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Abstract

Many state-of-the-art optical flow estimation algorithms
optimize the data and regularization terms to solve ill-posed
problems. In this paper, in contrast to the conventional op-
tical flow framework that uses a single or fixed data model,
we study a novel framework that employs locally varying
data term that adaptively combines different multiple types
of data models. The locally adaptive data term greatly re-
duces the matching ambiguity due to the complementary
nature of the multiple data models. The optimal number
of complementary data models is learnt by minimizing the
redundancy among them under the minimum description
length constraint (MDL). From these chosen data models, a
new optical flow estimation energy model is designed with
the weighted sum of the multiple data models, and a convex
optimization-based highly effective and practical solution
that finds the optical flow, as well as the weights is proposed.
Comparative experimental results on the Middlebury opti-
cal flow benchmark show that the proposed method using
the complementary data models outperforms the state-of-
the art methods.

1. Introduction
Optical flow estimation is used to find the pixel-wise dis-

placement field between two images. It has been an active

research topic in computer vision for decades. The estima-

tion of accurate flow vectors has become a key step in nu-

merous vision applications, such as dense 3D reconstruction

and segmentations of video or motion [23, 18, 11]. How-

ever, optical flow estimation is difficult to solve because it

is a highly ill-posed inverse imaging problem. To address

this problem, traditional approaches used the energy mini-

mization formulation composed of both data term and reg-

ularization as follows:

E = Edata(u) + λEreg(u), (1)

where u = (u, v)T denotes the optical flow field between

two input images. Edata measures the data fidelity, Ereg

enforces regularization of the flow field, and λ controls the
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Figure 1. Our adaptive data fusion method consists of complemen-

tary data models that overcome the limitations of the single data

model and provides the similar result to the ground truth flow.

tradeoff between the regularization and data fitting. Horn

and Schunk [13] proposed the variational formulation for

the first time in the optical flow estimation. Their model has

been intensively investigated together with a coarse-to-fine

strategy [1] in handling large motion between two images.

However, their original model did not preserve the disconti-

nuities in the displacement field and did not well reject the

outliers in the data term, thus, various methods have been

introduced to solve such problems. Black and Anandan [4]

applied a robust statistic estimator, and Zach et al. [26] used

an L1 data penalty term for the problems. However, the data

terms were restricted to the brightness constancy in which

the brightness of the corresponding pixels does not change,

which is not applicable under illumination changes or noise.

Some recent studies have focused on improving the opti-

cal flow constraints beyond the brightness constancy. Brox

et al. [6] averaged two data models with respect to the

brightness constancy and gradient constancy, which as-
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sumed that the intensity gradients of the corresponding

points are same. Their model provided a robust estimator

against illumination changes. Steinbrücker et al. [21] com-

pared the classical data model based on the brightness con-

stancy with arbitrary non-convex data models and showed

the superiority of the complex data models, such as block

matching. Werlberger et al. [24] also adopted the block

matching and used truncated normalized cross correlation

(NCC) as a pixel-wise data term to cope with the match-

ing problems under illumination or exposure changes and

to remove the ambiguity in the occluded regions.

Although many approaches have tried to improve the op-

tical flow constraints and designed robust data models, the

previously proposed data models still remained inadequate

in practical situations because their inherent weaknesses.

For example, the data models based on the gradient con-

stancy or block matching such as the sum of absolute dif-

ference (SAD) are not valid when a geometrical transforma-

tion significantly changes the appearance in the target im-

age. However, these models could complement each other,

and thus, the problem of designing a locally adaptive data

term is of the greatest importance.

The present study is related to the previous work of

Xu et al. [25], where the selection of a data model pro-

vides low value in the total energy. Xu et al. selected

the best data model for each pixel in the reference image

from two data models which are the brightness and gradient

constancy, and assumed that the weight variable is binary.

