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Abstract

Current methods learn monolithic attribute predictors,
with the assumption that a single model is sufficient to re-
flect human understanding of a visual attribute. However,
in reality, humans vary in how they perceive the association
between a named property and image content. For example,
two people may have slightly different internal models for
what makes a shoe look “formal”, or they may disagree on
which of two scenes looks “more cluttered”. Rather than
discount these differences as noise, we propose to learn
user-specific attribute models. We adapt a generic model
trained with annotations from multiple users, tailoring it
to satisfy user-specific labels. Furthermore, we propose
novel techniques to infer user-specific labels based on tran-
sitivity and contradictions in the user’s search history. We
demonstrate that adapted attributes improve accuracy over
both existing monolithic models as well as models that learn
from scratch with user-specific data alone. In addition, we
show how adapted attributes are useful to personalize im-
age search, whether with binary or relative attributes.

1. Introduction
Visual attributes are human understandable properties

to describe images, e.g., shiny, natural, or white. Re-

cent research explores a variety of applications for at-

tributes, including object recognition [15, 6, 3] and image

retrieval [14, 23, 21, 13, 12].

Thus far, training an attribute predictor largely follows

the same procedure used for training any image classifi-

cation system: one collects labeled image exemplars, ex-

tracts image descriptors, and applies discriminative learn-

ing. The underlying assumption is that an image has a sin-

gle “true” category label that objective viewers could agree

upon. Yet, while this holds for objects (a horse is a horse, of

course), an attribute inherently has more leeway. Multiple

objective viewers are bound to have slightly different inter-

nal models of a visual property. Indeed, researchers col-

lecting attribute-labeled datasets report non-negligible dis-

agreement among human annotators [6, 5, 19].

or
Formal? More ornamented? User labels: 

50% “yes”
50% “no”

User labels: 
50% “first”
20% “second”
30% “equally”

Figure 1. Visual attribute interpretations vary slightly from viewer

to viewer. This is true whether attributes are modeled as cate-

gorical or relative properties. For example, 5 viewers confidently
declare the shoe as formal (left) or more ornamented (right), while

5 others confidently declare the opposite! We propose to adapt at-

tribute models to take these differences in perception into account.

The differences may stem from several factors: the

words for attributes are imprecise (when is the cat over-
weight vs. chubby?), their meanings often depend on con-

text (the shoe appears comfortable for a wedding, but not

for running) and even cultures (languages have differing

numbers of color words, ranging from two to eleven), and

they often stretch to refer to quite distinct object categories

(e.g., pointy pencil vs. pointy shoes). For all such reasons,

humans inevitably craft their own definitions for visual at-

tributes. Notably, their definitions vary whether we consider

binary or relative attributes (see Fig. 1).

This variability has important implications for any appli-

cation where a human uses attributes to communicate with

a vision system. For example, in image search, a user re-

quests images containing certain attributes [14, 23, 21, 13,

12]; in recognition, a user teaches a system about objects

by describing their properties [15, 6, 3, 16, 17]. Failing
to account for user-specific notions of attributes will lead
to discrepancies between the user’s precise intent and the
message received by the system. Yet, even when training

labels are solicited from multiple annotators, existing meth-

ods learn only a single “mainstream” view of each attribute,

forcing a consensus through majority voting.1

We propose to model attributes in a user-specific way,

in order to capture the inherent differences in perception.

How can we do so efficiently? The most straightforward

1We stress this is the case whether using binary [15, 6] or relative [16]

attributes. For binary properties, one takes the majority vote on the at-

tribute present/absent label. For relative properties, one takes a majority

vote on the attribute more/less label.
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approach—to learn one function per attribute and per user,

from scratch—is certainly not scalable in most reasonable

application settings, and ignores the reality that people do

share some foundational definition of a visual property.

Instead, we pose attribute learning as an adaptation
problem. First, we leverage any commonalities in percep-

tion to learn a generic prediction function, namely, a classi-

fier for a binary attribute (e.g., pointy) or a ranking function

for a relative attribute (e.g., pointier than). Then, we use a

small number of user-labeled examples to adapt that model

into a user-specific prediction function. In technical terms,

this amounts to imposing regularizers on the learning objec-

tive favoring user-specific model parameters that are similar

to the generic ones, while still satisfying the user-specific

label constraints [28, 8].

