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Abstract
This work makes use of a novel, recently proposed epipo-

lar constraint for computing the relative pose between two
calibrated images. By enforcing the coplanarity of epipo-
lar plane normal vectors, it constrains the three degrees of
freedom of the relative rotation between two camera views
directly—independently of the translation.

The present paper shows how the approach can be ex-
tended to n points, and translated into an efficient eigen-
value minimization over the three rotational degrees of free-
dom. Each iteration in the non-linear optimization has con-
stant execution time, independently of the number of fea-
tures. Two global optimization approaches are proposed.
The first one consists of an efficient Levenberg-Marquardt
scheme with randomized initial value, which already leads
to stable and accurate results. The second scheme consists
of a globally optimal branch-and-bound algorithm based
on a bound on the eigenvalue variation derived from sym-
metric eigenvalue-perturbation theory. Analysis of the cost
function reveals insights into the nature of a specific rela-
tive pose problem, and outlines the complexity under differ-
ent conditions. The algorithm shows state-of-the-art perfor-
mance w.r.t. essential-matrix based solutions, and a frame-
to-frame application to a video sequence immediately leads
to an alternative, real-time visual odometry solution.

Note: All algorithms in this paper are made available in the

OpenGV library. Please visit

http://laurentkneip.github.io/opengv

1. Introduction
The computation of the relative pose between two pla-

nar projections of a scene is certainly one of the most stud-

ied problems in geometric vision and—more generally—

structure from motion. Even in times where powerful

motion-model-based egomotion estimation solutions be-

come available, the basic computation of the relative pose

between two images remains of utmost importance, espe-

cially for the initialization of model-based solutions or pose

estimation problems that do not originate from a motion

process evolving over time.

Most common solutions to the calibrated relative pose

problem make use of the essential matrix parametrization,

which can result in a linear solution, depending on the

number of employed correspondences. These non-iterative

epipolar geometry approaches are generally fast and return

accurate results in many situations. However, there remains

a number of problems linked to the indirect essential matrix

parametrization:

• Mixing of parameters: The parameters of the essen-

tial matrix do not represent motion-related variables

directly, but rather functions of these variables. This

complicates the possibility to draw conclusions about

the nature of the problem just by analyzing the values.

• Solution multiplicity: Minimal solvers naturally return

multiple essential matrices. However, even for a single

essential matrix the decomposition still leads to mul-

tiple solutions. The functional mapping between the

motion variables—namely rotation and translation—

and the essential matrix is not uniquely invertible. The

common approach to disambiguate the solutions con-

sists of triangulating features and checking their repro-

jection error or location w.r.t. the image plane. The

solution hence depends on the computation of struc-

ture in parallel to the motion.

• Structural degeneracy: The most efficient solution to

the problem—the linear solver by Longuet-Higgins

[13]—is known to suffer from planar degeneracy. This

is due to the fact that the solution for n points is no

longer unique in the case of a planar point distribution.

• Zero translation: Although most essential-matrix

based solutions implicitly solve correctly for rotation

in the zero-translation and noise-free situation, the

constraint as such deteriorates. E = [t]×R results

in a zero matrix, and the constraint is always fulfilled.

Essential-matrix based solutions therefore depend on

model selection, decomposition, triangulation, etc., which

hinders an intuitive usage in practical situations. The

present paper sheds a new light on the relative pose prob-

lem by employing a different epipolar constraint not suffer-

ing from any of the above mentioned problems. Instead of
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solving for all the motion parameters indirectly, we show

how the relative pose problem can be turned into an eigen-

value minimization directly over the three parameters of the

frame-to-frame rotation. The relative translation results im-

plicitly in form of the corresponding eigenvector. The result

is an elegant and simple non-linear optimization over three

parameters only, and the cost function typically shows only

a small number of geometrically meaningful local minima

besides the globally optimal solution. Unlike the essential

matrix constraint, the cost function maintains a basin of at-

traction in the zero-translation situation, and the algorithm

can be solved with constant iteration time independently of

the number of features. Despite being an iterative approach,

the proposed algorithm therefore turns out to be a valid al-

ternative to existing calibrated relative pose algorithms, di-

rectly applicable to frame-to-frame motion estimation.

