

11241124



0 20 40 60 80 100

Euclidean

PCA

DTW

LCSS

Start Time

Mean Time

Euclidean +Mean Time

PCA +Mean Time

DTW +Mean Time

LCSS +Mean Time

57

60

44

33.5

78.9

82.1

99

98

99

80

Accuracy %

Figure 3: The accuracy of trajectory matching on simu-
lated trajectories using different combinations of metrics.

4:3 aspect ratio and they overlap such that the right half
of camera view 1 is the left half of camera view 2. Each
experiment has a random set of 10 trajectories that move
in a diagonal across the scene. The speeds and start times
of each trajectory is also randomly assigned.

We tried different combinations of the distance met-
rics described in Section 3. Each combination is run
100 times with 10 trajectories each. We compute at the
end the percent of trajectories that are correctly matched
among the 1000 total trajectories.

The results are shown in Figure 3. They show that tem-
poral metrics alone are much better than spatial metrics.
This is likely because the trajectories are more spread out
temporally than spatially. However, any combination of
spatial and temporal metrics perform almost perfectly,
except for the LCSS metric. The LCSS performs poorly be-
cause it is a measure of the percent of two trajectories that
are near each other. Trajectories beyond this threshold
have the same distance regardless of who far away they
are. The DTW was an easier metric to compute, since Eu-
clidean and PCA methods require resampling the trajec-
tories. Therefore, we use the combination of DTW and
Mean Time in the remaining experiments.

We also use this dataset to evaluate the effect of incor-
rect trajectory matches on the reprojection error of the fi-
nal homography. When all trajectories are matched, the
reprojection error of the homography is close to 0. Even
when matching accuracy is at 40%, the homography can
be recovered.

We also tried to enumerate all possible intersections
pairs and apply RANSAC. This did not produce accu-
rate results because the exponential explosion of pos-
sible matches hid the correct homography and correct

matches.

5.2. PETS Datasets

The PETS 2001 Dataset, shown in Figure 1, consists of
two views overlooking a roadway with 10 ground plane
trajectories per camera view extracted by taking the bot-
tom point of the bounding boxes of people. These trajec-
tories are smoothed with a Kalman filter.

Vehicle trajectories are not used in this experiment.
They skewed the homography results significantly, since
points at the bottom of the bounding box did not corre-
spond on the ground plane. This exemplifies a challenge
of this method: the trajectories must accurately represent
the ground plane point that correspond across views.

The trajectory matching method correctly identified 6
out of the 10 trajectories. It confused two pairs of tra-
jectories. In both of these cases, the pair were walking
together. Because they were traveling as a group, their
trajectories were similar to other trajectories when com-
pared spatially and temporally.

The approach found only 4 corresponding intersec-
tions between the two views. This is the minimum num-
ber necessary to compute a homography, and it reveals a
challenge for using intersections. In some scenes, there
are not a significant number of intersections, such as
when viewing a corridor.

We verify the results by marking the five points marked
on the ground and finding the error between the marked
points and the homographic mapping from view 2 into
view 1 and vice versa. The results are shown in Table 2.

The PETS 2009 S2-L1 Dataset, shown in Figure 4, con-
sists of two views of the same roadway as PETS 2001,
but from different viewpoints. From this dataset, we use
views 1 and 8, which are far and near from the road in-
tersection. We track 19 people through both views and
smooth the results using a Kalman filter. The matching
algorithm correctly matched 10 of the 19 trajectories. We
choose as ground truth points the ends and center of the
cross that are in the intersection. The reprojection errors
of these points for the different methods are shown in Ta-
ble 2.

5.3. Wireless Camera Dataset

The final dataset exemplifies a scenario that is chal-
lenging for existing methods. It has two 640-by-480 cam-
eras that are wireless and view a walkway from opposite
directions. As seen in Figure 5, the quality of video is such
that there are few strong corners for traditional feature de-
tectors. The video also has a variable frame rate that typ-
ically ranges from 15 to 21 frames per second, but occa-
sionally dips to the single digits.

We extracted 24 trajectories from each camera using
Visual Tracking Decomposition [6] and the Struck tracker
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(a) Camera View 1 (b) Camera View 2

Figure 4: PETS 2009 Dataset. This dataset from PETS 2009 has 19 trajectories; 10 of which were matched correctly.

(a) Camera View 1 (b) Camera View 2

Figure 5: Wireless Camera Dataset. This dataset from wireless cameras have poor image quality and variable frame rates.
Out of 24 trajectories, 22 were matched correctly and are color-coded in these views. The matched intersections are
displayed as white circles and numbered.

[5]. These produce bounding boxes from which we use
the central bottom position for the ground plane trajec-
tory. These trajectories are smoothed by a Kalman filter.

Trajectory matching correctly matches 22 of the 24
trajectories. The two trajectories that were incorrectly
matched were adjacent in time and start from the same
area. We found 60 matching intersections across views.
Three matching ground truth points from each image
were selected. The reprojection errors for these points are
shown in the final column of Table 2. These results show
that calibration using intersections performs better than
using the object points.

Thus matching trajectory intersections are more re-
silient to variable frame rate. We hypothesize that this
should be true even as the frame rate decreases. Thus we
compare the effect of decreasing frame rate with repro-

jection error between Lee et al. and our method in Table
3. We find that for Lee et al. the error increases slightly
while the frame rate decreases, while for our method, the
error stays about the same.