To further lighten the user’s labeling load, we introduce

two ways to extrapolate beyond the labels explicitly pro-

vided by a given user. In the first, we connect relative at-

tribute statements given by the user on multiple different

images to obtain new implicit constraints via transitivity. In

the second, we detect discrepancies between the system’s

generic attribute models and the user’s perception, and cre-

ate implicit constraints to correct the models. Both ideas

serve to generate additional plausible user-specific labels

without directly requesting more labels from the user.

While our adapted attributes are applicable to any task

demanding precise human-system communication about vi-

sual properties, we focus specifically on their impact for im-

age search. We demonstrate the advantages of personalized

retrieval when a user queries for images with multi-attribute

keywords or uses attributes to provide relevance feedback

on selected reference images. In this context, we show that

a user’s search history offers a natural source of data for

inferring user-specific labels.

To validate our idea, we experiment with 75 unique

users on two large datasets. We compare our user-specific

adapted attributes to a standard generic “consensus” model,

as well as a baseline that trains exclusively with user-

specific data. We show that adapting learned models is an

efficient way to capture person-dependent interpretations,

particularly for fine-grained attribute distinctions where per-

ception varies most. Furthermore, we show that our ideas

to extrapolate user-specific labels can successfully mitigate

labeling effort. Finally, we demonstrate the practical impact

of adapted attributes for personalized search. Throughout,

our method’s consistent advantages highlight the risk in as-

suming one attribute model fits all.

2. Related Work
Learning visual attributes Visual attributes, originally

introduced in [15, 6], offer a semantic representation shared

among objects. Attributes may be expressed categori-

cally, as a property that is either present or absent, or

relatively [16], as a property that is present with a cer-

tain strength. Attributes are valuable not only for recog-

nition [15, 6, 3, 22, 19], but also for keyword-based image

search (e.g., “find images of smiling Asian men” [14, 23],

or “find images of men smiling more than/similarly to this

one” [21, 13, 12]). Recent user studies analyze how hu-

mans perceive subjective properties like cool and cute [4],

but do not propose vision techniques to account for the sub-

jectivity. Typically discriminative classifiers or ranking al-

gorithms are used to predict attributes. To our knowledge,

all prior work assumes monolithic attribute predictors are

sufficient, and none attempts to model user-specific per-

ception, as we propose. This includes prior methods that

represent attributes relatively [16, 22]; though they permit

looser comparative labels, they still assume a single under-

lying relative concept and learn a single “true” ordering of

images.

Transfer learning and adaptation We adapt a generic

attribute model to learn a user-specific one. Somewhat anal-

ogously, transfer learning work in object recognition lever-

ages previously learned object categories when training a

new category for which few labeled images are available

(e.g., [24, 1]). Also related are domain adaptation methods

(e.g., [20, 10, 9]), which account for the feature distribution

mismatch between a source domain (in which objects are

learned) and a target domain (in which the objects must be

recognized)—for example, allowing a classifier trained on

Web images to work well on images taken by a robot [20].

Conceptually our goal is perhaps closer in spirit to speaker-

dependent speech recognition. Speaker adaptation methods

have long been used in the speech community to adapt pa-

rameters of a speaker-independent model to account for an

individual’s idiosyncrasies (voice, accent, etc.) [7]. We ex-

plore existing adaptation formulations for SVMs [28, 8]; us-

ing them in our setting is novel, and we introduce methods

to infer user-specific training labels for these models.

Modeling users in crowdsourcing Learning from mul-

tiple noisy labelers is increasingly important for training

data-hungry vision systems. Typically, an image labeling

task is “crowdsourced” by submitting it to workers on Me-

chanical Turk, then aggregating their labels through major-

ity vote. Moving beyond majority vote, recent work discov-

ers the skills and biases of individual workers in order to

better infer the true labels [27, 25]. However, while they

model each worker’s “school of thought”, they still aim

for consensus and recover a single true label per example.

In contrast, we recover an individual user’s subjective at-

tribute model from their annotations, by properly adapting

a generic model over all previously seen users.