Related work: The first known solution to the relative

pose problem dates back to 1913 and has been presented

by Kruppa [9]. While this parametrization still leads to a

multivariate polynomial equation system with 11 solutions,

more recent advances have shown that the actual number

of solutions in the minimal case equals to 10. This is for

instance the case in the minimal solution of Nistér [16],

who derives a tenth-order polynomial that is subsequently

solved using Sturm’s root-bracketing approach. [18], [10],

and [11] represent alternative solutions to the problem using

the Gröbner basis, polynomial eigenvalue, or hidden vari-

able resultant technique, respectively. The solutions show

minor differences in terms of accuracy and computational

complexity, however all make use of the essential matrix

parametrization, and thus suffer from the previously men-

tioned problems. The linear solver by Longuet-Higgins

[13]—later on defended by Hartley [4]—, is one of the first

essential matrix based solutions. It delivers a unique essen-

tial matrix but suffers from the previously mentioned planar

degeneracy.

Although most algorithms are still able to find the ro-

tation in the noise-free zero-translation situation, the in-

lier computation still depends on the translation, which be-

comes unobservable. Torr et al. [20] address this problem

by model selection. Lim et al. [12] compute the rotation in-

dependently of the translation but depend on a special distri-

bution of the feature correspondences, i.e. antipodal points.

Kneip et al. [8] propose an alternative epipolar constraint.

Although their minimal solution depends on model selec-

tion, they show the general ability to compute the rotation

independently of the translation. This ability has been first

caught up in [15], with several follow-up works. This line

of research serves as a basis for our n-point-solution.

In terms of global optimality, the present paper has

analogies with the work of Hartley and Kahl [5], who also

devise a branch-and-bound solution in rotation space. Al-

though only minimizing an algebraic error, our solution is

more efficient: instead of finding the translation for each

rotation via second-order cone programming, we only have

to compare the closed-form bound on the eigenvalue vari-

ation of a 3×3 matrix. By remaining robust in the zero-

translation situation, the cost function used in the algorithm

remains applicable to infinitesimal motion too. Disregard-

ing the quadratic terms—which is allowed in the first-order

approximation for small angles—shows that the presently

employed Cayley parameters become approximately pro-

portional to the rotational velocity in that situation. We thus

obtain also a continuous equivalent to [19] and [21], which

represent minimal and non-minimal continuous epipolar so-

lutions. The presented work is also related to research con-

ducted around direct optimization on the essential matrix

manifold, such as Ma et al. [14] and Helmke et al. [7]. The

main difference in our work is the cost function: While all

previous works do an optimization over five degrees of free-

dom, we prove in this work the existence of a different cost

function that allows an efficient optimization over three de-

grees of freedom only. Moreover, none of the advantages is

lost: the algorithm can still use prior data compression tech-

niques and the Cayley transformation to end up with simple

Gauss-Newton-like optimization in a Euclidean space.

Finally, Nistér et al. [17] presents motion estimation re-

sults by continuously applying the five-point algorithm to a

video sequence. We compare our results to this approach,

and show the benefits of our method compared to essential

matrix based parametrizations.

Organization of the paper: Section 2 outlines the formu-

lation of the relative pose problem as an eigenvalue min-

imization problem. Section 3 presents two approaches to

find the solution, an efficient Levenberg-Marquardt scheme

as well as a bound on the variation of the eigenvalue al-

lowing the design of a branch-and-bound solution. Sec-

tion 4 shows comparative results of our algorithm includ-

ing the possibility to identify the location of local minima

in the cost function directly from the geometrical condition-

ing of the problem. Section 5 finally shows results on real

video sequences, and a successful direct frame-to-frame vi-

sual odometry solution.

