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Abstract

Most conventional single image deblurring methods as-
sume that the underlying scene is static and the blur is
caused by only camera shake. In this paper, in contrast
to this restrictive assumption, we address the deblurring
problem of general dynamic scenes which contain multi-
ple moving objects as well as camera shake. In case of
dynamic scenes, moving objects and background have dif-
ferent blur motions, so the segmentation of the motion blur
is required for deblurring each distinct blur motion accu-
rately. Thus, we propose a novel energy model designed
with the weighted sum of multiple blur data models, which
estimates different motion blurs and their associated pixel-
wise weights, and resulting sharp image. In this framework,
the local weights are determined adaptively and get high
values when the corresponding data models have high data
fidelity. And, the weight information is used for the seg-
mentation of the motion blur. Non-local regularization of
weights are also incorporated to produce more reliable seg-
mentation results. A convex optimization-based method is
used for the solution of the proposed energy model. Exper-
imental results demonstrate that our method outperforms
conventional approaches in deblurring both dynamic scenes
and static scenes.

1. Introduction

Blurring artifacts are among the most common flaws in

photographs. Camera shake or motion of objects during the

time of exposure cause these artifacts under low light con-

ditions. To address this problem, single image deblurring

methods which restore a sharp image from a blurred image

have been considerable research in the field of computer vi-

sion with the recent increased demand for clear images.

In general, the blind deblurring problem that restores the

blurry image without knowing the blur kernel is highly ill-

posed. So various energy models that are composed of the

regularization and data term have been proposed to find the

sharp image and the blur kernel jointly, in the form of
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Figure 1. Comparison of deblurring results. The green box illus-

trates the region used for blur kernel estimation for each image. (a)

Input dynamic blurry image of a moving bus. (b)-(c) Deblurring

results of Xu et al. [19]. (d) Deblurring result of Whyte et al. [18].

(e) Our motion blur segmentation result. Each color denotes a blur

kernel and a map of its associated weight variable. (f) Our de-

blurring result. Note that both the bus and background region are

restored significantly better than those in (b)-(d).

E = Edata(L, K, B) + Ereg(L, K), (1)

where L and B denote the vector form of the latent and

blurred images, respectively. The matrix K denotes the

blur kernel whose row vector corresponds to the blur kernel

placed at each pixel location. The data term Edata measures

the data fidelity and the regularization term Ereg enforces

the smoothness constraint to the latent image as well as to

the blur kernel.

Depending on the type of the blur kernel, blind deblur-
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ring approaches can be categorized into two types. One is

the uniform kernel approach, which assumes the blur ker-

nel is spatially invariant, and the other is the non-uniform

approach, which assumes the blur kernel varies spatially.

If we assume that the blur kernel is shift invariant and

uniform over the entire image [4, 15], it is possible to re-

store the latent image quickly with the aid of a fast Fourier

transform (FFT) and parallel processing [20, 2, 19]. How-

ever the assumption of shift invariant blur kernel does not

hold good when there exists a rotational movement of the

camera or a moving object in the shaken image.

To alleviate these limitations of uniform motion blur as-

sumption, several non-uniform kernel based methods are

proposed. In particular, recent approaches focus on mod-

eling the rotation of camera as well as translation [5, 7, 18],

and they obtained promising results in the deblurring of

static scene.

However, problems still remain in more general settings

where not only camera shake but also moving objects exist.

For example, in Fig. 1, restoring the image with the uniform

blur kernel that has been estimated from the moving bus

raises a severe artifacts in the background region (Fig. 1(b)).

And also the uniform kernel estimated from the background

fails deblurring the bus (Fig. 1(c)). Note that even the state-

of-the-art non-uniform blur kernel method [18] which can

deblur rotational camera shake does not restore the moving

bus either (Fig. 1(d)).

So, the dynamic scene deblurring problem is deeply

challenging. Thus far, only a limited amount of research

has been done on this problem [11, 6, 8]. However, much

of this work is still in a nascent stage and even the hardware

assisted method can not handle this problem well [9].

