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Abstract

We present a new multi-view 3D Euclidean reconstruc-
tion method for arbitrary uncalibrated radially-symmetric
cameras, which needs no calibration or any camera model
parameters other than radial symmetry. It is built on the
radial 1D camera model [25], a unified mathematical ab-
straction to different types of radially-symmetric cameras.
We formulate the problem of multi-view reconstruction for
radial 1D cameras as a matrix rank minimization prob-
lem. Efficient implementation based on alternating direc-
tion continuation is proposed to handle scalability issue
for real-world applications. Our method applies to a wide
range of omnidirectional cameras including both dioptric
and catadioptric (central and non-central) cameras. Ad-
ditionally, our method deals with complete and incomplete
measurements under a unified framework elegantly. Exper-
iments on both synthetic and real images from various types
of cameras validate the superior performance of our new
method, in terms of numerical accuracy and robustness.

1. Introduction
Having a wide field of view, omnidirectional cameras

can be used to reconstruct broad scenes from few views,

thus have been widely deployed to applications such as

surveillance, robot navigation and 3D modeling of street

scene. A large body of research has been devoted to the

3D reconstruction problem. However, existing methods are

still not fully satisfactory and not flexible enough as most of

the existing reconstruction methods rely on specific types of

cameras. It is highly desired to have a unified and efficient

reconstruction method for omnidirectional cameras.

This paper proposes a new multi-view 3D Euclidean

reconstruction method for generic types of uncalibrated

radially-symmetric cameras. It is built on the radial 1D

camera model originally developed by Thirthala and Polle-

feys [25]. Radial 1D camera model is shown to be a pow-

erful mathematical abstraction, which makes our method

generic enough to be applied to a variety of radially-

symmetric cameras, be it a central or non-central, dioptric
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Figure 1. Our method recovers 3D structure via matrix rank min-
imization from general types of uncalibrated radially-symmetric
cameras – e.g. fisheye lens cameras, concave shape mirror based
catadioptric cameras, noncentral cameras including spherical
mirror or any radially-symmetric mirror shape based cameras,
and multiple relflection surfaces based Sony RPU camera.

or catadioptric, fisheye, projective or affine. We extend their

framework to multi-view case, as opposed to the limit of

three or four views at most. The advantage is then, our

method is much more numerically stable and efficient, and

much less sensitive to noise and perturbations. This is in

sharp contrast to what was admitted in [25] that “However,

it must be noted that currently the quadrifocal and mixed tri-

focal tensors are useful only from a theoretical stand-point”

and “. . . hard to develop a robust automatic approach for real

images”. These drawbacks are tackled by our method.

Our 3D Euclidean reconstruction method adopts a strat-

ification scheme. First, we formulate the problem of multi-

view reconstruction for radial 1D cameras as a matrix

rank minimization problem, and solve it through convex

optimization (and semi-definite programming in particu-

lar followed by an efficient alternating direction continua-

tion method). Second, the multi-view reconstruction is up-

graded from projective to Euclidean by exploiting the inter-

nal constraints. Our method can handle both complete and

incomplete measurements cases in a unified way elegantly.

1.1. Modeling radially-symmetric cameras

Due to the various types of omnidirectional camera de-

sign and construction, e.g. dioptric (lens-based) or cata-

dioptric (mirror-lens system), central or non-central, most

3D reconstruction methods are specially designed for one
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or a few particular types, and thus are not universally appli-

cable to others. Meanwhile, novel types of omnidirectional

optical devices are emerging too (e.g. Sony’s panoramic

lens module, which consists of complex refraction and re-

flection in the light ray path, as illustrated in Fig. 1), which

also calls for a unified 3D reconstruction procedure.

There indeed exists a unified mathematical model to rep-

resent various types of omnidirectional cameras, so-called

generalized camera model (GCM) [19, 22, 11], which mod-

els cameras as unconstrained sets of projection rays. How-

ever, the GCM does not suggest a unified way to handle 3D

reconstruction from uncalibrated cameras. Although it rep-

resents incoming rays in a very generic way, the model is

not very stable [13]. The radial 1D camera model studied

in this paper is applicable to both central and non-central

cases, and it is in fact a special case (symmetry version) of

the GCM (i.e. “Axial camera” as defined in [21, 13, 11]).