Personalization in information retrieval In information

retrieval, personalization involves learning what a given

user perceives as relevant, and producing user-specific
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search results [18]. Relevance feedback can be mined ex-

plicitly or implicitly, by creating user profiles or mining

clickthrough data [11]. We incorporate a novel form of im-

plicit cue from visual search. Furthermore, whereas per-

sonalization generally entails learning a user-specific rele-

vance function from scratch—there is no “universal” prior

on relevance—we leverage a generic model for the attribute

as a starting point, and efficiently adapt it towards the user’s

preferences. As we demonstrate, doing so saves user time.

3. Approach
We first train a generic model of an attribute using a large

margin learning algorithm and data labeled with majority

vote from multiple annotators. This is the “source” model,

in transfer learning terms. Then, for a given user, we adapt

the parameters of the generic model to account for any user-

specific labeled data, while not straying too far from the

prior generic model. We refer to the resulting prediction

function as an adapted attribute or user-specific attribute.

This is the “target” model, in transfer learning terms.

In the following, we first overview the adaptation learn-

ing algorithms we use (Sec. 3.1). Then, we briefly describe

how we use the adapted attributes to perform personalized

content-based image search (Sec. 3.2). Finally, we explain

how we gather explicit and implicit user-specific labeled

data (Sec. 3.3).

3.1. Learning Adapted Attributes

We consider two variants of attributes: binary attributes,

which entail learning a classifier, and relative attributes,

which entail learning a ranking function. For both, we per-

form adaptation with a large-margin formulation and a reg-

ularizer preferring user-specific parameters that do not de-

viate greatly from the generic parameters.

Adaptation requires that the source and target tasks be

related, such that it is meaningful to constrain the target

parameters to be close to the source’s. Whereas in some

transfer problems this requires a “leap of faith” and/or hand

crafting (e.g., to specify that bicycle classifiers should trans-

fer well to motorcyles), in our setting the assumption natu-

rally holds. An attribute is semantically meaningful to all

annotators, just with (usually slight) perceptual variations

among them. Thus, we are assured that the generic model

is a valid prior for each novel user we aim to adapt to.

We learn each attribute of interest separately (i.e., one

classifier for white, another for pointy). Similarly, an

adapted function is user-specific, with one distinct function

for each user. In the following, we do not notate individual

attributes or users to avoid subscript clutter.

Let D′ denote the set of images labeled by majority vote

that are used to learn the generic model. Let xi denote a

feature describing the i-th image (texture, color), and yi be

its label. We assume the labeled examples originate from a

pool of possibly many annotators who collectively represent

the common denominator in attribute perception. We train

a generic attribute f ′(xi) from D′. Let D denote the set

of user-labeled images, which is typically disjoint from D′.
Both adaptive learning objectives below will take a D and

f ′ as input, and produce an adapted attribute f as output.

Adapting binary attribute classifiers Binary attributes

predict whether or not an attribute is present in an image.

In this case, the generic data D′
b = {x′

i, y
′
i}N ′

i=1 consists of

N ′ labeled images, with y′
i ∈ {−1,+1}. The subscript b

denotes binary. Let f ′
b denote the generic binary attribute

classifier trained with D′
b. For a linear support vector ma-

chine (SVM), we have f ′
b(x) = xT w′

b. To adapt the param-

eters w′
b to account for user-specific data Db = {xi, yi}N

i=1,

we use the Adaptive SVM [28] objective function:

min
wb

1
2
‖wb −w′

b‖2 + C
N∑

i=1

ξi, (1)

subject to yix
T
i wb ≥ 1− ξi, ξi ≥ 0, ∀i

where wb denotes the desired user-specific hyperplane, and

C is a constant controlling the tradeoff between misclassifi-

cation on the user-specific training examples and the regu-

larizer. Note, the objective expands the usual large-margin

regularizer ‖wb‖2 to additionally prefer that wb be similar

to w′
b.2 Thus the generic attribute serves as a prior for the

user-specific attribute, such that even with small amounts of

user-labeled data we can learn an accurate predictor.

The optimal wb is found by solving a quadratic program

to maximize the Lagrange dual objective function. This

yields the Adaptive SVM decision function:

fb(x) = f ′
b(x) +

N∑

i=1

αiyix
T xi, (2)

where α denotes the Lagrange multipliers that define wb.