2. Theory
This section outlines the main geometrical concept that

allows us to constrain the rotation between different view-

points independently of the translation, namely the copla-

narity of epipolar plane normal vectors. Using this con-

straint allows us to formulate the relative pose computation

as an eigenvalue minimization problem. We furthermore

introduce a good parametrization of the rotation matrix for

an efficient optimization, and reformulate the problem such

that rotations may be validated in constant time, indepen-

dently of the number of features.
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2.1. Preliminaries

We assume to be in the central, calibrated case such that

each location in the image plane can be translated into a

unique unit bearing vector originating from the camera cen-

ter. Each pair of bearing vectors (fi, f
′
i) denotes a corre-

spondence of bearing vectors pointing at the same 3D world

point pi from two distinct view-points, where fi represents

the observation from the first view-point, and f ′i the one

from the second. The relative pose is given by the trans-

lation t—expressed in the first frame and denoting the po-

sition of the second frame w.r.t. the first one—and the rota-

tion R—transforming vectors from the second into the first

frame. These variables are illustrated in Figure 1.

2.2. Relative pose as an eigenvalue problem

The epipolar plane of a correspondence is defined to be

the plane that contains the two camera centers as well as the

observed 3D point. The set of epipolar planes hence forms

a pencil of planes all intersecting in the line of translation.

In other words, the normal vectors of the epipolar planes all

need to be coplanar. A normal vector in the pure translation

situation is easily given by ni = f × f ′i . In case of having

rotation, this formula changes to

ni = fi ×Rf ′i . (1)

The work of Kneip [8] proposes to enforce the copla-

narity of triplets of normal vectors in order to come up

with a minimal solution for translation independent compu-

tation of the relative rotation. An interesting result around

the novel epipolar constraint is that—when varying the

rotation—virtual and notably non-coplanar epipolar plane

normal vectors appear even in the zero-translation situation,

which renders the constraint robust against vanishing trans-

lation magnitudes. However, the Gröbner basis solver pre-

sented in [8] still turns out to be unstable in this case, which

is related to numerical instabilities in the fixed sequence of

s-polynomials when the number of solutions changes. In

the following, we will present a more interesting n-point it-

erative optimization scheme that remains functional for any

parallax.

The basic intuition to enforce the coplanarity of n epipo-

lar plane normals consists of treating the set of normal

vectors as a point cloud, and canceling the second mo-

ment or dilatation in one direction. This is easily achieved

by stacking all normal vectors into a 3-by-n matrix N =[
n1 ... nn

]
, and minimizing the smallest eigenvalue of

NNT . Let NNT =
∑n

i=1 nin
T
i = M. M is a real sym-

metric positive-definite 3-by-3 matrix and a function of R.

If λM,min denotes the smallest eigenvalue of M, the final

problem parametrization becomes

Figure 1. Synopsis of the n-point relative pose problem. Bearing

vectors (in red) from two view-points are the known variables, and

the relative pose (in blue) is the searched unknown.

R = argminRλM,min (2)

with M =

n∑

i=1

(fi ×Rf ′i)(fi ×Rf ′i)
T .

Note that M is a real symmetric and positive-definite

matrix with rank at most 2. 2 is therefore equivalent to iter-

ative rank minimization. Also note that—at the end of the

optimization—the direction of translation is automatically

given by the eigenvector that corresponds to the smallest

eigenvalue. The size of the remaining eigenvalues incor-

porates the condition of the problem, meaning how close

we are to a zero-translation situation. The rotation having

three degrees of freedom, this represents at best a non-linear

optimization over three parameters only—depending on the

rotation parametrization.

2.3. Minimal parametrization of the rotation matrix

There exists a large number of possible rotation ma-

trix parametrizations. However, the avoidance of additional

constraints and the efficiency of the optimization are good

reasons to choose a minimal parametrization. It is also a

good idea to select a symmetric parametrization, which is

why the algorithm uses the Cayley transformation [1]. It

represents a good choice because—in practice—the frame-

to-frame rotation does barely exceed π
2 about any of the

basis’ axes. If the Cayley parameters are denoted with

v = (x y z)T , the parametrization involves a scale fac-

tor (1 + x2 + y2 + z2)−1. An interesting observation is

that this scale factor is always positive and can be factor-

ized from (1). It therefore only affects the magnitude of the

normal vector, and can be omitted in the coplanarity max-

imization (2). We therefore chose the following, quadratic

parametrization

R = 2(vvT − [v]×) + (1− vTv)I. (3)

2.4. Rendering the iteration time constant

An important observation is that the rotation matrix can

be factorized inside the expression (fi ×Rf ′i)(fi ×Rf ′i)
T .