In practice, very often omnidirectional cameras will

manifest a certain type of symmetry, where radial symme-

try being the dominant form. This is reasonable, because

it is convenient to design, to manufacture and to use, an

omnidirectional camera with a radially-symmetric field of

view. There are two major classes of omnidirectional cam-

eras: dioptric and catadioptric. The former one includes a

wide-angle lens (fish-eye lens), and the latter one often con-

sists of a perspective camera plus a curved mirror. In either

of these two classes, it is often desirable and convenient to

have a radially-symmetric field of view. Most of the com-

monly used omnidirectional cameras belong to this class,

and this is the main focus of this paper.

To express radially-symmetric cameras in a unified way,

Thirthala and Pollefeys [25] proposed the novel concept of

“radial 1D camera” that maps a 3D point to a radial line.

Tardif et al. [23] developed the varying focal length model,

where each distortion circle and the associated viewing cone

are considered as an individual perspective camera to pro-

vide great benefits to calibrate the camera with a collinear-

ity condition and planar pattern, thus fitting the radial cali-

bration purpose well. Ramalingam et al. [21] proposed the

“axial camera”, where all the rays intersect at a common

line. The axial camera is an abstraction of stereo systems,

non-central catadioptric cameras and pushbroom cameras.

1.2. Related works

To recover structure and motion for cameras with a wide

circular field of view, Mičušı́k and Pajdla [17] estimated

epipolar geometry of radially-symmetric cameras by solv-

ing a polynomial eigenvalue problem. Automatic estima-

tion of two-view geometry, and 3D metric reconstruction

from point correspondences are achieved in further. Lhuil-

lier [12] presented fully automatic methods for estimating

scene structure and camera motion from an image sequence

acquired by a catadioptric system, where bundle adjustment

is applied to both central and non-central models.

When a specific camera model is available, 3D recon-

struction can be achieved in a tailor-made style. For cata-

dioptric cameras, with the information of the mirror (model

and parameters), calibration and reconstruction can be done

through computing the forward and backward projection.

Geyer and Daniilidis [8] introduced the circle space repre-

sentation for an image of points and lines in central cata-

dioptric cameras, from which the epipolar constraint and

catadioptric fundamental matrix are derived. However their

method only works for two views or three views. Mičušı́k

and Pajdla [16] developed accurate non-central and suit-

able approximate central models for specific mirrors, thus

allowing to build a 3D metric reconstruction from two un-

calibrated non-central catadioptric images. Agrawal et al.
[1] computed the optical path from a given 3D point to the

given viewpoint with an analytical solution. The analytical

forward projection leads to 3D reconstruction via bundle

adjustment. They further extended the method to general

non-central off-axis camera placement [2].

On calibrating general radially-symmetric cameras,

Tardif et al. [23] used the varying focal length model,

presenting a plumbline type and plane-based calibration

method. The plane based calibration for radially-symmetric

cameras have also been studied in [20] and [24]. Gener-

ally, most of these methods investigate the interaction of

the assumed model with the multi-view constraints. Hartley

and Kang [9] proposed a parameter-free method to simulta-

neously calibrate the radial distortion function of a camera

and other internal calibration parameters by using a planar

calibration grid. However, their model is restricted to cen-

tral cameras and assumes a known calibration grid. When

the distortion model is available, radial distortion calibra-

tion and multi-view geometry can be solved with algebraic

minimization methods such as [7].

2. Radial 1D camera model
The radial 1D camera model [25] (Fig. 2) is a much more

general mathematical abstraction, which encompasses most

of the fisheye cameras, central and non-central catadioptric

cameras, perspective and affine cameras.

Definition: The radial 1D camera expresses the mapping

of a 3D point in P3 onto a radial line in the image plane.

The P3 → P1 projection can be represented by a 2 × 4
matrix and has 7 degrees of freedom [25].