Hence, the adapted attribute prediction is a combination of

the generic model’s prediction and similarities between the

novel input x and (selected) user-specific instances xi.

Adapting relative attribute rankers Rather than make

a hard decision about attribute presence, relative attributes

predict the strength of an attribute in an image [16]. In this

case, labels are provided in terms of ordered pairs of exam-

ples: D′
r = {(x′

i1
,x′

i2
)}N ′

i=1, where the subscript r denotes

relative. Each pair denotes that image i1 exhibits the at-

tribute more strongly than image i2—for example, that i1
is pointier than i2. Therefore, collecting D′

r requires ask-

ing multiple annotators to vote on which of the two images

exhibit the attribute more. Implicitly, this corresponds to

y′
i1

> y′
i2

, though during training the absolute strengths

2See [1] for a variant that separates the transfer and margin regularizers.
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are irrelevant—only the comparative values matter. Follow-

ing [16], we use a Rank SVM [11] approach to train each

generic relative attribute. The Rank SVM seeks a hyper-

plane w′
r that, when used to project all training data, 1)

maintains their specified orderings, and 2) keeps a wide

margin between the nearest projected points. For a linear

ranker, we have f ′
r(x) = xT w′

r.

To adapt the parameters w′
r to account for user-specific

ordered pairs Dr = {(xi1 ,xi2)}N
i=1, we use a Ranking

Adaptation SVM [8]. It modifies the Rank SVM objective

to add a regularizer that, similar to above, prefers that the re-

sulting function stay close to the generic one. Specifically,

to learn the adapted ranker, we optimize:

min
wr

1− δ

2
‖wr‖2 +

δ

2
‖wr −w′

r‖2 + C
N∑

i=1

ξi (3)

subject to wT
r xi1 −wT

r xi2 ≥ 1− ξi, ξi ≥ 0, ∀i,

where wr denotes the user-specific hyperplane, and δ ∈
[0, 1] is a constant balancing the two regularizers. The

constraints reflect that the resulting wr ought to rank each

xi1 higher than its corresponding xi2 , with a large margin.

Again the solution requires solving a quadratic program [8],

and the resulting adapted relative attribute predictor is:

fr(x) = δf ′
r(x) +

N∑

i=1

βix
T (xi1 − xi2), (4)

where β denotes the Lagrange multipliers defining wr.

Though shown here as linear functions, non-linear decision

boundaries and rankers are also possible via kernelization.

Suitability for adapted attributes Having defined the

two adaptation methods, we can now reflect on their

strengths for our problem. The adaptive formulations inte-

grate the generic model and user-specific data during learn-

ing. This is preferable to independently training generic and

user-specific models then combining their outputs, which is

prone to overfit to the few available user-labeled examples.

Intuitively, when optimizing Eqn. 1 or 3, a larger weight on

a user-specific support vector xi is more likely when the

generic model f ′ mispredicts xi, i.e., when f ′
b(xi) �= yi or

f ′
r(xi1) �> f ′

r(xi2). Thus, user-specific instances that de-

viate from the generic model will have more impact on f .

For example, suppose a user mostly agrees with the generic

notion of formal shoes, but, unlike the average annotator, is

also inclined to call loafers formal. Then the adapted clas-

sifier will likely exploit some user-labeled loafer image(s)

with nonzero αi in Eqn. 2 when predicting whether a shoe

would be perceived as formal by that user.

The adaptation strategy promotes efficiency in two ways.

First, the human labeling cost is low, since each user only

needs to provide a small amount of labeled data. In ex-

periments, we see substantial gains with as few as 12 user-

labeled examples (Fig. 3). Second, training time is sub-

stantially lower than training each user model from scratch

by pooling the generic and user-specific data. We train the

generic model once, offline, with a large pool of annota-

tions. Then, the user-specific function is trained with a

small amount of new data and the (already fixed) param-

eters w′. This amortizes the “big” generic SVM’s training

cost—superquadratic in the number of training examples—

across all future user-specific functions we learn. The effi-

ciency is especially valuable for personalized search, where

we continually adapt a user’s attributes as his search history

accumulates more user-specific data.