They adopted the mean-field approximation for easy infer-

ence. However, their solution is intractable in some cases

and it makes a drastic limitation to be a general data fusion

model. Because of the small noise and uncertainty of each

data model even if all assumptions of data models are not

violated, the continuous weight variables must be allowed

rather than the binary variables, to suppress the noise by

averaging. We observed that the smoothness prior of the

weight variables exhibited significant improvement, how-

ever, these additional cues rendered their solution infeasi-

ble.

Therefore, we propose a more general and unified vari-

ational framework that considers both the data fidelity and

regularization to determine the locally varying continuous

weight variables and thus, can be applicable to other vision

problems. Figure 1 shows that our new optical flow estima-

tion model based on the generalized data fusion framework

significantly improves the accuracy. In addition, our model

includes a novel data discriminability term, which defines

the goodness of each data model to reduce the ambiguity in

the homogeneous region. The proposed minimization pro-

cedure is very efficient and practical; thus, it can handle

many data models, and the complexity increases linearly as

the number of used data models increases.

We also provide a method to select the complemen-

tary data models to be used in the optical flow estima-

tion. Although previous works [6, 27, 25] showed that more

complementary models provide more accurate results, they

are computationally inefficient. No study has been con-

ducted on the data models whether they contain redundancy.

Therefore, this study also proposes the method learning

complementary data models where the number of selected

models is made as few as possible based on the minimum

description length (MDL) [12] and then fuses the chosen

models.

Finally, experimental results verify our claims and show

that the proposed approach outperforms the other conven-

tional approaches and achieves very satisfactory perfor-

mance in the Middlebury optical flow benchmark site.

2. Optical Flow Estimation Model Using Lo-
cally Adaptive Data Fusion

Most traditional optical flow estimation methods are

based on the variational framework and it is easy to im-

plement and parallelize on modern GPUs. Therefore, our

proposed optical flow estimation method is also based on

the variational framework with a robust data term and regu-

larizer.

However, designing a robust single data model, that is

reliable on the entire image domain, is almost impossible.

Thus, designing a locally (pixel-wise) adaptive data term

is desirable by the fusion of complementary data models

while excluding the invalid data models. In addition, data

discriminability which indicates the goodness of each data

model to reduce the ambiguity in the textureless region and

smoothness prior on the weight variable, are also required.

Therefore, we can generalize (1) by employing the adaptive

data fusion model as,

E = Edata(u, w) + ηEdscr(u, w) + μEreg(w) + λEreg(u).
(2)

The set w = {wl} means a set of M weight variables,

where l = 1, 2, . . . , M . Edata(u, w) measures the data

fidelity coupled with the flow fields and weight variables,

Edscr(u, w) measures the discriminability of each data

model, and Ereg(w) and Ereg(u) enforces the regulariza-

tion of the weights, respectively. The constant η is used to

define the importance of discriminability term and μ con-

trols the influence of regularization of the weight variables.

In the following sections, more details of the major fac-

tors for the adaptive data fusion, which are the data fidelity,

the data discriminability, and regularization, are provided.

2.1. Data Fidelity

This study proposes an optical flow estimation model

that combines the conventional but complementary optical

flow constraints learnt by the method presented in Section

4.
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One of the most important factors for the adaptive data

fusion is data fidelity. For example, a data model with re-

spect to the brightness constancy gives unreliable data cost

at the true matching under illumination changes, shades or

noise; thus, the energy minimization procedure can be over-

fitted and can provide undesirable result to avoid high cost.

However, other data models such as the gradient constancy

or NCC can provide lower cost where the brightness con-

stancy is invalid. In addition, a data model such as SAD can

give lower cost when noise exists. Therefore, we can obtain

the desired result and avoid over-fitting by favoring more

reliable data models, which provide better data fidelity if

given models are normalized to have similar costs in the true

matching where the assumptions of the models are valid.