Under the radial 1D camera model, a 3D point Xj =
[xj , yj , zj , 1]

T is mapped to a distorted image measurement

xd
ij = [ud

ij , v
d
ij ]

T by a radial camera Pi ∈ R2×4:

PiXj = φijx
d
ij , (1)

where φij is a scale factor. We assume the centre of distor-

tion is known and has been mapped to the origin. The pro-

jection lies on the line with direction vector (vdij ,−ud
ij)

T .
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The backward projection of the line is the plane containing

the 3D point Xj and the ray passing through center of dis-

tortion ci and xd
ij . Obviously, there is a scale ambiguity
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Figure 2. Radial 1D camera model.
for φij . For the projection matrix P and 3D scene struc-

ture X, similar scale ambiguity exists, i.e., a scaling projec-

tion matrix for each radial camera and scaling scene point

individually will not change the 2D image measurements.

Nevertheless, we can achieve 3D Euclidean reconstruction

without ambiguity as shown in the following sections.

Discussion. The radial 1D camera can be thought of

as projecting a bundle of planes containing the optical axis

onto a bundle of radial lines passing through the radial cen-

tre in the image plane (Fig. 2). The radial 1D camera model

encompasses most of the central and non-central omnidirec-

tional cameras. This is because the only essential require-

ment in this model is that all points lie in one plane, of the

bundle around the optical axis, project onto the same radial

line (passing through the radial centre).

3. Multi-view reconstruction upto projectivity
In this paper, we target at multi-view Euclidean recon-

struction from arbitrary radially-symmetric cameras. To

achieve this, we adopt a stratification scheme. First, we

achieve multi-view reconstruction upto projectivity through

factorization, which offers great simplicity and elegancy.

Second, by exploiting intrinsic constraints, the projective

reconstruction is upgraded to Euclidean reconstruction. In

this way, we do not need any specific camera and distortion

model other than the radially-symmetric condition.

By collecting all the image measurements across differ-

ent frames, we obtain a measurement matrix M = [xd
ij ] of

size 2m × n for m frames and n 3D points. Now the re-

lationship Eq.-(1) can be compactly expressed in a matrix

form as:

PX = [φij ⊗ 12×1]� M , (2)

where ⊗ denotes the Kronecker product, � denotes the

Hadamard product, P = [PT1 PT2 · · · PTm]T ∈ R2m×4 and

X = [X1 X2 · · · Xn] ∈ R4×n.

We define W = PX as the weighted measurement ma-
trix, and equivalently re-write Eq.-(2) as:

W = Φ� M = PX =

⎡
⎢⎣

P1
...

Pm

⎤
⎥⎦ [

X1 · · · Xn
]
, (3)

where Φ = [φij ⊗ 12×1] ∈ R2m×n. It is easy to check that

both P and X have a rank at most 4, therefore the weighted

measurement matrix W must have a rank at most 4. Thus, we

have reached a factorization formulation similar to the fac-

torization model for perspective cameras. Actually, a per-

spective camera model with or without distortion falls ex-

actly into the radial 1D camera model. Note that Eq.-(3)

can handle non-central cameras as well since it is a projec-

tion model by radial 1D cameras in [25].

3.1. Hadamard factorization based solution

Recall that the multi-view factorization model for ra-

dially symmetric cameras is expressed as: PX = Φ � M.

To deal with the scale ambiguity associated with the pro-

jection matrix and 3D points, we enforce the column-wise

and row-wise normalization on Φ as ΦT 1m = m1n and

Φ1n = n1m, where 1m and 1n are vectors with 1 element-

wise of length m and n, respectively. For general wide view

angle omnidirectional cameras, the coefficient φij is pos-

itive. Taking all the constraints into consideration, math-

ematically multi-view factorization for radially symmetric

cameras is formulated as:

Problem 3.1. Find W and Φ subject to

W = Φ� M,

rank(W) ≤ 4,

ΦT 1m = m1n, Φ1n = n1m,

φij > 0 .

Once the scaling matrix Φ is recovered, the multi-view fac-

torization problem can be solved via the singular value de-

composition (SVD) as W = PX. Note that the solution is

defined only up to a nonsingular 4 × 4 projective transfor-

mation H. Euclidean upgrading is explained in Section 4.