Finally, a more subtle advantage of our model choice is

its modularity. The adaptation objectives do not require ac-

cess to the generic training data. This is convenient, since

in practice the data could be proprietary or simply unwieldy

to pass around, yet one still would like to avoid learning

personal attributes from scratch.

3.2. Personalized Image Search

We next briefly describe how we use the adapted at-

tributes to personalize image search results. Compared

to using generic attributes, the personalized results should

more closely align with the user’s perception, leading to

more precise retrieval of relevant images.

For binary attributes, we use the user-specific classifiers

to retrieve images that match a multi-attribute query. Simi-

lar to [14], the user states “I want images with attributes X ,

Y , and not Z”. For relative attributes, we use the adapted

rankers to retrieve images that agree with comparative rele-

vance feedback. Similar to [13], the user states “I want im-

ages that show more of attribute X than image A and less of

attribute Y than image B”, etc. Then, in both cases, the sys-

tem sorts the database images according to how confidently

the adapted attribute predictions agree with the attribute

constraints mentioned in the query or feedback. We use the

magnitude of classifier/ranker outputs as confidences.

We stress that our contribution is how to adapt attributes,

not how to perform search with attributes, which is studied

extensively in other work [14, 23, 21, 13, 12]. One can

directly incorporate our adapted attributes into any existing

attribute-search method.

3.3. Obtaining User-Specific Labeled Data

In order to learn an adapted attribute, we need to popu-

late D with data annotated by the specific user. We present

two forms of data collection: explicit and implicit.

Explicit collection Most directly, we ask the user to la-

bel a small set of images with the presence/absence of at-

tributes (in the binary case) or pairs of images with com-

parative labels of the form “Image A is more/less/equally

34283435



[attribute name] than Image B” (in the relative case). We

track worker IDs on MTurk to keep each user’s data sepa-

rate. We convey the generic attribute meanings via qualifi-

cation tests.

When collecting labels explicitly, the main considera-

tion is how to select the images that the user should an-

notate. Intuitively, we want to focus on examples for which

his perception is likely to deviate from the generic model.

Thus, we take an active learning approach. For binary at-

tributes, we consider two forms. The first uses a margin

criterion [26], requesting labels for those N images clos-

est to the generic classifier’s hyperplane. For the second,

we devise a variant of the query-by-committee criterion, re-

questing user-specific labels for the N images where the

human-given generic labels were most in disagreement.

While we find the margin criterion useful for binary at-

tributes, for relative attributes it is less so. This is likely be-

cause it is hard to meaningfully choose which of two images

has the attribute “more” when they are very close. There-

fore, for relative attributes we adopt a simple diversity-

based active selection scheme. We sort the candidate image

pairs by their Euclidean distance in feature space, and re-

quest user comparisons on an even mix of the most similar,

most dissimilar, and those surrounding the median.

Our preliminary experiments indicated that actively ob-

tained user-specific labels result in better models than pas-

sively obtained labels, as expected. Thus, we use them in

all results. An empirical study of various active selection

methods is beyond the scope of this research.

Implicit collection Explicit labels offer the purest cues,

but they also place some burden on the user. Therefore,

we propose ways to infer “implicit” user-specific labels by

mining the user’s relative attribute search history. We define

two forms based on transitivity and contradictions.

In the transitivity case, we infer constraints on-the-fly

when the user gives feedback of the form “I want images

flatter than Image A and less flat than Image C.” Let B de-

note the user’s mental target image—the item he envisions

finding in the database. From his feedback, we now know

that fr(B) > fr(A) and fr(B) < fr(C) in terms of flat-
ness. By transitivity, we can infer a new user-specific label

pair for Dr that requires that fr(A) < fr(C).
In the contradictions case, we exploit seeming contradic-

tions in a user’s relevance feedback. If he issues statements

that appear contradictory according to the current model, he

implicitly reveals a discrepancy between his perception and

the system’s models. For example, if he says, “I want im-

ages whiter than A and less white than B”, but the current

whiteness model says fr(A) ≈ fr(B), then in principle the

set of images satisfying the user’s model is empty.