On the other hand, the summation over i in M can be pulled
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into the different elements of the matrix. If ri denotes row

i of R and mij an element of M, we obtain

m11 = r3(

n∑

i=1

f2
yiF

′
i)r

T
3 −r3(2

n∑

i=1

fyifziF
′
i)r

T
2 +r2(

n∑

i=1

f2
ziF

′
i)r

T
2

m22 = r1(

n∑

i=1

f2
ziF

′
i)r

T
1 −r1(2

n∑

i=1

fxifziF
′
i)r

T
3 +r3(

n∑

i=1

f2
xiF

′
i)r

T
3

m33 = r2(

n∑

i=1

f2
xiF

′
i)r

T
2 −r1(2

n∑

i=1

fxifyiF
′
i)r

T
2 +r1(

n∑

i=1

f2
yiF

′
i)r

T
1

m12 = m21 = r1(

n∑

i=1

fyifziF
′
i)r

T
3 − r1(

n∑

i=1

f2
ziF

′
i)r

T
2

−r3(
n∑

i=1

fxifyiF
′
i)r

T
3 + r3(

n∑

i=1

fxifziF
′
i)r

T
2

m13 = m31 = r2(
n∑

i=1

fxifyiF
′
i)r

T
3 − r2(

n∑

i=1

fxifziF
′
i)r

T
2

−r1(
n∑

i=1

f2
yiF

′
i)r

T
3 + r1(

n∑

i=1

fyifziF
′
i)r

T
2

m23 = m32 = r1(

n∑

i=1

fxifziF
′
i)r

T
2 − r1(

n∑

i=1

fzifyiF
′
i)r

T
1

−r3(
n∑

i=1

f2
xiF

′
i)r

T
2 + r3(

n∑

i=1

fxifyiF
′
i)r

T
1

with F′i = f ′i · f ′Ti . A notable fact in this expression is

that all the summation terms have to be computed only once

over the original feature correspondences (linear complex-

ity), and can then be reused constantly throughout the entire

rank minimization (i.e., the rotation optimization). Similar

to Helmke et al. [7], this data compression technique results

in constant iteration time.

3. Solving the problem
In this paragraph, we first show how the non-linear prob-

lem (2) can be solved efficiently in a Levenberg-Marquardt

scheme. Second, we use eigenvalue perturbation theory

in order to derive a bound on the variation of the smallest

eigenvalue, finally enabling a globally optimal branch-and-

bound optimization of the relative rotation.

3.1. Levenberg-Marquardt scheme

A straightforward solution to the minimization problem

(2) is given by applying the gradient descent algorithm.

Notably, as shown in the supplemental material, λM,min

can be retrieved in closed form. In order to find the min-

imum more efficiently, we apply the following trick. The

Levenberg-Marquardt scheme is a Gauss-Newton-like pro-

cedure for finding the zero of a system of multiple, multi-

variate, and notably nonlinear constraints. The number of

constraints needs to be at least equal to the number of un-

knowns. To obtain such constraints and apply Levenberg-

Marquardt, we simply enforce the first-order partial deriva-

tives of λM,min w.r.t. the Cayley parameters to be zero,

which also defines a minimum.

∂λM,min

∂x = 0,
∂λM,min

∂y = 0,
∂λM,min

∂z = 0. (4)

The derivation of these constraints in closed-form can

again be found in the supplemental material. The online

Levenberg-Marquardt solver derives the Jacobians of these

constraints (i.e. the second order derivatives of λM,min) nu-

merically. Local minima are avoided by a random variation

of the starting point.

3.2. Branch and bound the variation of λM,min

It is almost trivial to derive an absolute bound on the vari-

ation of the rotation matrix R based on an absolute bound

ε on the variation of x, y, and z. Using this bound, we can

derive an absolute bound on the variation of the elements

of M. Let M be the real symmetric 3-by-3 matrix formed

by these bounds. M can be regarded as a bound on a Her-

mitian perturbation of M, and hence the eigensystem. A

formal derivation of these bounds can be found in the sup-

plemental material.