Minimization objective: Under the affine camera model,

multi-view factorization achieves the maximum likelihood

estimation (MLE) [10]. For the perspective camera model,

multi-view factorization is actually minimizing an algebraic

error, which can be viewed as an approximation to the ge-

ometric reprojection error. Under the radial 1D camera

model, we cannot measure the geometric reprojection er-

ror but only an angular error. We define the angular error

corresponding to a distorted image measurement xd
ij as eij ,

which measures the angle between the measured ray and the

reconstructed ray, i.e. ∠(xd
ij , PiXj). Therefore, to evaluate

the whole reconstruction, the performance measure is de-

fined as the total angular error:
∑m

i=1

∑n
j=1 ∠(xd

ij , PiXj) =∑m
i=1

∑n
j=1 arccos

(
<xd

ij ,PiXj>

‖xd
ij‖‖PiXj‖

)
. In Fig. 3, we illustrate

the measure of the angular error. Similar measures have also

been used in [12]. Note that the angular error is invariant to

the scaling ambiguity associated with P and X.
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Figure 3. Angular error and its approximation with algebraic er-
ror. (a) Angular error. (b) Approximating angular error with al-
gebraic error.

Normalization: Obviously, there is a scaling ambiguity

in Φ. If one family of φij yields a weighted measurement

matrix of rank 4, another family φ
′
ij given by φ

′
ij = δiηjφij

also yields a rank-4 weighted measurement matrix. There-

fore normalization is needed to deal with these scale am-

biguities. Column-wise and row-wise normalization of φij

deal with scale ambiguity with P and X respectively, which

has been used in projective factorization problems e.g. [5].

In solving the multi-view factorization problem, we are

actually relaxing the objective function to an algebraic er-

ror to approximate the geometric angular error. To achieve

a good approximation, we propose to normalize all the im-

age measurements xd
ij to unit norm xd

ij ← xd
ij/‖xd

ij‖ as

opposed to the normalization described in [10], Then, the

factorization formulation expresses as: PiXj = φijx
d
ij ,

where xd
ij is a unit norm vector (direction). The underly-

ing benefit is that normalization constraints
∑m

i=1 φij = m
and

∑n
j=1 φij = n make all the scaling parameter φij com-

parable, which gives a good approximation to the angular

error as shown in Fig. 3(b), where xp
ij = PiXj .

4. Multi-view Euclidean Reconstruction

In this section, we upgrade the multi-view reconstruc-

tion from radially-symmetric camera to Euclidean recon-

struction by exploiting constraints on the intrinsic camera

matrix. Our basic assumptions are: 1) Radially-symmetric

camera; 2) Identical aspect ratio, i.e. square pixel; 3) Center

of distortion is known and aligned with the principal point;

and 4) Zero skew.

Once we have recovered the scaling matrix Φ and the

weighted measurement matrix W, the projection matrix P

and scene structure X can be recovered through SVD as

W = PX. However this decomposition is not unique as it is

defined up to a nonsingular linear transformation H ∈ R4×4,

i.e. P = P̂H and X = H−1X̂ achieve identical image measure-

ments W. If a reasonable upgrading matrix H is achieved,

the Euclidean structure and motion can be recovered from

structure matrix X̂ and projection matrix P̂.

First let us decompose the upgrading matrix H into two

parts as H = [Hl|Hr], where Hl denotes the first three

columns of H while Hr for the fourth column. The abso-

lute dual quadratic Q = HlHl
� projects to the dual image of

the absolute conic ω∗i = KiKi
� as ω∗i = PiQPi

�[10]. The

objective here is to estimate Q directly from constraints on

the intrinsic parameters. We use the intrinsic camera matrix

as Ki = diag(fi, fi) and ω∗i = diag(f2
i , f

2
i ).

Based on the special structure of ω∗i , we obtain the fol-

lowing two linear constraints on Q:{
ω∗i (1, 2) = ω∗i (2, 1) = 0,
ω∗i (1, 1)− ω∗i (2, 2) = 0.

Thus we can solve Q linearly. The Euclidean upgrading ma-

trix H can be obtained through SVD of Q.

5. Efficient Implementations
In this section, we propose to solve multi-view projective

reconstruction Problem 3.1 efficiently via semi-definite pro-

gramming (SDP) and the augmented Lagrangian multiplier

method (ALM).