Contradictions on the same attribute, while informative,

are bound to be infrequent. Thus, we generalize this idea to

the case where contradictions may occur across attributes.

more sportymore feminine (~less sporty)

… … … …

… … … …

“Target is more sporty than…”

“Target is more feminine than…”

A C

B C

Figure 2. Example illustrating our idea for extracting implicit user-

specific labels for a user’s search history. See text for details.

We discover which pairs of attributes are strongly correlated

or anti-correlated3. Now treating strongly (anti-)correlated

attributes as the same (opposite) attribute, we detect contra-

dictions as described above, for images A and B that have

the same approximate attribute rank. Consider Fig. 2, where

feminine and sporty are strongly anti-correlated. If the user

requests images both more feminine than A and more sporty
than B, where A and B are similarly feminine and similarly

sporty, he seems to indicate that no images satisfy both con-

straints (green regions share no images). This suggests his

perception on one or both attributes differs from the current

model f ′
r. For example, perhaps he finds a pink sneaker C

(which is high on sportiness) more feminine than clog A.

For each constraint in a contradictory pair, we select an

image C that violates it by a small margin, and create an

implicit user-specific pair using A and C in the reverse order

of how the current generic attribute ranks them. In Fig. 2,

we create a pair “C is more feminine than A”. By swapping

the order, we correct the attribute model, and the theoretical

set of images satisfying the user’s mental target is no longer

empty (image C is now in both green regions). Thus, we

have a better chance to align with the user’s perception.

Naturally, getting such labels “for free” carries some

risk. We are not guaranteed that a user would agree with

all implicit labels, if asked. Our approach can be viewed as

a twist on self-training, a semi-supervised learning method

in which one trains a classifier with labeled data, then uses

it to classify unlabeled examples, and augments the labeled

training set with the most confident predictions. As we

demonstrate in the results, labels inferred from the user’s

search history prove to be quite valuable.

4. Experiments
We evaluate adapted attributes in terms of both their gen-

eralization accuracy (Sec. 4.1) and their utility for personal-

ized image search (Sec. 4.2).

Compared methods We compare our user-adaptive ap-

proach to the following three methods:

3We say two attributes are strongly correlated if they share at least a

third of the images in their top or bottom quartiles.
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• generic: learns a model from the generic majority vote

data D′ only. This is how attributes are learned in prior

work (e.g. [15, 6, 3, 16, 14, 21, 13]).

• generic+: is just like above, but uses more generic

data. For every additional user-specific label our

method gets, it gets an additional generic label from

some other user. This baseline lets us compare the

effect of adapting to user-specific data versus simply

adding more generic data.

• user-exclusive: learns a user-specific model from

scratch, without the generic model. It always uses

the exact same user-specific data as our method. This

baseline lets us see how much our method benefits

from regularization with the generic model.

Aside from these distinctions, all methods use the exact

same features and learning algorithms.

Datasets and features We use two datasets: Shoes [2],

which contains 14,658 online shopping images describable

by 10 attributes [13], and SUN Attributes [19], which con-

tains 14,340 scenes. We consider 12 attributes from SUN4

that appear frequently and are likely to be relevant for im-

age search applications. Shoes has both binary and relative

attributes; SUN has only binary. Since SUN comes with

annotators’ label votes, we use the query-by-committee cri-

terion to solicit user-specific labels. Since Shoes does not,

we use the margin criterion (see Sec. 3.3). These datasets

represent the largest and most challenging attribute-labeled

collections available today, and they allow us to observe

the impact of adaptation for both a narrow class of objects

(Shoes) as well as a wide domain of scenes (SUN).

To form descriptors x for Shoes, we use the GIST and

color histograms provided by [13]. For SUN, we concate-

nate features provided by [19]: GIST, color, and base HOG

and self-similarity. We cross-validate δ and C for all mod-

els, per attribute and user.

4.1. Adapted Attribute Accuracy

First we evaluate generalization accuracy: will adapted

attributes better agree with a user’s perception in novel im-

ages? To form a generic model for each dataset, we use

100-200 images (or pairs, in the case of Shoes-R) labeled

by majority vote. We collect user-specific labels on 60 im-

ages/pairs, from each of 10 (Shoes) or 5 (SUN) workers

on MTurk. We reserve 10 random user-labeled images per

user as a test set in each run, and show average accuracy

and standard error across 300 random splits.