Thus, we design Edata to minimize the weighted sum of

the data models by

Edata(u, w) =
∑

x

M∑
l=1

wl(x) · ρl(x, u), (3)

where x ∈ �2 denotes the indices of the discrete locations in

the image domain. The continuous weight variable, wl ∈ w,

has constraints, wl(x) ≥ 0 and
∑M

l=1 wl(x) = 1. This

design allows to construct an integrated locally (pixel-wise)

best suited data model.

2.2. Data Discriminability (Goodness)

In general, a data model giving a low cost value is pre-

ferred. However, favoring the model that gives the lowest

cost may not be the best approach in some situations as

shown in Figure 2. Two data models are considered at the

corresponding points between the reference and target im-

ages. One model measures the SAD as ρSAD, whereas the

other model measures the absolute difference of the bright-

ness among the corresponding pixels as ρI . The corre-

sponding point in the target image is shown in Figure 2(b),

and both ρSAD and ρI are low because they are matched.

However, if the matched point in the target image moves

horizontally or vertically as shown in Figure 2(c)-(d), then

ρSAD increases as the matched point moves, whereas ρI

does not change. Thus ρI gives a low cost in a wide range

and have high probability to generate many false positives.;

However, ρSAD does not. Accordingly, ρSAD is a better

model than ρI in this case where the region is homoge-

neous. Therefore, not only the data fidelity but also the data

discriminability of the data model should be considered in

our adaptive data fusion.

The notion of the discriminability term is similar to the

concept of good feature to track in [20] and the Harris cor-

ner detector, which measures how reliable a point is un-

der a given supporting region for feature matching. This

constraint helps in choosing better data cues that enable

unique and accurate feature localization in the matching.
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Figure 2. Discriminability comparison of two different data mod-

els. (a) The box and circle centered at the same position in the ref-

erence image are used to measure ρSAD and ρI . (b) Correspond-

ing point in the target image. Both ρSAD and ρI give reliable data

costs. (c) and (d) Horizontally and vertically shifted correspond-

ing point in the target image of (b). ρSAD changes considerably

and gives a high data cost. ρI does not change and still yields a

low cost.

Similar to the Harris corner detector, the discriminability

of each data model can be measured by the smallest eigen-

value of the auto-correlation matrix corresponding to the

auto-correlation function defined by

cl(x, u0) =
∑
s∈W

(ρl(x, u0) − ρl(x, u0 + s))2, (4)

where the given optical flow u0 can be obtained from the

initial state of each level in the coarse to fine approach or

from the previous result in the iterative optimization proce-

dure. The function cl(x, u0) is defined on the 5 x 5 window

W centered at zero.

To obtain high discriminability, the smallest eigenvalue

of the auto-correlation matrix of cl(x, u0) should be large,

and we define it as

el(x, u0) = min(|ν1|, |ν2|), (5)

where ν1 and ν2 denote the two eigen values of the local

auto-correlation matrix. Then the data discriminability term

in (2) can be represented as

Edscr(x, u) =
∑

x

M∑
l=1

wl(x) ·
M∑

k=1,k �=l

ek(x, u0). (6)

Because the data model with a large discriminability yields

a large el(x, u0), this is added to the costs of the other data

models and prevents the other models from gaining more

weights.
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2.3. Regularization

As optical flow estimation is a highly ill-posed problem,

regularization enforcing the smoothness of variables is nec-

essary to obtain a reliable solution. In our energy model,

two primal variables are the set of the weight variables w
and the flow fields u, and the details of regularization for

each variable are described in the following sections.

2.3.1 Regularization on w

Regularizing the weight variables is also an important fac-

tor for adaptive data fusion. In particular, if noise exists

in the true matching, then favoring a model which gives the

better data fidelity only may not be the best solution, but av-

eraging or weighted summing of all the data models could

give more reliable results. In addition, the abnormally low

costs compared with those of the neighboring pixels from

the same data model are likely false. Thus, regularization of

the weight variables is necessary. Therefore, we allow the

continuous, but not the binary, weight field to get a solution

from the weighted average of the costs, and incorporate the

smoothness prior on the weight variables to avoid assigning

large weight to unreliable models. We design the regular-

ization of the weight variables to change smoothly but to

have sparse discontinuities. This process yields

Ereg(w) =
∑

x

M∑
l=1

|∇wl|. (7)

2.3.2 Regularization on u

In general, conventional optical flow estimation models as-

sume that the flow vectors vary smoothly and have the

sparse discontinuities in the edges of reference image.