Levin [11] proposed a sequential two-stage approach to

solve this problem. She argued that moving objects and

background should be handled with different blur kernels

to remove the artifacts from deblurring with an inaccurate

blur kernel. To begin with, she segmented blur motions by

comparing likelihoods with a set of given one dimensional

box filters, then applied the Richardson-Lucy deconvolution

algorithm to each segmented region with its corresponding

box filter. For the first time, she approached this challeng-

ing problem with a simple and intuitive way. However, the

kernel for the segmentation is limited to the box filters and

thus the poor segmentation results could cause undesirable

artifacts since the segmentation-stage and the deblurring-

stage are separated. Harmeling et al. [6] proposed a method

that restores overlapping patches of the blurred image. This

approach could handle smoothly varying blur kernels but

could not handle the abrupt change of the blur kernel near

the boundary of moving objects since they did not seg-

ment the motion blurs. More recent work of Ji et al. [8] is

based on the interpolation of initially estimated kernels and

showed much better results by reducing errors from inaccu-

rate blur kernels, but it also could not overcome the motion

boundary problems as in [6].

In principle, the dynamic scene deblurring problem also

requires the segmentation of differently blurred regions. In

this work, we address the problem of estimating latent im-

age as well as different blur motions and their implicit (soft)

segmentations. To the best of our knowledge, this is the

first dynamic deblurring work that can estimate these vari-

ables jointly. In our framework, we propose a new energy

model including multiple blur kernels and their associated

pixel-wise weights. The weight of a kernel takes high value

he kernel gives high data fidelity. At the same time, the

blur kernels are estimated from the pixels whose associated

weights have high values. Therefore, locally varying weight

information allow us to segmentation the blur motions. In

addition, we add non-local regularization to the weight vari-

ables to enforce the smoothness in segmentation.

In this study, we introduce a more general and new de-

blurring framework that can adaptively combine different

blur models to estimate the spatially varying blur kernels.

Also, as illustrated in Fig. 1(e)-(f), we provide the segmen-

tation of the motion blur as well as better deblurring re-

sults. Note that since our framework is general in nature,

any blur models and optimization method can be incorpo-

rated. We demonstrate the effectiveness of our new deblur-

ring framework by the test results on very challenging im-

ages on which conventional techniques break down.

2. Dynamic Scene Deblurring Model
In our dynamic scene deblurring model, we assume the

existence of various blur motions. So we have to find both

blur kernels and their corresponding blur regions. Also, we

do not restrict the types of blur kernels, so we employ both

the uniform kernels, which are simple and fast, and the non-

uniform kernels which can handle camera rotation.

As there are multiple blur kernels in a dynamic scene,

each blurred pixel should be restored from one of them and

each kernel should be estimated from its related pixels. For

this, we introduce pixel-wise weight variables. A pixel-wise

weight variable is associated with a blur kernel and it gains

high values on the pixels related with the blur kernel. There-

fore, the weight variables imply the segmentation of motion

blur. The proposed energy model is given by,

E = Edata(L, W, K, B) + Ereg(L, W, K). (2)

The set K = {Ki} denotes a set of N blur kernels, and the

set W = {Wi} means a set of N weight variables where

i = 1, 2, . . . , N . A weight vector Wi is associated with the

corresponding blur kernel Ki.

Compared with the conventional model in (1), our new

energy model involves additional weight variables and mul-

tiple blur kernels, so it becomes a more complex and chal-
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Figure 2. Multiple blur kernel models give a much better result without additional process to remove ringing artifact. (a) A shaken image

of static scene. (b) Deblurring result of Shan et al. [15]. Severe ringing artifacts are observed near edges. (c) Deblurring result of our

method with one uniform kernel. It shows serious ringing artifacts near edges. (d) Deblurring results of our method with six uniform blur

kernels and weight variables. Ringing artifacts are significantly reduced and the texture of the wallpaper is restored well. (e) Illustration of

six weight variables. Slightly different blur kernels are estimated and the result shows that it is hard to estimate a perfect uniform kernel

due to unexpected blur effects.

lenging problem. Note that the conventional model is a spe-

cial case of our model. Since (2) is more general, it could

also provide reliable results even for static scenes.

Note that even in the case of a static scene with only

translational camera shake, the captured real image may

contain various blur motions because depth variation or ra-

dial distortion may generate unexpected blur effects. Since

the proposed model employs multiple blur kernels, it could

handle this problem complementary and produce much bet-

ter results than the conventional methods. In Fig. 2, six sim-

ilar but slightly different uniform blur kernels and their as-

sociated six blur regions are jointly estimated and a sharper

deblurred image with less ringing artifacts is obtained by

our method.

2.1. Adaptive Blur Model Selection

In this section, we propose a data term that adaptively

selects and fuses proper blur models among candidate mod-

els. For this, we adopt a strategy that chooses the locally

(pixel-wise) best suited model by measuring the data fideli-

ties and gives a high value to the associated weight variable.