5.1. Semi-definite Programming

Under noiseless and complete measurement case, our

multi-view factorization Problem 3.1 with the rank con-

straint rank(W) ≤ 4 can be equivalently written as a matrix

rank minimization, min rank(W) (rank-4 is the upper bound

for general configured radially-symmetric cameras).

Since the rank minimization problem is NP-hard in gen-

eral, we propose to use the relaxed form as the objective

function, i.e., min ‖W‖∗. The nuclear norm ‖W‖∗ of a matrix

W ∈ Rm×n is defined as the sum of singular values of W.

Recently, nuclear norm minimization has been widely used

in low-rank modeling such as projective factorization [5, 3]

and robust principal component analysis [4]. The nuclear

norm serves as a tight convex surrogate to the rank func-

tion, from which we develop efficient implementation.

We finally obtain a trace norm minimization formula-

tion for Hadamard factorization :

min
W,X,Y,Φ

1

2
(tr(X) + tr(Y))

s.t.

(
X W

WT Y

)
	 0,

W = Φ� M,
ΦT 1m = m1n, Φ1n = n1m,
φij > 0.

(4)

where auxiliary variables X and Y are introduced to equiv-

alently represent the nuclear norm as trace norm under the

positive semi-definite constraint [6].

This is a standard SDP optimization problem, thus can be

solved using any off-the-shelf SDP solvers such as SDPT3

[26]. However, due to excessive memory and computational

requirement, these state-of-the-art SDP solvers still cannot

handle large scale real-world problems.

18991899



5.2. Augmented Lagrangian Multiplier

To further speed up the implementation, we resort to the

Augmented Lagrangian Multiplier (ALM) method which

has been widely used in the low-rank representation [14, 15,

5]. The nuclear norm of W can be expressed in terms of its

factors U and V as, ‖W‖∗ = minU,V:W=UVT
1
2 (‖U‖2F +‖V‖2F ).If

rank(W) = k ≤ min(m,n), then the minimum above is at-

tained at a factor decomposition W = Um×kV
T
n×k. Thus, we

slightly modify our formulation Eq.-(4) following the low

rank parametrization and reach

min
1

2
‖UVT − Φ� M‖2F +

μ

2
(‖U‖2F + ‖V‖2F )

s.t. ΦT 1m = m1n, Φ1n = n1m, φij > 0, (5)

where U ∈ R2m×4 and V ∈ Rn×4 give the explicit low

rank representation. In the formulation, we apply a con-

tinuation technique (i.e., homotopy approach) to accelerate

the convergence of the algorithm. The parameter ημ deter-

mines the rate of reduction of consecutive μl, as μl+1 =
max{μlημ, μ}, l = 1, · · · , L− 1, 0 < ημ < 1.

To efficiently solve Eq.-(5), we adopt the classic alternat-

ing direction method by introducing Lagrangian multipliers

Υ and Γ. The resulting partial augmented Lagrangian for-

mulation states as:

L(Φ,U, V,Γ,Υ) = 1

2
‖UVT − Φ� M‖2F +

μ

2
(‖U‖2F + ‖V‖2F )

+ 〈Γ,ΦT 1m −m1n〉+ 〈Υ,Φ1n − n1m〉
+

β

2
(‖ΦT 1m −m1n‖2F + ‖Φ1n − n1m‖2F ), (6)

where β > 0 is a penalty parameter. Eq.-(6) is not jointly

convex over U, V and Φ, therefore we propose to minimize it

with respect to U, V and Φ one at a time while fixing the oth-

ers. The iterations of ALM go as: U+ ← argminU
1
2‖UVT−

Φ � M‖2F + μ
2 ‖U‖2F , and V+ ← argminV

1
2‖UVT − Φ �

M‖2F + μ
2 ‖V‖2F . The update of U and V both have closed-

form solutions as, U+ = (Φ � M)V(VT V + μI)−1and V+ =
(Φ� M)T U(UT U+ μI)−1.