Therefore, the edge map [18, 25, 23] is coupled to the to-

tal variation regularizer which allows discontinuities in the

flow fields. The edge map of a colored reference image is

given by the maximal color difference among neighboring

pixels as

g(x) = exp(−max(|∇IR|, |∇IG|, |∇IB |)κ), (8)

where κ controls the magnitude of the difference between

the homogeneous region and the edge and ∇IR, ∇IG and

∇IB denote the pixel-wise derivatives of the RGB color

channels, respectively. The regularization of the motion

fields is formulated by

Ereg(u) =
∑

x

g(x) · |∇u|. (9)

3. Learning of Complementary Data Models
Based on MDL

Using many complementary data models could give bet-

ter results, however, this process is inefficient because of

���� !���%& ���� � !��'�� ���� !��&((� ��� � !���"

Figure 3. Sum of error, ε, on the RubberWhale sequence and

the pixel whose data cost is high becomes red. (a) Single model.

(brightness constancy) (b) Single model. (gradient constancy) (c)

Single model. (5x5 SAD) (d) All 31 models.
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Figure 4. Trade-off curve between M and ε of the chosen M
models. 31 models are used as candidates.

the redundancy. Therefore, we study the nature of the data

models to be used in the data fusion on the Middlebury

training datasets where the ground truth of the motion fields

is known.

Prior to this study, we assume that the distribution of the

data costs in the true matching is Gaussian and thus all ρl(.)
are normalized to have zero mean and unit variance. This

setting is used in all experiments in our study. By normal-

ization, fair comparison of the costs among the data models

in the true matching is possible, and we can presume that

the matching cost is unreliable when the cost is over one

(σ = 1), otherwise it is reliable. Thus, we define the error

function of the data model by

fl(x) =

{
C, if ρl(x, ugt) > 1
0, otherwise.

, (10)

where ugt denotes the ground truth motion and C is a pos-

itive constant. In addition, we compose L candidate data

models which have been used in conventional methods for

comparison. The candidate data models consists of total 31

models such as the brightness, gradient and block matching

for the gray and RGB color channels. In addition, differ-

ent sizes of blocks are used for block matching. (See the

supplementary material for more details.)

For a set of data models to be complementary, at least

one data model should give reliable cost where the others

could not. Therefore we should minimize the sum of error

function with complementary data models, and it is given

by

ε =
∑

x

L∑
l=1

ql(x)fl(x), (11)

where ql(x) ∈ {0, 1} denotes the pixel-wise integer indi-

cator function and
∑L

l=1 ql(x) = 1. As illustrated in Fig-

ure 3(a)-(c), ε of a single data model could be quite high,
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however, with the aid of complementary data models, ε is

reduced significantly as shown in Figure 3(d). So, the aim

of the current study is to minimize ε with fewer data models

by removing redundancy.

To use as few models as possible in literally describing

data while minimizing redundancy, we employe the MDL

concept [12] for the formulation of model selection as

F =
∑

X

L∑
l=1

ql(X)fl(X) + γδl, (12)

where X denotes the indices of the discrete locations in

the entire image domain of the training datasets and the

indicator function δl is defined as,

δl =

{
1, if

∑
X ql(X) ≥1

0, otherwise.
,

and thus,
∑L

l=1 δl indicates the number M(≤ L) of chosen

models in (12) and γ controls the strength of its importance.

The first term in (12) is designed to choose complementary

set of the data models and the second term is used to min-

imize the redundancy of the chosen data models based on

MDL.