Let M∗ be a concrete perturbation of the eigensystem1.

The perturbation follows M → M +M∗. An important

result from the eigenvalue perturbation theory—the Weyl-
theorem as presented in [2]—tells us that the relative per-

turbation of the eigenvalues of M is then bounded by

|λi,perturbed − λi|
|λi| ≤ ‖M−1/2M∗M−1/2‖2. (5)

In an aim to bound the spectral norm, we first of

all note that the computation of the eigenvalues of a

real symmetric positive-definite 3-by-3 matrix can be

done very efficiently and in closed-form. We obtain

M = Vdiag(λ1, λ2, λ3)V
T , with positive eigenvalues

only. This means that M−1/2 is easily given by M−1/2 =

Vdiag(λ
−1/2
1 , λ

−1/2
2 , λ

−1/2
3 )VT , and remains a real sym-

metric positive-definite matrix. M−1/2M∗M−1/2 hence

remains a real symmetric matrix (not necessarily positive

definite). Another important property from the spectral the-
orem then tells us that the spectral norm of a real symmetric

matrix is given by the absolute value of its largest eigen-

value. The final step hence consists of deriving the charac-

teristic polynomial

det(M−1/2M∗M−1/2 − μI3) = −μ3 + a2μ
2 + a1μ+ a0,

(6)

and bounding the absolute value of its roots. This im-

plicitly bounds the largest eigenvalue of M−1/2M∗M−1/2

1M∗ is a real symmetric matrix where the absolute value of each entry

is smaller or equal to the corresponding entry inM. M∗ is not necessarily

positive-definite anymore.
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and hence the spectral norm. A good bound on the ab-

solute value of the roots of (6) is for example given by

the Lagrangian bound |a2| + |a1|1/2 + |a0|1/3 (conserva-

tive approximation). With α2, α1, and α0 representing

bounds on |a2|, |a1|, and |a0| as a function of the bound

onM∗—notablyM—and the absolute value of the entries

of M−1/2, we finally obtain

|λi,perturbed − λi|
λi

≤ α2 + α
1/2
1 + α

1/3
0

⇒ |λi,perturbed − λi| ≤ λi(α2 + α
1/2
1 + α

1/3
0 ). (7)

The derivation of α2, α1, and α2 can again be found in

the supplemental material. As expected, the bound on the

eigenvalue variation converges to zero along withM.

4. Simulation results
The branch-and-bound algorithm is essentially able to

find the globally optimal solution with desired resolution. It

is however not very efficient due to the fact that the bound

on the eigenvalue variation turns out to be fairly conser-

vative. The approach is also not taking into account any

outliers. While leaving it as the first step towards an in-

teresting future alternative to [5], the remainder of this pa-

per focusses on an evaluation of the real-time Levenberg-

Marquardt scheme. We first start with analyzing the behav-

ior of the cost function, and thus the complexity of avoiding

local minima. We then proceed to a comparison of com-

putational efficiency and noise resilience to different state-

of-the-art algorithms. The most critical part—namely the

performance in presence of outliers and convergence in ab-

scence of any prior knowledge—is finally analyzed by em-

bedding and comparing all algorithms within a RANSAC

framework.

4.1. Experiment outline

We generate random problems by first fixing the position

of the first frame to the origin and its orientation to iden-

tity. The translational offset of the second frame is chosen

with uniformly distributed random direction and maximum

magnitude of 2. The orientation of the second frame is gen-

erated with random Euler angles bounded to 0.5 rad in ab-

solute value. This generates random relative poses as they

would appear in practical situations. Bearing vector corre-

spondences result from uniformly distributed random points

around the origin with a distance varying between 4 and 8,

transforming those points into both frames, and normaliz-

ing. Noise is added by assuming a spherical camera with

a focal length of 800 pix, extracting the tangential plane of

each bearing vector, and adding a uniformly distributed ran-

dom offset expressed in pixels inside this plane. We execute

1000 problems for each noise level/outlier percentage. We

compare the mean and median error of our solution (eig) to

all commonly applied algorithms, namely [18] (stew), [16]

(nist), [8] (kneip), [6] (7pt), [4] (8pt), as well as two-view

bundle-adjustment (nonlin). The translational accuracy is

expressed by the angular error of the normalized direction,

and the error in rotation is expressed by the norm of the

difference between both the estimated and the ground truth

rotation vectors.