To update φij , we can also adapt a similar strategy

and obtain a closed-form solution. However, the equa-

tion system is of size 2mn × 2mn. To further speed up

the implementation, we propose to update φij element-

wise from the updated weighted measurement matrix W+ =

U+V
T
+ and normalized measurements M as φ

(k+1)
ij =

(wT
ijmij)/(m

T
ijmij). Then we normalize Φ to satisfy the

column-sum and row-sum constraints. In this way, we even

do not need to update the Lagrangian multipliers Γ,Υ and

β. Therefore, we obtain an alternating direction continua-

tion based algorithm for Hadamard factorization formula-

tion for radially symmetric camera reconstruction, which

alternates between updating U, V and Φ. Refer to the sup-

plementary material for implementation details.

5.3. Dealing with incomplete measurements

With a wide field of view camera, we can reconstruct 3D

scene from a few images, which will create an incomplete

measurement matrix in general and the SVD based method

cannot be applied.

In this subsection, we extend our Hadamard factoriza-

tion formulation from complete measurements case to in-

complete measurements case. With missing data setting,

we are given an incomplete measurement matrix M = [xd
ij ],

where the missing elements are completed with 0. To index

the missing pattern and elements, we define a 0 − 1 mask
matrix Ω as

Ω = [ωij ], ωij =

{
1 ∈ R2, if xd

ij is available,
0 ∈ R2, if xd

ij is missing.

With these notations, the imaging process for radially-

symmetric cameras with missing data can be compactly ex-

pressed as: Φ � M = Ω � W. Compared with the complete

measurements case, we have to recover a completed low-

rank matrix W and scaling matrixΦ such thatΦ�M = Ω�W.

For those missing positions, we do not need to estimate the

corresponding depths, so we set φij = 1 whenever ωij = 0.

This setting guarantees that the column-sum and row-sum

constraints on the available measurements and all the pro-

jective depths possess appropriate scales.

Semi-definite programming formulation can be derived

by slightly modifying Eq.-(4). Once this SDP converges,

the resultant W is a completed 2m×n full matrix with no en-

tries missing. Additionally, our alternating direction contin-

uation based efficient implementation can also be extended

to incomplete measurement case directly, achieving miss-

ing points handling ALM method (MALM). Implementa-

tion details are available in the supplementary material.

6. Experiments
6.1. Synthetic data

Catadioptric system. We performed experiments on both

synthetic and real data. To generate the synthetic data we

created 100 3D points placed randomly on 3 walls intersect-

ing each other in 90 degrees, and a catadioptric system con-

sisting of a perspective camera and a spherical mirror axi-

ally aligned is placed to capture the image of the 3D points

on the walls. The catadioptric system is moved to capture

20 images at different views. Each image is obtained by

the perspective projection of reflection on the spherical mir-

ror. Note that this reflection by the spherical mirror creates

axially aligned radial distortion in the image.

Methods SIESTA (the Simplest Iterative Extension of

the Strum/Triggs algorithm [27, 18]), SDP (Semi-Definite

Programming method), ALM (Augmented Lagrangian

Multiplier method) and MALM (Missing points handling

ALM method) are applied on the synthetic data and the
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Figure 4. Euclidean reconstruction results of the synthetic data.
3D reconstruction (red dot) after registration with the ground truth
(blue circle) by SIESTA (Top-left), SDP (Top-right), ALM (Bottom-
left) and MALM (Bottom-right).

Synthettic data (20 fframes, 100 points)
SIESTA SDP ALM MALM

2D angle error 0.0138° 0.0552° 0.016° 0.8106°
3D angle error 1.6118° 0.4967° 0.0991° 0.0571°
3D reg. error 1.60% 4.46% 0.13% 1.05e-10%
Aspect ratio err. 0.0599% 0.2827% 0.0073% 0.0571%
Skew error 1.21E-03 8.80E-04 4.60E-05 9.40E-04
Elapsed time 88 sec 776 sec 145 sec 39 sec

Table 1. Analysis of the synthetic data experiments (without
noise). The 2D angle error is the angle between the estimated
radial line and the input radial line in the image. The 3D angle
error is the angle difference between two estimated walls and the
ground truth 90◦. The 3D registration error is a relative error de-
fined as ||X − X̄||/||X̄||, where X is a matrix of 3D points estimate
and X̄ is a matrix of the ground truth 3D points. The skew error is
obtained from the estimated camera calibration matrix.

results of Euclidean reconstruction are shown in Fig. 4.