At the same time, to obtain correct blur kernels, it is re-

quired that each blur kernel is estimated from pixels whose

associated weight variable shows high values. In this way,

the set W segments the motion blurs by selecting the lo-

cally best suited data model. The data term of the proposed

new energy model is formulated by a weighted sum of the

multiple data models with some constraints as follows, and

minimizing it is equal to select locally best data model.

Edata(L, W, K, B) = λ
N∑

i=1

∑
∂∗

‖W
1
2
i � (Ki∂∗L − ∂∗B)‖2

(3)

where N is the number of maximal blur models in the scene

and λ is the parameter adjusting the scale of our data term

and the continuous weight vector is constrained to be (pixel-

wise) Wi � 0 and
∑N

i=1 Wi = 1. The operator � means

the element-wise (Hadamard) product of two vectors and

the operator ∂∗ ∈ {∂x, ∂y} denotes the partial derivative

in horizontal and vertical directions [2]. To reduce ring-

ing artifacts, we also use gradient maps, but we do not use

brightness map or second order gradient maps unlike con-

ventional methods [15, 2, 19]. Despite this, we can obtain

satisfying results by means of multiple blur models and re-

duce the computational cost.

2.2. Regularization

As dynamic scene deblurring is a highly ill-posed prob-

lem, regularization enforcing the smoothness of variables is

necessary to obtain a reliable solution. In our energy model,

three primal variables are the latent image L, the set of blur

kernel matrices K and the set of the weight variables W,

and each has different kinds of regularization as

Ereg(L, W, K) = Ereg(L) + Ereg(W) + Ereg(K), (4)

and the details of which are described in the following sec-

tions.

2.2.1 Regularization on L

We design the latent image to be sharp in edge regions and

smooth in flat regions to suppress noise. For this purpose

many researchers have studied various priors of the latent

image and it is known that lp norm on the gradient map with

0.7 ≤ p ≤ 1 could capture the statistics of natural images

with heavy tailed distribution [12, 10, 5]. However, conven-

tional optimization algorithms with sparse norm less than
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p < 1 are hard to optimize and require additional compu-

tational efforts. Thus, our model adopts the total variation

model used in [19] as the prior of the latent image, as fol-

lows:

Ereg(L) = |∇L|. (5)

2.2.2 Regularization on W

We assumed that a blurry object can be restored by one

of the various blur models, and the motion blur does not

change abruptly except on the boundary of a moving object.

So, the locally varying weight variable should be segmented

and we adopt non local regularization for this purpose.

Non-local regularization is widely used in computer vi-

sion and have come into the spotlight lately [17, 16]. The

formulation incorporated in our deblurring model is,

Ereg(W) =
N∑

i=1

∑
x

∑
y∈N (x)

g(x, y)|Wi(x) − Wi(y)|, (6)

where N (x) denotes neighboring pixels of x and the func-

tion g(x, y) is a non-local similarity map which is used to

define the mutual support between the pixels at positions x
and y. Similar to the work in [17] the non-local similarity

map between two neighboring pixels is defined as

g(x, y) = e
−(
‖x−y‖

σD
)2 · e−(

L0(x)−L0(y)
σI

)2
, (7)

where the parameters σD and σI are used to adjust the slope

of the non-local similarity map and the given latent im-

age L0 can be obtained from the initial of each level in the

coarse to fine approach or previous result in the iterative op-

timization procedure. To reflect the properties of the weight

variable Wi, with similar values between neighboring pix-

els but discontinuity on the boundary of moving objects, it

is necessary to use a model that could give sparsity on the

difference of weights between neighboring pixels. For this

reason, our regularization of weight variables is also based

on the total variation. Note that, in contrast to the result

from weight regularization with only four neighbors, the re-

sult from regularization with dozens of neighbors is much

better in both motion blur segmentation and deblurring as

shown in Fig. 3.

2.2.3 Regularization on K

As we use both uniform and non-uniform kernels in our blur

models, two different regularization models are required.