Fig. 3 shows representative results. In the upper-right,

we show an averaged result over all datasets, attributes, and

4SUN: sailing, vacationing, hiking, camping, socializing, shopping,

vegetation, clouds, natural light, cold, open area, far-away horizon. Shoes:

pointy, open, bright, ornate, shiny, high, long, formal, sporty, feminine
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additional training data additional training data

additional training data additional training data

additional training data additional training data

SUCCESSFUL ADAPTATION

additional training data

additional training data

additional training data

FAILURE CASES

Figure 3. Accuracy as more training data is added.

users. We plot test accuracy as a function of the amount of

additional training data beyond the generic pool. Generic

remains flat, as it gets no additional data. For binary at-

tributes, chance is 50%; for relative it is 33%, since there

are three possible responses (“more”, “less”, “equally”).

Our adapted attributes typically outperform all other

methods. Our advantage over the generic model supports

our main claim: we need to account for users’ individual

perception when learning attributes. Further, our advan-

tage over the user-exclusive model shows our approach suc-

cessfully leverages “universal” perception as a prior; learn-

ing from scratch is inferior, particularly if very few user-

specific labels are available (see leftmost points on plots).

With more user-specific labels, the non-adaptive approach

can sometimes catch up (see feminine), but at the expense

of a much higher burden on each user. Finally, the generic+

baseline confirms that our advantage is not simply a mat-

ter of having more data available. Generic+ usually gives

generic a bump, but much less than user-adaptive. For

example, on bright, we improve accuracy by up to 26%,

whereas generic+ only gains 14%.

We do see some failure cases though. The failures are by

definition rather hard to analyze. That’s because by focus-

ing on user-specific perception, we lose any ability to filter

noisy label responses (e.g., with voting). So, when a user-

adapted model misclassifies, we cannot rule out the possi-

bility that the worker himself was inconsistent with his per-
sonal perception of the attribute in that test case. Nonethe-

less, we do see a trend in the failure cases—weaker user-

exclusive classifiers. As a result, our model can start to

underperform generic, pulled down by (what are possibly

inconsistent) user responses.

Fig. 4 shows example attribute spectra for three generic
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Figure 4. Example learned generic (top row per example) and user-

specific (bottom row per example) attribute spectra.
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(a) Data difficulty

Most divergent All

generic 58.66 (0.35) 71.38 (0.11)

user-exclusive 71.86 (0.33) 70.54 (0.11)

user-adaptive 69.91 (0.29) 75.78 (0.10)
(b) User difficulty

Figure 5. Accuracy as a function of task difficulty. Best on pdf.

and adapted attribute predictions, sorted from least to most.

They illustrate how our method captures user-specific nu-

ances in attribute meaning. In the top set, it learns that this

user perceives flat fancy shoes to be feminine, whereas the

generic impression is that high-heeled shoes are more femi-

nine. In the middle set, it learns that for this user, shoes that

are darker in color are more formal, whereas the generic

model says shoes similar but brighter in color are formal.

In the bottom set, it learns that this user finds landscapes

with mountains more vacation-like than other settings.

Fig. 5 analyzes our method’s impact as a function of task

difficulty, using all 40 training labels. First, we consider test

case difficulty (a), as measured by the distance to the binary

attribute generic hyperplane; closer instances are more dif-

ficult. We sort the 10 test examples per split by difficulty,

and average over all attributes and users. We plot accuracy

as we add increasingly easy examples to the test set. We

see that user-adapted attributes are often strongest when test

cases are hardest. This is intuitive, since the intent of our

method is to capture what may be subtle, fine-grained per-

ceived differences. For SUN attributes, the user-exclusive

model outperforms ours by a small margin for the most dif-

ficult examples, likely because binary judgments are hard to

make for some of these attributes, making the generic prior

less valuable.

Second, in Fig. 5(b) we consider user difficulty on the

Shoes Binary dataset, as measured by how often a worker

disagrees with the majority. Numbers in parens are stan-

dard error over all binary shoe attributes and random splits.

The margin between our adaptive method and the generic

method is significantly increased for divergent workers (left

col) compared to all workers (right col), as the generic

model is insufficient when the user has a unique perception.