If γ is given, the function F can be minimized by [9], and

our M data models to be used in the optical flow estimation

can be learned. A trade-off between M and ε with chosen

models is allowed, thus, we can determine the preferred set

of data models from the curve shown in Figure 4. In our

experiments, we use eight(M = 8) models learned from

this curve which gives about 10% higher error compared

with that of using full 31 models. The learned eight models

are complementary as expected. To be robust against geo-

metrical changes, the three data models of the red, blue and

gray channels are based on the brightness constancy in [26].

In addition, to be robust against illumination changes, the

four models of the green and blue channels are based on the

vertical and horizontal gradient constancy in [25]. Finally,

the 5x5 SAD used in [21] for the green channel is selected,

which is robust against noise. The finally chosen eight mod-

els are listed in Table 1.

Data model: |Ir(x)− It(x + u)| |∇Ir(x)−∇It(x + u)| 5x5 SAD

Type Brightness constancy Gradient constancy Block matching

Channel R, B, Gray G, B(2 vertical, 2 horizontal) G

Table 1. Eight chosen data models. Ir and It denote the reference

and target image, respectively.

4. Optimization

The proposed optical flow estimation model introduced

in the previous section includes the regularization, weighted

sum of the multiple data models and the data discriminabil-

ity, and the final objective function of this study is as fol-

lows:

min
u,w

∑
x

M∑
l=1

wl(x) · ρl(x, u) + η
M∑
l=1

wl(x) ·
M∑

k=1,k �=l

ek(x, u0)

+ μ

M∑
l=1

|∇wl| + λ · g(x) · |∇u|,

(13)

where wl(x) ≥ 0, and
∑M

l=1 wl(x) = 1.

Because regularization and discriminability terms are

convex, if all the data models are convex then (13) can be a

jointly convex problem [10]. However, the data models are

generally not convex, and thus, the proposed model is also

not convex and it suffers from some computational difficul-

ties. To address this problem, quadratic relaxation method

is widely used [2, 26, 21]. Our minimization is also based

on this technique, and we decouple the convex and non-

convex parts by introducing an auxiliary variable v linked

to u as,

min
u,v,w

∑
x

M∑
l=1

wl(x) · ρl(x, v) + η
M∑
l=1

wl(x) ·
M∑

k=1,k �=l

ek(x, u0)

+
(u − v)2

2θ
+ μ

M∑
l=1

|∇wl| + λ · g(x) · |∇u|.

(14)

If θ is set to a very small number, then the minimization

of (14) is close to (13). Using decomposition, the function

of u and w becomes convex with respect to fixed v. More-

over v can be minimized globally with respect to fixed u
and w with a complete search for all pixels. Therefore this

minimization problem can be optimized by alternating the

steps.

4.1. Continuous Optimization of u and w

For v to be fixed, using total variations makes the func-

tion non-differentiable. However, with the aid of convexity,

the duality principle is applied in the minimization of u and

w. Thus, to solve (14) when v is fixed, we adopt the first-

order primal dual algorithm [7] which is known to be fast

with optimal convergent rate. The primal dual update step
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is as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn+1 = pn+σAKun

max(1,pn+σAKun)

un+1 = λθ(un−τ(AK)T pn+1)+τv
λθ+τ

rn+1
l = rn

l +σKwn
l

max(1,rn
l +σKwn

l )

wn+1
l (x) =wn

l (x) − τ(KT rn+1
l )(x)

− τ
ρl(x, v) + η

∑M
k=1,k �=l ek(x, u0)
λ

wn+1 = Πw(wn+1),
(15)

where n ≥ 0 indicates the iteration number, and p and rl

denote the dual variables on the vector space. The constant

update steps, σ and τ control the convergence rate, as de-

fined in [7]. K is a continuous linear operator that calcu-

lates the difference between the neighboring pixels, and the

diagonal matrix A is the weighting matrix denoted as A =

diag(g(x)). Because w has some constraints, the orthogonal

projection Πw projects w onto a unit simplex [17]. This pro-

jection converges with M iterations at most, and the detail

is shown in Algorithm 1. (See supplementary material for

more details on the minimization of u and w.)