First, if the blur kernel matrix consists of uniform blur

kernel, we use Tikhonov regularization which is typically

used in other methods of uniform blur kernel regularization

due to its simplicity [20, 2, 19]. By using this regulariza-

tion, we can have a smooth kernel. The energy function for
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Figure 3. Comparison of weight maps corresponding to the car,

and the deblurring results with varying number of neighboring

pixels in non-local regularization. (a) 4 neighbor pixels are used,

giving a noisy and uneven result. (b) 80 neighbor pixels are used

and the weight variable has high values in the exact area of the

car. (c)-(d) Deblurring results with weight variables in (a) and (b)

respectively. Figure (d) shows a visually more satisfactory result.

regularization on an uniform kernel Ki is formulated by

Ereg(Ki) = β‖ki‖2, (8)

where ki is a vector form of the uniform kernel Ki and the

parameter β controls the influence of regularization on ki.

Secondly, for a non-uniform blur kernel Ki, we also use

Tikhonov regularization but in a different manner from the

case of uniform blur kernel because a non-uniform kernel is

estimated in a different way. To be specific, similar to [5, 7],

the non-uniform kernel matrix Ki is made by restricting it

to linear combinations of the several basis kernels as

Ki =
M∑

m=1

μm,ibm, (9)

where the vector bm is the mth basis kernel induced by

a possible camera shake and M denotes the total num-

ber of basis kernels. μm,i is the coefficient of basis ker-

nel bm which satisfies μm,i ≥ 0 and
∑M

m=1 μm,i =
1. Since the non-uniform kernel is determined by ui =
[μ1,i, μ2,i, · · · , μM,i]T , we regularize ui instead of the Ki

itself. Then the energy function for regularization of the

non-uniform kernel is formulated by

Ereg(Ki) = γ‖ui‖2, (10)
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where the parameter γ adjusts the scale of regularization on

ui.

3. Optimization
The proposed dynamic scene deblurring model intro-

duced in the previous section and the final objective func-

tion is as follows:

min
L,W,K

λ
N∑

i=1

∑
∂∗

‖W
1
2
i � (Ki∂∗L − ∂∗B)‖2+

|∇L| +
N∑

i=1

∑
x

∑
y∈N (x)

g(x, y)|Wi(x) − Wi(y)|+

β

N∑
i=1,

Ki:uniform

‖ki‖2 + γ

N∑
i=1,

Ki:non−
uniform

‖ui‖2,

(11)

where Wi(x) ≥ 0 and
∑N

i=1 Wi(x) = 1. Though our

final objective function is not a jointly convex problem,

three sub-problems with respect to L, W and K are convex.

Therefore, instead of using complex optimization such as

sampling based technique for global optimum, we propose

an iterative optimization method similar to [2, 19, 15] for

easier inference. By alternatively optimizing each subprob-

lem in an iterative process, we can efficiently estimate the L,

W and K and can obtain successful results. Each proposed

subproblem can be modeled as a convex function, and we

adopt the first-order primal-dual algorithm [1] to solve each

problem.

3.1. Sharp Image Restoration

Sharp image restoration methods are widely researched

in both non-blind and blind deblurring methods and some

fast solutions are available with the aid of FFT. The update

procedure of L by the first-order primal-dual algorithm is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

qn+1 = qn+σLSLn

max(1,qn+σLSLn)

Ln+1 = arg min
L

(L − (Ln − τLST qn+1))2

2τL
+

λ
N∑

i=1

∑
∂∗

|W 1
2
i � (Ki∂∗L − ∂∗B)‖2,

(12)

where n ≥ 0 means iteration number, q denotes the dual

variable of L defined on the vector space and S is a contin-

uous linear operator that calculates the difference between

two pixels. The update steps σL and τL control the conver-

gence rate as defined in [1]. Initially q0 = 0, L0 is equal

to the blurred image B. In particular, since the primal up-

date for L in (12) is a quadratic form, we have adopted the

Landweber method [3] to solve with FFT similar to [20].

3.2. Weight Estimation

The use of non-local regularization and constraints on

weight variables makes it hard to infer, but with the aid of

convexity, we also adopt the first-order primal-dual algo-

rithm and the update step is given by,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rn+1
i,y (x) = min(g(x, y), max(−g(x, y),

rn
i,y(x) + σw(ZyWn

i )(x))
Wn+1

i =Wn
i − τw(

∑
y

ZT
y rn+1

i,y +

λ
∑
∂∗

(Ki∂∗L − ∂∗B) � (Ki∂∗L − ∂∗B))

Wn+1 = ΠW(Wn+1),
(13)

where ri,y is a dual variable defined on the vector space,

and update steps σw and τw control the convergence rate

as defined in [1]. Zy is a continuous linear operator that

calculates the difference between two neighboring pixels at

x and y. Since W has some constraints, Wi(x) ≥ 0 and∑N
i=1 Wi(x) = 1, the orthogonal projection ΠW projects

W onto the unit simplex [14]. This projection converges

with N iterations at most and the detail is in Algorithm 1.