In contrast, our method faithfully captures users’ notions.

4.2. Personalized Search with Adapted Attributes

Next we show that correctly capturing attribute percep-

tion is important for accurate search. Search is a key ap-

plication where adapted attributes can alleviate inconsisten-

cies between what the user says, and what the (traditionally

majority-vote-trained) machine understands. For all search

results, we use the attributes that seem most in need of adap-

tation, based on our previous results (5 for Shoes, 4 for

SUN).

Multi-attribute keyword search First we evaluate multi-

attribute keyword queries. We ask 10 MTurkers to label 40

images for each of the attributes. We train all models, then

apply them to a test set of 20 held-out images per user. We

issue all combinations of 3-attribute queries. Accuracy is

the percentage of test images where the binary predictions

on all 3 query attributes agree with that user’s ground truth.

Fig. 6(a) shows the results, averaged over all users and

queries. We see that the generalization power of the adapted

attributes translates into the search setting. Our method is

substantially better at finding the images relevant to the user.

This result demonstrates how our idea can benefit a number

of prior binary attribute search systems [14, 23, 21].

Relevance feedback with relative attributes Next we

evaluate adapted attributes for relevance feedback. We

ask 10 users for whom we have trained user-specific rel-

ative attribute models to examine 10 target query im-

ages, and tell us whether they exhibit a specified attribute

more/less/equally than 20 random reference images. This

yields a total of 20 feedback statements per query per user.

Fig. 6(b) shows the averaged results. Since in this sce-

nario the user describes a single (known to us) image, we

gauge accuracy in terms of the percentile rank for this tar-

get image, i.e., the proportion of database images that the

system ranks lower than the correct target image that the
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generic generic+ user-exclusive user-adaptive

Shoes-B 31.5 (0.13) 36.3 (0.14) 40.3 (0.15) 43.6 (0.13)

SUN 34.3 (0.19) 47.3 (0.15) 51.9 (0.24) 64.5 (0.16)
(a) Multi-attribute keyword search

generic generic+ user-exclusive user-adaptive

Shoes-R 70.96 (0.12) 72.70 (0.10) 72.75 (0.14) 74.70 (0.12)

(b) Relative attribute search feedback

Figure 6. Personalized image search accuracy

generic explicit +contr +trans

Shoes-R 70.96 (0.1) 72.58 (0.1) 74.15 (0.1) 74.34 (0.1)

Table 1. The benefit of inferring implicit user-specific labels

user was trying to find (higher is better). Again, our per-

sonalized search results are best, even notably stronger than

the personalized user-exclusive model. To give a concrete

sense of significance, our method ranks the target image 7

pages higher than the closest baseline, assuming a webpage

fits 40 images per page. This result shows how our idea can

improve prior systems for relative attribute search [13, 12].

Learning with inferred labels Finally, we validate our

ideas to infer user-specific labels. They apply only to the

relative attribute search scenario, so we test on Shoes-R.

We replace half of the explicit user-specific labels used for

adaptation with all the labels we infer using transitivity or

contradictions. Table 1 shows that either inference method

boosts search accuracy. The user’s target image is on aver-

age ranked 6 pages higher using those “free” inferred labels

compared to just explicit labels. Note we are getting com-

parable accuracy to our result in Fig. 6(b), but now with half

the user-specific labels.

Conclusions and future work Our main contribution is

the idea of adapting attributes to account for user-specific

perception. Our approach accommodates both binary and

relative properties, and makes it possible to leverage exist-

ing labeled datasets as a prior to regularize new user-specific

models. Our results on two compelling datasets indicate

that 1) people do indeed have varying shades of attribute

meaning, 2) transferring generic models makes learning

those shades more cost-effective than learning from scratch,

and 3) accounting for the differences is essential in image

search applications.

Our work suggests a number of interesting future direc-

tions. We plan to investigate extensions to detect when

an attribute is perceived nearly the same by most users, to

avoid requesting user-specific labels unnecessarily. Further,

we will explore more ways to gauge internal consistency

within a user’s set of responses, since self-consistency is

critical for adaptation. Finally, we will consider how to

discover and exploit structure among multiple users, which

could allow learning functions somewhere between mono-

lithic and user-specific.
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