Algorithm 1 Algorithm of projection onto a unit simplex

1: T = {1, ..., M}
2: wl(x)← wl(x)− (

P
l wl(x)− 1)/|T |, if l ∈ T

3: T ← T − {l}, if wl(x) < 0
4: wl(x)← 0, if l /∈ T

5: Repeat steps 2-4 until
PM

l=1 wl(x) = 1, for all x

4.2. Continuous Optimization of v

For arbitrary and non-convex data terms, v can be opti-

mized globally by performing a complete search when both

u and w are fixed. It allows the computation of the large

displacement optical flow [21] and it also makes possible to

avoid staying in the local minima. However, the complete

search is slow. Therefore, we adopt an efficient warping

scheme that allows the arbitrary data term using the second-

order Taylor expansion [24]. Our data models are approxi-

mated as follows:

ρl(x, u) ≈ ρl(x, u0) + ∇ρl(x, u0)T (u − u0)

+
1
2

(u − u0)
T ∇2ρl(x, u0) (u − u0) ,

(16)

where ∇ρl(x, u0) is the first-order derivative and

∇2ρl(x, u0) is a diagonal matrix whose entries are

only positive second-order derivatives of ρl(x, u) at

(x + u0). By eliminating the non-diagonal and the negative

diagonal entries, we can ensure that the Hessian matrix is

positive semi-definite and guarantee that the approximated

function is convex near (x + u0), which results in,

v = arg min
v

(u − v)2

2θ
+

M∑
l=1

wl(x) · ρl(x, v)

≈ u − θ
∑M

l=1 wl(∇ρl(x, u0) − uT
0 ∇2ρl(x, u0))

1 + θ
∑L

l=1 wl∇2ρl(x, u0)
.

(17)

4.3. Occlusion Detection and Postprocessing

The data models used in our optical flow estimation have

weakness in occlusion, thus occlusion handling in the post-

processing is beneficial. Generally, cross checking of the

optical flows is effective however, it doubles the computa-

tional cost [19]. Checking the pixels that violate the map-

ping uniqueness constraint [25, 15, 5] is another method for

occlusion detection and the state of the occlusion variable

in the current study is defined as follows:

o(x) = min(
max(N(x + u) − 1), 0)

2
, 1), (18)

where N(x + u) denotes the number of pixels in the refer-

ence image that corresponds to a pixel located at (x + u) in

the target image. The state o(x) contains one of the three

values {0, 0.5, 1}. Because the estimated optical flow could

have some errors and a rounding off technique is used to

count the number on the discrete grid, we regard the pixels

as ambiguous when N(x+u) = 2 and o(x) is equal to 0.5 in

this case. This occlusion handling method violates the map-

ping uniqueness constraint, however, it is quite useful and

performs well in practical situations. To fill the occluded

pixels and remove the artifacts in the homogeneous regions,

we apply the joint bilateral filter with the occlusion states

and the similarity of color and optical flow fields that fol-

lows [19].

4.4. Implementation

Algorithm 2 Overall procedure of the proposed optical flow

estimation algorithm

Input: Two color images Ir and It

Output: Continuous fields u, w
1: Build pyramids for both reference and target images.

2: Set initial values of continuous primal and dual variables, u, v, w, p, r
in the coarse level.

3: for n = 1 to 100 do
4: Continuous minimization of u and w (Sec. 4.1)

5: Continuous minimization of v (Sec. 4.2)

6: end for
7: Occlusion detection and postprocessing (Sec. 4.3)

8: Propagate variables to the next pyramid level if exists

9: Repeat steps 3-8 from coarse to fine pyramid level

The proposed optical flow estimation model is based on

the quadratic approximations of the original data model to
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Figure 5. Performance comparison of the Middlebury training

datasets. The comparisons are made using the methods with single

data term, which has the best score, mean of data models, and the

proposed data fusion with and without the discriminability term.
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Figure 6. Quantitative analysis of the Middlebury training datasets.