It shows that the ALM method outperforms against the

SIESTA and SDP method in all error metrics. For each

method, the angle difference between reconstructed 3D

points on the walls and the ground truth, the 2D angle er-

ror from estimated radial lines, the 3D registration error,

calibration error (aspect ratio and skew parameters) and the

computation time are reported (refer to the caption of Ta-

ble 1 for error metrics). The experiments were performed

on a single thread of Intel Core 2.66GHz CPU machine.

The experimental results are summarized in Table 1.

For statistical tests, experiments on the data by varying

the level of Gaussian noise σ on image point coordinates

are performed for all methods. Since the image point coor-

dinates on the dataset are distributed between -1.3 and 1.9,

the standard deviation of image noise level σ ∈ [0, 0.001]

Figure 6. Catadioptric simulation and rendered images. (Left)
A catadioptric system consists of a spherical mirror and a cam-
era (green frustrum) in 6 textured walls. (Right) A sample of the
rendered image sequence and feature matches (green circles).

MirroorBall RRPU lens
ff=41, p=722 p=107 f==17, p=551

SIESTA SDP ALM MALM SIESTA SDP ALM
2D angle error 0.771° 0.073° 0.001° 0.052° 0.191° 0.026° 0.026°
Aspect ratio err. 11.32% 0.14% 0.07% 0.06% 0.369% 0.002% 0.003%
Skew error 0.42 3.10E-05 3.40E-05 9.30E-05 0.0053 0.0019 0.0019
Elapsed time 380 sec 1,004 sec 185 sec 339 sec 89 sec 49 sec 8 sec

Table 2. Results of the synthetic ‘MirrorBall’ and real ‘rooftop’
data from Sony RPU omnidirectional camera module. The num-
bers in headings indicate the number of frames (f) and points (p).

Figure 7. 3D reconstruction of ‘MirrorBall’ by ALM (41 frames
and 72 points) and MALM (41 frames and 107 points with 14%
missing data). (First and second) Top and side view of the Eu-
clidean reconstruction by the ALM method from the image se-
quence (Fig. 6-right). (Third and fourth) The same views of 3D
reconstruction by MALM and missing points are recovered.

is chosen (Note that, for an image of size 1280 × 1280, it

corresponds to the maximum noise 1.2 pixels for 99.7 per-

cent of the sample). The result is compared with the tensor

based method [25], and as shown in Fig. 5, our proposed

methods, in particular, the ALM method significantly out-

performs other methods including the tensor based one.

Catadioptric rendered images. We generated a dataset

‘MirrorBall’ which is an image sequence rendered by a

computer graphics application to simulate a catadioptric

system in the configuration shown in Fig. 6. A spherical

mirror is placed in front of a perspective camera inside 6

textured walls, and the reflection on the spherical mirror is

rendered. The rendered images are used in feature track-

ing and the matches are collected as input for our methods.

As shown in Table 2 and Fig. 7, the ALM method is the

best against the SIESTA and SDP method. An experiment

using the MALM method is performed on the ‘MirrorBall’

dataset with 14% missing points. For the 41 frames of the

dataset, about 1.5 times of number of points is increased and

correctly estimated by the MALM method.
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Figure 5. 3D registration errors (compared with the ground truth) under varying noise level. (From left to right) The tensor based
method [25], SIESTA, SDP, ALM and MALM method. All experiments were performed 100 times per each different level of noise.

−0.2
0

0.2
0.4

−0.4
−0.2

0
0.2

0.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

−0.08
−0.06

−0.04
−0.02

0
0.02

0.04

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

1.86

1.87

1.88

1.89

−0.04
−0.02

0
0.02

0.04
0.06

−0.05

0

0.05

1.93
1.94
1.95

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

( )
−0.08−0.06−0.04−0.0200.020.04

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

( )

−0.04−0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

Figure 8. Euclidean reconstruction of the ‘rooftop’ sequence.
(Top-left) The ‘rooftop’ image with features from Sony RPU lens.
(Top-right) Side view of the reconstruction by SIESTA. (Middle)
Side view of the reconstruction by SDP and ALM method (from
left to right). (Bottom) Top view of the reconstruction by SIESTA,
SDP and ALM method (from left to right).