4.2. Behavior of the cost function

Direct iterative optimization of the relative pose neces-

sarily requires a comparison to standard two-view bundle

adjustment, which depends on proper initialization. The

biggest difference lies in the dimensionality of the problem:

While standard two-view bundle adjustment reduces the ge-

ometric error over 5 + 3n degrees of freedom (n being the

number of correspondences), our approach minimizes an al-

gebraic error function over 3 variables only. As indicated

in Figure 2, the smooth cost function typically shows only

a small number of geometrically meaningful local minima

in the neighbourhood of the globally optimal rotation. By

including simple mechanisms to avoid local minima (e.g.

random variation of the starting point), a direct optimization

hence becomes possible under the practically valid assump-

tion that the rotation between the view-points is bounded.

Local minima are rotations that cause a disparity similar

to the one generated by the true camera displacement. As

illustrated in Figure 3, a purely translational displacement

parallel to the image plane can cause a similar disparity

than a pure rotation around an orthogonal axis in the image

plane, and vice-versa. Small translations w.r.t. the depth

of the points can cause a local minimum to be very close to

the global one. These statements are of course only valid for

pinhole-like cameras. We obtain a large basin of attraction

around the global minimum in the case of omni-directional

bearing vector distributions, which is why our algorithm is

particularly well suited for omni-directional cameras.
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Figure 2. Behavior of the cost function λM,min around the global

minimum (0, 0, 0) for a random experiment. For better viewing

convenience, the figure plots the log-value of λM,min.
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Figure 3. Similarity and dissimilartiy of disparities caused by dif-

ferent motion and different camera types.

4.3. Efficiency and noise resilience

In this experiment, we use 10 random points without out-

liers and add different levels of noise. We select 10 points

for a better conditioning of the cost function. In order to

still have a fair comparison, each algorithm is using all 10

points (except (kneip)). The starting value for our iterative

eigenvalue-based solver as well as non-linear optimization

is set by a uniform variation of the true rotation 2. Figure

4 shows that our parametrization induces lower errors, and

clearly outperforms all other solutions for all tested noise

levels. Moreover, note that—for all reference algorithms—

the best essential matrix from multiple solutions as well as

the correct rotation and translation from the essential matrix

decomposition is each time selected based on a comparison

to ground truth, whereas our algorithm simply delivers a

unique solution.

The median execution times per iteration are 105 μs

(stew), 248 μs (nist), 943 μs (kneip), 26 μs (7pt), 26 μs

(8pt), and 83 μs (eig), respectively. Even though the exe-

cution time of our iterative solver depends on the number

of iterations in the optimization, we at least note that it is

real-time compliant. On the other hand, we were not able

to reproduce the advantage in terms of computational effi-

ciency of [16] commonly reported in the literature, which at

least points out the complexity of a proper implementation

of [16].

4.4. Convergence and resilience to outliers

In this experiment, we use 100 random points and in-

troduce up to 20% outliers into the measurements. The

noise is fixed to 0.5 pixels. All algorithms are embedded

into a RANSAC [3] scheme using the same outlier thresh-

old and inlier criterium. In order to exploit the commonly

reported advantage of minimal solvers, we use the mini-

mum number of points for all reference algorithms. For

the essential-matrix based solutions, a couple of additional

points are used in each iteration in order to automatically

disambiguate the multiple solutions. We leave the sample

size for our iterative solver at 10. We try to avoid local min-

2A maximum deviation of 0.01, which ensures that we spot the global

minimum for a proper evaluation of noise resilience
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Figure 4. Translation (a) and rotation (b) error for different noise

levels and algorithms, each time averaged over 1000 random prob-

lems. Each algorithm uses the same 10 points in each iteration,

resulting in lowest errors for our iterative solver. (eig) has best

performance with an error similar to two-view bundle adjustment.

Note that (kneip) computes only the rotation, and that (7pt) falls

back to (8pt) for non-minimal sets of correspondences.

ima by starting at identity rotation, and adding a random

variation in each RANSAC iteration.