Algorithm 1 The algorithm of projection onto unit simplex

1: T = {1, ..., N}
2: Wi(x) ← Wi(x) − (

∑
i Wi(x) − 1)/|T |, if i ∈ T

3: T ← T − {i}, if Wi(x) < 0
4: Wi(x) ← 0, if i /∈ T

5: Repeat steps 2-4 until
∑N

i=1 Wi(x) = 1, for all x.

For weight estimation, it is important to set proper ini-

tial value for W. The initial weight map is designed so

that at least one of the segments for uniform kernels can

cover the moving object. However since we don’t know the

position and the size of it, we use many overlapping seg-

ments to cover it initially. If the moving object occupies

large part or has strong edges in an initial segment, then the

blur kernel of the moving object can be roughly estimated

from that segment. Then, by iterations, both the accuracies

of the blur kernel and segment increase. An example of us-

ing 6 uniform blur kernels and 1 non-uniform blur kernel

and their corresponding initial weight maps is illustrated in

Fig. 4. We observed empirically that different settings of

initial weight map do not change the results significantly.

Thus, we used the same initial segmentations as in Fig. 4

and set the initial values of 1/3 for each segment for all ex-

periments.

3.3. Blur Kernel Estimation

The proposed method includes multiple blur models and

a blur model could be either uniform and non-uniform ker-

nel. Therefore, we have to estimate both uniform and
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Figure 4. (a) An example of the initial set-up of weight variables.

The six columns on the left illustrate the initial weight variables

corresponding to six uniform models, and the right most column

shows the initial weight variable corresponding to a non-uniform

model. (b) Change of a weight variable from coarse to fine level.

The distribution of a weight variable gradually changes and finally

fits on the moving bus.

non-uniform kernels. The blur kernel estimation methods

for both approaches have been widely studied in blind de-

blurring methods, but ours is somewhat different because

the proposed model includes additional weight variables.

Since proper initial value for blur kernel is also impor-

tant, the method guiding the latent image using prediction

step [2, 19] is widely used. So, we adopt the predicted gra-

dient maps {px, py} defined in [2], instead of using latent

image itself for accurate kernel estimation.

3.3.1 Uniform Kernel Estimation

For L and W being fixed, our energy model for uniform ker-

nel Ki is quadratic and the solution can be easily obtained.

The quadratic objective function with some constraints on

the uniform kernel is given by

min
ki

λ((Pxki − ∂xB)T diag(Wi)(Pxki − ∂xB)+

(Pyki − ∂yB)T diag(Wi)(Pyki − ∂yB)) + β‖ki‖2.

(14)

Note that matrices Px and Py consist of px and py , re-

spectively and the vector form of uniform kernel ki is used

where elements of ki are larger or equal to zero and their

sum is one. To help understand this and represent it as a

quadratic form we introduce diag(Wi) which is a diagonal

matrix whose diagonal entries are the elements of Wi. As

this problem is convex, we can use any quadratic program-

ming methods to solve it, and we have adopted the Landwe-

ber method [3] to iteratively minimize with FFT for reduc-

ing computations.

3.3.2 Non-Uniform Kernel Estimation

Since non-uniform kernel Ki is a weighted sum of M basis

kernels and the blurry image B is equal to KiL, we can

derive an equation,

KiL = Aui, (15)

where the matrix A = [b1L, b2L, · · · , bM L]. There-

fore, the minimization on the coefficient vector ui for non-

uniform kernel is given by

min
ui

λ(‖W
1
2
i � (Axui − ∂xB)‖2+

‖W
1
2
i � (Ayui − ∂yB)‖2) + γ‖ui‖2,

(16)

where Ax and Ay are derived from Kipx = Axui and

Kipy = Ayui, respectively. Since this energy function can

also be represented as the quadratic form, we can find an

optimal ui by quadratic programming. To be specific, the

quadratic programming is formulated as

min
ui

1
2

uT
i Hui + fT ui, (17)

where{
H = AT

x diag(Wi)Ax + AT
y diag(Wi)Ay + γ

λ I,
f = AT

x diag(Wi)Bx + AT
y diag(Wi)By.

(18)

The minimization is performed by the interior point method

and we can obtain the non-uniform blur kernel matrix as

Ki =
∑M

m=1 ui(m)bm from (9).