6. Discussion

The proposed methods of trajectory matching and
alignment using trajectory intersections show promising
results for the relatively new topic of aligning unsynchro-
nized cameras with variable frame rates. The experiments
suggest several conclusions and challenges that must be
addressed in future work.

6.1. Advantages

Consistently and as hypothesized, alignment using
manually matched trajectory intersections performs sim-
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PETS 2001 PETS 2009 Wireless Cameras
View 1 error (px) View 2 error (px) View 1 error View 2 error View 1 error View 2 error

Lee et al. 12.92 20.41 9.14 8.52 90.72 8.78
Matched
Intersections

13.45 21.67 9.19 8.38 19.27 7.2

Intersections
w/Matching

26.82 36.90 19.18 17.47 15.18 10.09

Table 2: Reprojection errors of the ground truth points for all datasets across three methods.

Figure 6: Camera View 1

Figure 7: The homographic projection of 3 points from
camera view 2 (green squares). The are compared the
ground truth points in camera view 1 (white circles).

Avg Frame Rate View 1 error (px) View 2 error (px)

Lee et al.
19.1 Hz 90.72 8.78
9.5 Hz 96.65 9.2
6.3 Hz 123.83 9.8

Intersections w/Matching
19.1 Hz 31.09 12.08
9.5 Hz 21.26 9.59
6.3 Hz 29.93 13.54

Table 3: Reprojection error of ground truth points by de-
creasing the frame rate of the Wireless Camera Dataset.

ilar to Lee et al. in synchronized cameras, and better
in unsynchronized cameras. Our method for matching
trajectories matches 50% to 95% of the trajectories, but
slightly affects the alignment errors.

In unsynchronized views, the proposed intersection-
based approach performs better than Lee et al. because
there are few truly simultaneous points across views.
Nearly simultaneous points have slight differences in
their actual 3D matches. We can see this effect when we

decrease the frame rate, which increases the error for Lee
et al. but does not effect the error of the intersection-
based approach.

6.2. Challenges

The proposed method may not work for all video se-
quences. It is dependent upon a few critical factors such
as reliable tracking and the existence and sufficient distri-
bution of trajectory intersections.

Like all of the methods based on matching object tra-
jectories [3, 11, 16], this method assumes that trajectories
completely track the person across the view. Common
tracking errors such as breaking one object track into two
could lead to an incorrect trajectory match.

The corresponding 2D points in the trajectories must
also match in 3D. For example, our tracks must be on the
ground plane, which may be more difficult in views with
odd angles. For example, in the PETS 2001 dataset, the
vehicles were not used because the bottoms of the trajec-
tories did not correspond to the center of gravity of the
object, especially in view 2 where the camera is closer to
the objects and points down.

This method also depends on the existence of trajec-
tory intersections. In PETS 2001, there were only 4 inter-
section points, the minimum number of points needed
for alignment. This hindered RANSAC’s ability to com-
pensate. Other potential examples include people in hall-
ways and roadways whose trajectories are parallel and do
not intersect. Some scenes may have intersections con-
fined to a small region of the image, as is noted in each of
the datasets.

Some of the inaccuracies produced by poor ground
plane correspondence or confined intersections points
may be controlled by using these results as an initial
coarse alignment for a feature or region-based alignment
scheme, as in Stauffer and Tieu [19]. Other issues, such
as the reliable tracking, would require additional meth-
ods that would attempt to match broken trajectories or to
compare the objects using appearance-based features.

When matching trajectories, the spatial and temporal
distances do not completely capture the relationships be-
tween trajectories across views. Different viewpoints may
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reveal different parts of a trajectory and the spatial dis-
tances are affected by the homography, not invariant to
them. This is a greater issue when the camera is closer
to the trajectories, but in our experiments, such as PETS
2009, where cameras tend to be mounted farther away,
the viewpoint change did not affect the contextual dis-
tances enough to severely compromise matching.
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8. Conclusion

We address the novel problem of aligning unsynchro-
nized camera views that have low or variable frame rates.
Our solution takes advantage of trajectory intersections,
which can be found robustly, and a new trajectory match-
ing method that does not require frame-to-frame syn-
chronization.

First, trajectories across views are matched by match-
ing Spatial-Temporal Context Graphs (STCG), which cap-
ture the distances between trajectories in time and space
in a view. Through experimentation, we find that the
Dynamic Time Warping spatial distance and Mean Time
temporal distance produce the best results. Finally, cam-
era views are aligned by finding and matching the inter-
sections of trajectories.

Results show matching accuracy of using perfectly
match intersection points to be similar to object-based
alignment, and only slightly degraded by inaccurate
matches using it scheme. The analysis of the results sug-
gest a number of future extensions. The intersection
points provide a rough homography that may be refined
using the complete trajectory by, for example, modeling
and match segments between intersection points. Other
reference points, such as inflection points, could also be
integrated into the framework. Other methods for match-
ing the intersections or the trajectories, such as congeal-
ing [10] or cross ratios [14], may produce better results
than the STCG described. Finally, this paper only explores
the alignment of the camera views, but a natural exten-
sion would be to also synchronize the video using inter-
section points.
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