We compare our method with the state-of-the-art methods based

on the variational framework.

ensure convexity where u ≈ u0. Initially these approxima-

tions are only valid for small displacements, and thus the

proposed model is embedded into the coarse-to-fine strat-

egy to cope with the large displacements. Furthermore we

estimate five affine motions from the flow fields similar to

RANSAC, and update the initial flow field when the affine

motion yields lower energy, Edata(u, w), than the propa-

gated motion field from the coarser level. To obtain accu-

rate results, we use a scale factor of 0.9 to build the image

pyramids. Three image warps that use intermediate flow

vectors are performed in a single pyramid level as in [22].

The overall procedure of the proposed method is summa-

rized in Algorithm 2.

The parameters are determined empirically, λ = 0.25,

θ = 0.1, η = 0.02, and μ = 1 from the curve in Fig-

ure 7. Furthermore the proposed optical flow estimation

model is implemented in C++ on the GPU with CUDA, and

the computation time is significantly reduced using paral-

lelization. It takes about 150 seconds for Urban2 sequence

on the GPU.

5. Experimental Results

The end point error (EPE) and angular error (AE) of the

flow estimation results are measured using the various data

models and shown in Figure 5. AEPE and AAE denote the

averaged errors of the entire Middlebury training datasets.

In the evaluation, the single data model giving the best re-

sult, simple mean of data models and their fusion by the

proposed method with and without the data discriminability

are compared. The results suggest that the proposed fusion

method with discriminability outperforms others and pro-

vides significantly better results.

Figure 7. Precision change by varying μ.

Figure 7 shows the plots of AEPE and AAE by varying

μ. The curve drops rapidly and begins to stabilize. This

result shows that relying only on the regularization of u
does not give a good accuracy compared with taking into

account the smoothness of the weight variables w. Fig-

ure 8 shows the pixel-wise weights, and the weights shown

in Figures 8(a)-(c) are related with the gradient constancy,

and the weight shown in Figure 8(d) is obtained from the

brightness constancy and that in Figure 8(e) represents the

weight of SAD. The arrows indicate the shaded regions in

the reference image, and the data models related with the

gradient constancy gain more weights than the other mod-

els, as expected, and the data model shown in Figure 8(c)

has less weight where the data cost is high in Figure 3(a).

Our results are compared with the state-of-the-art opti-

cal flow estimation methods based on the variational frame-

work [25, 22, 14, 3, 8, 16, 24], and the AEPE of each

method is shown in Figure 6. The proposed approach

outperforms the other methods in the Middlebury training

datasets. Also, the results of the Middlebury test sets are

shown in Figure 9. Our proposed method ranks the first

among published papers in the AEPE and second in the

AAE at the time of submission. The results are also avail-

able in the evaluation site 1.

6. Discussion and Conclusion
This study has presented a novel optical flow estima-

tion method that fuses various data models. By provid-

ing the locally adaptive data term, the limitation of a sin-

gle data model can be overcome. This study also pro-

vided an efficient and practical solution, and the proposed

optical flow estimation model showed competitive results

compared with the state-of-the art methods. In addition, a

method for learning the set of data models based on MDL

was presented which provided the data models to be used

in our optical flow estimation. The proposed model can be

generalized and applied to other problems that requires the

incorporation of numerous data models. It can resolve dif-

ficulties in designing a robust data function.
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Figure 8. (a)-(e) Five weight maps of the eight chosen models. The maps of three models that have lesser weights are omitted. (g) Flow

from the single data model with brightness constancy. (h) Flow from our final result.

Figure 9. EPE of the Middlebury benchmark at the time of submission. Three top-performing results are listed, and our method is the

second in terms of EPE.
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