6.2. Real data

Sony RPU camera module. Sony RPU camera module

consisting of multiple reflection surfaces and a camera to

create a panoramic image was used to capture a ‘rooftop’

sequence of 17 images. Features in the images were man-

ually selected as shown in Fig. 8-(Top-left). Note that the

3D points are reconstructed correctly in parallel as shown

in Fig. 8. The quantitative result is summarized in Table 2.

Omnidirectional camera (catadioptric). An omnidirec-

tional image sequence captured by a catadioptric camera

(Kumotek VS-C14U-80-ST) was used in our experiment.

We captured images of a paper that was rolled to be a cylin-

−2
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4

6

−3
−2

−1
0

1

−4

−3

−2

Figure 9. Omnidirectional image and 3D reconstruction. (Left)
An image of a cylinder shape of a paper captured by the omnidi-
rectional camera (catadioptric). (Right) 3D reconstruction by the
ALM method. It reports the 2D angle error 0.038◦, aspect ratio
error 0.047% and skew error 1.7e-03 (in 280 sec).

Figure 10. Euclidean reconstruction results of fisheye lens. (First
column) The dataset ‘CheckCorrNorth’ by Canon fisheye 8mm
lens. A top view of the reconstruction by SIESTA (171 frames,
40 points) and the area of the reconstruction in the building map.
(Second column) The dataset ‘OfficeScene’ results by SIESTA.
(492 frames, 32 points). Colour of dots indicates the pixel colour
value of the feature from the input image sequence.

der shape, then the catadioptric camera was inserted inside

the rolled paper. The image and the 3D reconstruction are

shown in Fig. 9. The shape of the 3D reconstruction by the

ALM method shows a circular shape correctly.

Canon fisheye lens. Image sequences were captured by

Canon fisheye lens at indoor scenes such as corridors and a

room as shown in Fig. 10. The results are summarized in Ta-

ble 3. For 3D reconstruction tests, we measured the distance

of two ends from the scene (e.g. the height and the width of

the corridor, the depth of the room, etc). Since we have a

Euclidean reconstruction up to scale, the ratio of two dis-
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CheckCo
(f=171,

orrNorth
, p=40)

OfficeS
(f=492,

Scene
 p=32)

SIESTA ALM SIESTA ALM
2D angle error 0.121° 0.121° 0.062° 0.058°
3D ratio error 17.46% 4.55% 7.25% 3.32%
Aspect ratio err. 0.10% 0.06% 0.02% 0.09%
Skew error 0.021 0.005 6.10E-04 2.90E-04
Elapsed time 603 sec 154 sec 2,368 sec 433 sec

Table 3. Results of real sequences from fisheye lens. Two real se-
quence results corresponding to Fig. 10. The numbers in headings
indicate the number of frames (f) and the number of points (p) in
each dataset.

Figure 11. 3D reconstruction of a dome structure (the Hall of
Memory, Australian War Memorial). (Left) One of 79 images
and 189 features (green). (Right) 3D points recovered by ALM.

tances is compared with the ground truth. The reports show

that our proposed ALM achieves less than 5% error of 3D

reconstruction compared with the ground truth. In Fig. 11,

we show 3D reconstruction by our ALM method from 189

points and 79 images of the interior of a dome structure, the

Hall of Memory at the Australian War Memorial.

7. Conclusion and discussion
In this paper, we propose a multi-view 3D Euclidean re-

construction method for radially-symmetric cameras. Since

our method takes advantage of multiple views, significant

improvement is achieved especially under noisy measure-

ment case. With multi-view input, our method overcomes

the previous theoretical boundary of 3D reconstruction from

radial 1D cameras. Our method can handle different types

of cameras (e.g. one view from a fish eye lens and another

view from catadioptric camera), theoretically this is identi-

cal and solvable. A current limitation of our method is that

the centre of distortion needs to be known or estimated from

lens outer edges. As a future work, incorporating the esti-

mation of the center of distortion in our framework may be

studied to achieve more accurate estimation.
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