3.4. Overall Procedure

In the previous sections, we introduce the efficient min-

imization methods for L, W and K, respectively. However,

there exist many unknown variables in our model and the

traditional iterative optimization is prone to be stuck in lo-

cal minimum. To alleviate this problem, we adopt coarse

to fine approach like most recent blind deconvolution algo-

rithms [13, 19, 2], and the overall procedure of our dynamic

scene deblurring is in Algorithm 2.

Algorithm 2 The overall procedure of the proposed dy-

namic scene deblurring algorithm

Input: A blurry image B
Output: L, W and K
1: Build an image pyramid, which has 5 levels, with a scale factor of 0.5

2: for t = 1 to 3 do
3: Update K with the predicted gradient maps {px, py}. (Sec. 3.3)

4: for n = 1 to 30 do
5: Continuous optimization of L. (Sec. 3.1)

6: Continuous optimization of W. (Sec. 3.2)

7: end for
8: end for
9: Propagate variables to the next pyramid level if exists.

10: Repeat steps 2-9 from coarse to fine pyramid level.

4. Experimental Results
Although many parameters are used in our experiments,

fortunately most of them are reliable and less sensitive to

various blurry images except the parameter λ. Since we do
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not estimate the noise level and the blur strength of the input

image, λ that adjusts the influence of data term should be

tuned from the statistics of the input image. It ranges from

50 to 500 and it has a low value when the noise level is high

or the blur is severe. The other parameters are fixed and we

use six uniform kernel models and one non-uniform kernel

model, so N = 7 in all experiments. By setting N as large

as possible, we can handle various kinds of blur motions

but it raises costs and thus we determined the number of

models empirically and fixed it. Note, however, that the

numbers of segmented regions in the final results in Fig. 5

are less than 7 and adaptive to each image. This is due to our

sparsity priors to the weight variables. The initial values of

the seven weight variables are set as illustrated in Fig. 4(a)

and the value of each area is set 1
3 . We use 80 neighbors of

a pixel in a 9 × 9 patch for non-local regularization and the

parameters are σD = 40, σI = 25
255 , β = 10λ, γ = 1000λ.

The framework of our method in Algorithm 2 is designed

for gray image restoration. However, the estimated set of

blur kernels K from a gray image is also used for deblur-

ring the corresponding color image by applying the sharp

image restoration step introduced in Section 3.1 for each

color channel.

In Fig. 5, the motion blur segmentation and deblurring

results of real dynamic scenes are shown. We observe that

substantial improvements are achieved in the hair of the run-

ning bull and the letter on the bus. Also we compared our

results with dynamic scenes to conventional methods. As

shown in Fig. 6, there are serious artifacts near the bound-

aries of moving objects in the results of other methods,

while our method gives relatively clean results with the aid

of various blur models and motion blur segmentations.

We also compared our deblurring results on static scenes

with conventional methods in Fig. 7 and Fig. 8. The blurry

input Picasso image in Fig. 7 is degraded by an uniform

kernel. Although it is possible to obtain a sharp image with

methods based on uniform kernel, our model shows much

better result in reducing ringing artifacts and restoring de-

tails well. In addition, the blurry input used in Fig. 8 has

non-uniform blur motion which is generated by rotational

camera shake. In this case, one of seven blur models which

corresponds to the non-uniform blur kernel gained almost

all weights and still showed competitive result compared to

the state-of-the-art non-uniform kernel based methods.

5. Discussion and Conclusion
We proposed a novel single image deblurring framework

that can handle multiple moving objects in the scene as

well as camera shake. By introducing multiple blur mod-

els and their locally varying weight variables which favor

the blur models giving better data fidelity, we could also

obtain the segmented blur region as well as restored im-

age. We demonstrated the superiority of our method over

��� ��� ���

Figure 5. Deblurring results of real dynamic scenes. (a) Blurry im-

ages. (b) Our motion blur segmentation results. (c) Our deblurring

results.

conventional methods in dynamic scene deblurring as well

as in static scene cases. The future challenges and remain-

ing problems are determining the number of moving objects

via non-parametric methods. Since the number of moving

objects is unknown in a real image, we should set a large

number of blur models. Another problem is the run-time

of our method. Due to multiple blur models and additional

weight variables, computational costs increase. Thus, our

future works will include developing an efficient optimiza-

tion method and parallel implementation using GPGPU.
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