As outlined in Figure 5, the best hypothesis of our it-

erative solver is again outperforming alternative solutions,

this time even clearer since using the biggest sample size.

This also proves the ability of our iterative random varia-

tion scheme to find the global minimum. As shown in Fig-

ure 6(a), the number of iterations is not affected by our ran-

dom variation scheme. This is, on one hand, explained by

the fact that there are only few local minima—meaning low

probability to miss the global minimum—and, on the other

hand, by the bigger sample size3. The best sample size is

not always minimal, but results from a trade-off between

outlier fraction and noise. Our solver requires the small-

est number of iterations below 5% outliers. Using more

3For 10 inlier correspondences and differing random displacements for

both ground truth and initial transformation, our approach finds the global

minimum in roughly 40% of all cases, compared to 20% for two-view

bundle adjustment. If chosing the best out of 5 random trials for each

experiment, our approach finds the global minimum in 86% of all cases,

compared to 68% for two-view bundle adjustment.
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features cancels noise, and thus increases the probability to

find the correct inliers. This is underlined by Figure 6(b),

showing that our iterative solution essentially finds the cor-

rect amount of inliers. Figure 6(c) shows that, again, the

entire sample consensus scheme has state-of-the-art com-

putational efficiency.

5. Direct frame-to-frame visual odometry
In order to demonstrate the performance of our algo-

rithm on real images, we finally applied it to a video se-

quence captured with a global shutter WVGA camera. We

compare the relative rotation accuracy of our approach and

[16] against ground truth data delivered by a Vicon mo-

tion capture system. Both algorithms are applied on a

frame-to-frame basis, and we employ fast corner extraction

and patch matching in order to establish feature correspon-

dences. Bearing vectors are created by applying a stan-

dard pinhole-camera model with radial distortion parame-

ters. The final result of our approach is refined by solving

(2) over all inliers, and using the best RANSAC hypothe-

sis as a starting point for the optimization. Moreover, the

summation terms in Section 2.4 are weighted by the corre-

sponding feature matching scores. For the approach in [16],

the final result is refined by running standard two-view bun-

dle adjustment over all inliers.
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Figure 5. Accuracy of the different algorithms embedded into a

RANSAC scheme and with different outlier percentages. Each

value is averaged over 1000 random experiments. All algorithms

use the same 100 points in each iteration. The error of the iterative

solver remains lowest.

The dataset starts with moderate translational displace-

ments, then contains rotations about all three camera axes,

and finally combined rotation and translation. Errors are

mainly caused by inhomogeneous bearing vector distribu-

tions in the pinhole-camera case, resulting in the previously

mentioned ambiguities between rotational and translational

motion estimation. As indicated in Figure 7, the relative ro-

tation accuracy of our approach outperforms the approach

in [16], with an error in rotation staying below 1◦ per pair

of frames. This at the same time proves that our random

variation scheme effectively avoids local minima. More ex-

haustive motion estimation results of our real-time pipeline

can be found in our supplementary video file.

6. Conclusion

The present paper introduced a novel paradigm for solv-

ing the relative pose between two calibrated images, which

consists of iterative enforcement of the coplanarity of epipo-

lar plane normal vectors. In contrast to many approaches in

the literature, the optimization is carried out directly over

the frame-to-frame rotation, meaning three parameters only.

The cost function shows only a small number of geometri-

cally meaningful local minima besides the globally optimal

solution. This leads to an elegant direct optimization with-

out the requirement for any sophisticated initialization pro-

cedures. The paper demonstrates that this simple approach

can do equally well if not better than all commonly used

(a)

(b)

Figure 7. Rotation over time (a) and relative rotation accuracy (b)

of our solution (eig) and [16] (nist) over a real image sequence.

The errors are computed with respect to ground truth data (gt) ob-

tained from a Vicon motion capture system.
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Figure 6. Number of iterations (a), number of found inliers (b), and required execution time (c) for all tested algorithms.

essential-matrix-based approaches, which all depend on ad-

ditional heuristics in order to come up with a unique solu-

tion. High computational efficiency is achieved by keeping

the iteration time constant, independently of the number of

features.
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